
Malware Detection Method Focusing on Anti-Debugging Functions

Kota Yoshizaki, Toshihiro Yamauchi
Graduate School of Natural Science and Technology, Okayama University

3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
yoshizaki@swlab.cs.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp

Abstract—Malware has received much attention in recent
years. Antivirus software is widely used as a countermeasure
against malware. However, some kinds of malware can evade
detection by antivirus software; hence, a new detection method
is required. In this paper, we propose a malware detection
method that focuses on Anti-Debugging functions. An Anti-
Debugging function is a method that prevents malware analysts
from analyzing an application program (AP). The function
can form part of benign as well as malicious APs. Our
method focuses on a behavioral difference between benign
and malicious APs and detects malware by comparing the two
behavioral patterns. Evaluation results with malware confirmed
our method to be capable of successfully detecting malware.

Keywords-security; malware detection; anti-debugging

I. INTRODUCTION

The amount of malware has been increasing in recent
years [1], [2], [3]. This is evident from the damage that
has been caused by malware threats all over the world. For
example, in 2012, an incident relating to remote computer
control [4] caused serious problems in Japan. Moreover, a
few years ago, the Stuxnet worm [5], which exploited com-
puter vulnerability, became a serious problem in overseas
countries. These examples show that the damage caused by
malware has become a serious problem all over the world.

Antivirus software vendors have developed antivirus soft-
ware to detect and protect computers against malware. How-
ever, some malware evade detection by antivirus software
[6], [7]. Agobot is one of the types of malware whose source
code is propagated over the Internet. Its propagation and its
capability to modify itself, have led to the creation of a large
number of subspecies. Many antivirus software programs
detects malware by using a provided signature. However,
signature based detection is not an effective approach when
the source code is propagated such as is the case with
Agobot. Moreover, Agobot has a built-in Anti-Debugging
function [8], [9] that is intended to disrupt analytical in-
vestigation. Therefore, a new malware detection method is
required.

There are many types of malware with Anti-Debugging
functions [10] and there are two kinds of these functions.
The first kind prevents static analysis, while the other kind
prevents dynamic analysis. Static analysis uses a disassem-
bling method to analyze an application program’s (AP’s)
source code; hence malware aimed at counteracting static

analysis uses a packer, to obfuscate the execution code.
Dynamic analysis uses a debugger to analyze the malware’s
approximate behavior, and malware intended to counteract
this kind of analysis uses a method to detect the debugger.
For our purpose, prevention of this nature is defined as
evasion. Evasion is therefore considered preventive behavior
with the purpose of evading dynamic analysis. Evasion
complicates the analysis of malware.

To counteract malware that contains an Anti-Debugging
function, Matsuki et al. [11] proposed a method to pre-
vent the malware from running. This method operates by
deactivating the malware by putting it into an analyzed
state. However, there are two problems associated with
this method. First, this method prevents the activity of all
APs that contain an Anti-Debugging function, including
benign ones. Second, this method dealt with only one Anti-
Debugging function.

In this paper, we propose a malware detection method
based on the Anti-Debugging function. Our method is de-
signed to modify the return value of the API that is used
by the Anti-Debugging function to either put the AP into an
analyzed or a non-analyzed state. Our method is based on
the following principles. Benign and malicious APs that are
put into an analyzed state, take evasive measures to evade the
analysis. Benign APs that are put into a non-analyzed state
display benign behavior. In contrast, malicious APs that are
put into a non-analyzed state, display malicious behavior.
Thus, there is a behavioral difference between benign and
malicious APs in the non-analyzed state. Our method is
designed to detect malware dynamically by focusing on this
behavioral difference. The contributions made in this paper
are as follows.

The incorporation of Anti-Debugging functions in mal-
ware complicates the identification of malware analysts. Our
method presents an efficient way to identify malware by
detecting it dynamically without the need for static analysis.

