
Access Control to Prevent Attacks Exploiting
Vulnerabilities of WebView in Android OS

Jing Yu, Toshihiro Yamauchi
Graduate School of Natural Science and Technology

Okayama University
Okayama, Japan

Email: yu@swlab.cs.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp

Abstract—Android applications that using WebView can load
and display web pages. Furthermore, by using the APIs provided
in WebView, Android applications can interact with web pages.
The interaction allows JavaScript code within the web pages to
access resources on the Android device by using the Java object,
which is registered into WebView. If this WebView feature were
exploited by an attacker, JavaScript code could be used to launch
attacks, such as stealing from or tampering personal information
in the device. To address these threats, we propose a method
that performs access control on the security-sensitive APIs at the
Java object level. The proposed method uses static analysis to
identify these security-sensitive APIs, detects threats at runtime,
and notifies the user if threats are detected, thereby preventing
attacks from web pages.

I. INTRODUCTION

In the last several years, the Android [1], a mobile plat-
form proposed and developed by Google, has become more
popular. To support the development of Android applications
(hereafter, Android apps), Android provides rich libraries, such
as OpenGL, SQLite, WebKit, etc. In this paper, we focus
on WebKit. WebView [2], provided by WebKit, could be
used to implement a simple browser function in an Android
app, so that users can load web pages in the Android app
directly without using a browser. In addition to displaying
web pages, WebView allows JavaScript within web pages to
invoke methods defined in the Android apps. However, if the
rich features of WebView are not used properly, devices could
become vulnerable to malicious attacks [3], such as those that
steal personal information or tamper with data on the Android
device.

Reference [4] has reported attacks using the vulnerabil-
ities of WebView in Android, and these attacks fall into
two types: attacks from web pages to the Android OS and
attacks from Android apps to web pages. Reference [5] was
first to recognize the threat of JavaScript code that abuse
Android permissions, and the authors proposed a static analysis
method to estimate the potential threat of Android apps that
use WebView. However, no effective countermeasures were
discussed in existing works.

In this paper, we study a case of an attack from web pages,
and we address the cause of the threats, which is the access
to security-sensitive APIs from the JavaScript code within the
web pages. We propose access control on the security-sensitive
APIs at the Java object level. The Java object is an interface to
the web pages loaded in WebView. By using the Java object,
JavaScript code in the web pages can access the resources on

the Android device. To detect potential attacks that use the Java
object, we performed static analysis to determine the security-
sensitive APIs that could be invoked by the Java object, and
we ran a threat-detection process each time the Java object
is registered into WebView. If a threat is found, the user is
warned, and the user decides whether to allow the registration
of the Java object or to disable it to prevent attacks from web
pages.

The contributions of this work are as follows:
• Detect all threats that come from web pages. Because

all Java objects are registered by using the add-
JavascriptInterface API, we hooked the addJavascript-
Interface API, so that every Java object that is intended
to be registered into WebView can be inspected.

• Support the user in making a decision. By displaying
the URL of the web page to be loaded in WebView,
we can enhance the awareness of the threat that could
come from web pages. By referring to information
about the URL and the security-sensitive APIs, the
user could evaluate the threat. If the user is not certain
of the safety of the Java object, the user could use
the default browser to load the web page, instead of
loading it in WebView, by clicking the URL displayed
in the warning information.

• Prevent the threats without stopping the Android app.
Because the proposed method performs access control
at the Java object level, the user disables only the
Java object. The Android app could continue running,
and the user could browse the web page in WebView
safely.

II. SECURITY COMPONENTS

A. Dalvik Virtual Machine

Dalvik is the virtual machine that runs Android apps on the
Android OS. In addition to hiding the specification differences
among devices, the Dalvik virtual machine performs as a
sandbox to isolate Android apps from each other. Because each
Android app has its own UID and runs on the Dalvik virtual
machine independently, the security is enhanced.

Dalvik executable files are formatted as dex (Dalvik Exe-
cutable) files. An Android app written in Java is compiled and
converted to a dex file, which contains all the source code of
the Android app. The dex file is also used in our static analysis.

yamauchi
タイプライターテキスト
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current orfuture media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



B. Permission

The permission mechanism performs access control on the
resources that Android apps can access. If permissions are
requested by an Android app, the user is prompted at installa-
tion time. However, the installation continues, only if the user
grants all requested permissions. The user cannot grant only
some of the permissions. In addition, the permissions cannot
be changed after the Android app is installed. Because the
current permission mechanism is coarse-grained, the Android
app can trick the user to grant more permissions and be over-
privileged.