II. MALWARE DETECTION METHOD FOCUSING ON
ANTI-DEBUGGING FUNCTIONS

A. Anti-Debugging function

Table I shows a list of Anti-Debugging functions together
with the APIs in which they are used. Anti-Debugging
function is a method that is used by malware to prevent
analysts from analyzing or reverse engineering APs.

yamauchi
タイプライターテキスト
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current orfuture media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Table I
LIST OF ANTI-DEBUGGING FUNCTIONS

Anti-Debugging Function API Name
Detecting process CreateToolhelp32Snapshot

Process32First
Process32Next

Detecting windows EnumWindows
GetClassName

Detecting device file CreateFile
Measuring execution time GetTickCount

timeGetTime
QueryPerformanceCounter

Reboot malware CreateProcess
Obtaining BeingDebuggedFlag IsDebuggerPresent
Attaching to process by the debugger CheckRemoteDebuggerPresent
Obtaining context of the thread GetThreadContext
Obtaining the return value of the API OutputDebugString
Attaching by debugger CreateProcess

DebugActiveProcess

1) Anti-Debugging function against static analysis: Func-
tions that prevent static analysis use a packer as a tool
to compress the executable file while it is executable. An
attacker can shorten the download time of malware by using
a packer to compress the malware. In addition, a packer
obfuscates and encodes execution code, thereby making it
difficult for malware analysts to analyze malware. A packer,
therefore complicates static analysis by malware analysts.

2) Anti-Debugging function against dynamic analysis:
Malware uses the technique of evasion to prevent dynamic
analysis from occurring. The use of this technique requires
malware analysts to perform a static analysis instead of a
dynamic analysis. However a static analysis requires abun-
dant time to clarify the malware’s behavior, which delays
its termination. Therefore, any research effort aiming to
address the problem of evasion relating to malware detection
would have to focus on the Anti-Debugging function against
dynamic analysis.

B. Concept of proposed method

Figure 1 and 2 present an overview of our method. Figure
1 shows the execution of a malware in the analyzed state.
Figure 2 shows the execution of a malware in the non-
analyzed state. Our method executes the AP in both of these
two states and focuses on the behavioral difference between
them to detect malware.

The process flow shown below represents the case in
which the malware is placed in the analyzed state. This
process flow corresponds to that shown in Figure 1.

1) An AP invokes an API which is used in Anti-
Debugging function.

2) An API Hooker hooks that API and returns the value
representing “analyzed”.

3) An AP does evasion.
4) An API Hooker outputs the log of the evasion.
5) An AP resumes execution.

�����������	


	
�������

���

���

���


��������������

���������

���

�����������

�����

��������

��� ����!�������

�"�

�#�

Figure 1. Executing malware in the analyzed state

�����������	


	
�������

���

���


��������������

���������

���

�����������

�����

��������

�������� �������

�!�

�"�
�#�

�$�

�%�

Figure 2. Executing malware in the non-analyzed state

The process flow shown below represents the case in
which the malware is placed in the non-analyzed state. This
process flow corresponds to that shown in Figure 2.

1) Malware invokes an API which is used in Anti-
Debugging function.

2) API Hooker hooks the API and returns the value
representing “non-analyzed”.

3) The malware invokes an API for malicious behavior
and API Hooker hooks this API.

4) API Hooker reads the logs of evasion.
5) The Malware Detector detects the malware and asks

the user whether to terminate the malware or not.
6) The user returns a determination to the Malware

Detector.
7) If the user specified termination, the Malware Detec-

tor terminates the malware. Otherwise, the Malware
Detector resumes the malware.

Our method defines adding an entry for start-up to the
registry as malicious behavior. This is because malware often
creates a registry entry to enable itself to run automatically



during computer start-up [12]. To add an entry to the registry,
it is required to invoke API. We define the date, time, process
ID, the name, and the arguments of the hooked API as
malicious behavior information.

C. Requirements and Challenges

The detection of malware requires the observation of
evasion and, consequently, malicious behavior. Observing
evasion requires placing the AP into an analyzed state. The
requirements of this paper are as follows:

Requirement 1. Place malware into analyzed state.
Requirement 2. Place malware into non-analyzed state.
Requirement 3. Observe evasion and output logs of eva-

sion.
Requirement 4. Observe malicious behavior.
Requirement 5. Detect malware based on a behavioral

difference between the benign AP and the malware.
To satisfy Requirement 1 and 2, it is necessary to hook

the API that is used for the Anti-Debugging function and
to modify the return value of the hooked API. For instance,
if the return value of the IsDebuggerPresent API is TRUE,
the AP recognizes that it is in the analyzed state, whereas
if the return value of the IsDebuggerPresent API is FALSE,
the AP recognizes that it is in the non-analyzed state. To
satisfy Requirement 3, the API that is used for evasion
has to be hooked and the outputting logs of the hooked
API are required while satisfying Requirement 1. To satisfy
Requirement 4, it is necessary to hook the API, which opens
or creates the registry entry for start-up. Requirement 5
requires an assessment of the AP to determine whether it is
malicious or benign based on the observation of evasion and
the malicious behavior information. Moreover, the result of
the judgment would determine whether malware is detected.

To satisfy the Requirements above, the following chal-
lenges are required.

Challenge 1. It is possible to hook the API used for the
Anti-Debugging function.

Challenge 2. It is possible to hook the API used for
evasion and the output logs of the hooked API.

Challenge 3. It is possible to hook the API used for
malicious behavior.

Challenge 4. It is possible to detect malware based on
the output logs of evasion and malicious behavior
information.

D. API Hooker

The API Hooker hooks the following APIs: IsDebugger-
Present, RegCreateKeyExA, and ExitProcess. API Hooker
creates logs of evasion as output and sends the malicious
behavior information to the malware detector. Some Anti-
Debugging functions invoke IsDebuggerPresent to detect a
debugger and ExitProcess as evasion. To achieve Challenges
1 and 2, IsDebuggerPresent and ExitProcess are hooked,
following which the output information of ExitProcess is

used as a log. RegCreateKeyExA is used for malicious
behavior. Therefore, Challenge 3 is achieved by hooking
RegCreateKeyExA. Challenge 4 is achieved by generating
an evasion logs and a malware detection log as output as
described below. The API Hooker generates output contain-
ing the hooked API’s date, time, process ID, name, and
arguments as hooked API information.

E. Malware Detector

The Malware Detector is a function that uses the hooked
API information from the API Hooker to detect malware.
At first, the Malware Detector accepts as input the evasion
information obtained from the logs. Second, the Malware
Detector receives the malicious behavior information from
the API Hooker. If the conditions below are met, the
Malware Detector detects and declares AP to be malware.

Conditions 1. Evasion information is output in the form
of logs.

Conditions 2. The API Hooker detected malicious behav-
ior information.

When malware is detected, the Malware Detector uses a
message box to notify users that malware has been detected.

III. EXPERIMENTAL RESULTS

A. Evaluation environment

Our experiment was performed by running Windows Vista
SP2 on a VirtualBox 4.2.6 as a guest OS. The malware
Agobot, which has an Anti-Debugging function, was used.
The experiment involved Agobot attempting to detect a
debugger by invoking IsDebuggerPresent once Internet con-
nection is established. However, our machine would have
been able to perform the role of a bot by executing Agobot if
our machine were to be connected to the Internet. Therefore
Agobot was modified to call the Anti-Debugging function
before the Internet connection was established. Agobot was
therefore executed in an environment that was isolated from
the Internet.

B. Malware detection evaluation

At first, Agobot was executed in the analyzed condition.
Specifically, the API Hooker hooks IsDebuggerPresent and
changes its return value to TRUE. Figure 3 shows the log
resulting from the evasion and shows that the time between
the call of IsDebuggerPresent and the call of ExitProcess to
be about one second. The Malware Detector detects Agobot
if ExitProcess is called within five seconds. Therefore, in this
case, Malware Detector detects Agobot and considers it mal-
ware. Figure 4 shows the logs of malicious behavior. This
log shows a call of RegCreateKeyExA with its argument
is SOFTWAREYMicrosoftYWindowsYCurrentYVersionYRun.
This registry entry was created by Agobot for start-up and
implies that the call of RegCreateKeyExA indicates mali-
cious behavior. The Malware Detector accepts as input the



�����������	��	��	�
���������������������������������

�����������	��	��	�����������������������������

Figure 3. Log of evasion

�����������	��	��	�
���������������������������������

�����������	��	��	�����������������������������

�����������	��	��	���������������������������������

�����������	��	��	������������ ��!��"��#�$��%�&�'()% �*+������,�

*)��-�.�*!�������������* ��

Figure 4. Log of malicious behavior

logs of evasion information, before receiving the malicious
behavior information that enables it to detect the malware.

C. Consideration

Our method executes the AP twice in order to form a
judgment as to whether the AP is malicious or benign. The
first execution enables evasion to be observed, while the
second execution enables the detection of malicious behav-
ior. However, the observation of both of these behaviors
requires modification of the return value of the API for Anti-
Debugging. This was accomplished by preparing two DLLs
to change the return value. One of the DLLs returns the
value TRUE for the IsDebuggerPresent API, whereas the
other returns the value FALSE. The name of the DLL had
to be changed each execution time the method was executed,
and this was not efficient.

Our method was only tested with one Anti-Debugging
function. Future efforts would have to consider more mal-
ware by including other Anti-Debugging functions.

IV. CONCLUSIONS

We proposed a malware detection method that focuses on
the Anti-Debugging function. An evaluation of our method
using malware showed it capable of successfully detecting
the malware.

Our method executes and detects malware in two states, an
analyzed state and a non-analyzed state. The method focuses
on the behavioral difference between benign and malicious
software, which has an Anti-Debugging function. In the
analyzed state, the AP and the malware perform the action of
evasion. In the non-analyzed state, the AP behaves benignly,
but the malware exhibits malicious behavior. Our method
focuses on this behavioral difference to detect malware.

The results of our experiments showed that our method
could observe the Anti-Debugging function, evasion, and
malicious behavior and is therefore capable of detecting
malware. Furthermore, our work was able to verify a user’s
ability to terminate malware successfully when the user was
presented with the possibility of doing so.

REFERENCES

[1] AVTEST The Independent IT-Security Institute, “Statistics,
Malware,” http://www.avtest.org/en/statistics/malware/

[2] McAfee, “McAfee Threats Report: Fourth Quarter
2014,” http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q4-2013.pdf

[3] Shadowserver Foundation, “Statistics - Malware,” http://www.
shadowserver.org/wiki/pmwiki.php/Stats/Malware

[4] J. Hamada, “Man Arrested in Relation to the “Re-
mote Control Virus”,” http://www.symantec.com/connect/
blogs/man-arrested-relation-remote-control-virus

[5] S. Karnouskos, “Stuxnet worm impact on industrial cyber-
physical system security,” 37th Annual Conference on IEEE
Industrial Electronics Society, pp.4490-4494 (2011).

[6] AV Comparatives, “Real World Protection-Test - March
2014,” http://chart.av-comparatives.org/chart1.php

[7] I. You and K. Yim, “Malware Obfuscation Techniques: A
Brief Survey,” Proc. 2010 International Conference on Broad-
band, Wireless Computing, Communication and Applications
(BWCCA), pp.297-300 (2010).

[8] Z. Qi, B. Li, Q. Lin, M. Yu, M. Xia and H. Guan,
“SPAD: Software Protection Through Anti-Debugging Using
Hardware-Assisted Virtualization,” Journal of Information
Science and Engineering, vol.28, pp.813-827 (2012).

[9] S. Gao, Q. Lin, M. Xia, M. Yu, Z. Qi and H. Guan, “Debug-
ging classification and anti-debugging strategies,” Proc. SPIE,
vol.8350, pp.83503C-83503C.6 (2011).

[10] R. Branco, G. Barbosa, and P. Neto, “Scientific but
Not Academical Overview of Malware Anti-Debugging,
Anti-Disassembly and Anti-VM Technologies,” Blackhat
USA’2012.

[11] T. Matsuki, Y. Arai, M. Terada, and N. Doi, “Proposal
of Malware Activity Control Method Turning Anti-analysis
Function to Advantage,” IPSJ Journal, vol.50, no.9, pp.2118-
2126 (2009). (in Japanese)

[12] F-Secure, “News from the Lab,” http://www.f-secure.com/
weblog/archives/00001207.html