III. WEBVIEW

A. What is WebView

WebView is a component provided by a browser engine
named WebKit. WebView provides basic browser functionality
to load and display Web pages within Android apps without
switching to the default browser. More importantly, the An-
droid app can interact with JavaScript code embedded in web
pages by using the APIs provided in WebView. Therefore,
developers can develop an Android app with rich features
by using WebView. In this section, we introduce the most
important APIs used in the interaction between the Android
app and web pages.

1) setJavaScriptEnabled API: This API enables web pages
to use JavaScript, which plays an important role in the inter-
action. Web pages using JavaScript might not be successfully
displayed, if the JavaScript function is not enabled.

2) addJavascriptInterface API: This mechanism allows
web pages to execute a method defined in the Android.
The addJavascriptInterface API registers the Java object into
WebView, so that the JavaScript code within web pages could
use the registered Java object to run methods defined in the
Java class.

3) loadUrl API: This API loads a specific web page. The
following example shows how to load the home page of
Google.
WebView webview = new WebView(this);
webview.loadUrl("http://www.google.com/");

JavaScript code can also be injected into web pages by
using loadUrl API. The following is an example that inserts
the alert Hello WebView in the Google home page.
webview.loadUrl("http://www.google.com/

javascript:alert("Hello WebView")");

B. Problems with WebView and Attack Models

WebView enables Android app to function as a simple
browser. However, compared with the general browsers, We-
bView is not secure enough. Fig.1 shows an overview of
an Android app that uses WebView. Path A and Path B are
the two main interactions between the Android app and web
pages. Path A shows that web pages loaded in WebView can
invoke methods defined in the Android by using registered
Java objects. Path B shows that by using the loadUrl API, an
Android app can invoke JavaScript code within web pages or
insert JavaScript code into web pages. Attackers could exploit
these rich features of WebView.

Fig. 1. Overview of Android application using WebView

Two attack models, which also have been discussed in [4],
should be considered. One model involves attacks from web
pages. After the Java object is registered into WebView, all
web pages loaded in WebView can use the registered Java
object, regardless of the origin of the web pages. If WebView
loads the malicious web pages, the JavaScript code in those
malicious web pages could launch an attack, such as stealing
or tampering with the personal information in the Android
device. Another model involves attacks from Android apps.
Malicious Android apps can inject malicious JavaScript code
into web pages to perform attacks. In this paper, we propose
a method to address the attacks from web pages.

C. Tutorial on Attack Case

1) Case Study: Many attack examples that exploit Web-
View were documented in [6]. In this paper, we show an
example that steals the telephone number of an Android
device using JavaScript code embedded in web pages. Because
Android apps need permission to access the resources and data,
in this example, we assume that the Android app has received
the INTERNET permission to open network sockets and the
READ PHONE STATE permission to access the phone state.

In order to illustrate the interactions between the Android
app and the web pages, we created implementations both in
the Android and in the web page. Fig.2 is the example code
for Android, and Fig.3 is the example code for the web page.

The first four lines of Fig.2 are necessary to invoke methods
in an Android device from a JavaScript code. The first four
lines do the following:

• Create an instance of the WebView
• Enable JavaScript
• Register the Java object in WebView
• Specify the URL of the web page to load

If any one of the four necessary elements is absent, the
JavaScript code could not pose a risk, because it would not
be able to invoke methods in the Android device.



Fig. 2. Example code for Android

Fig. 3. Example code for the web page

At Line 3 of Fig.2, a Java object named Obj for JS,
which is an instance of the JavaObject class, is registered
through the addJavascriptInterface API. At Line 3 of Fig.3,
the JavaScript code uses Obj for JS to invoke the Android
app’s method n(), which invokes the getLine1Number API of
the TelephonyManager class. In this way, the JavaScript code
within a web page could steal the telephone number of the
Android device.

2) Analysis: As we can learn from the attack case that
the Java object has the same privileges as the Java class and
can invoke the methods defined in the Java class. The key
point is to understand what operations the method can do. If
the method in the Java class can execute the security-sensitive
APIs, which could access personal information or alter data
stored in the Android device, the Java object associated with
this Java class could pose a threat. Therefore, it is necessary
to determine whether the security-sensitive APIs are used and
to apply access control on them.

IV. PROPOSED METHOD

A. Purpose

The purpose of the proposed method is to prevent malicious
JavaScript code from accessing security-sensitive APIs through
the Java object. The user is prompted to grant permissions
requested by the Android app at installation time. However,
the user is not aware that these permissions could be used
by malicious JavaScript code in a web page to invoke the
security-sensitive APIs through the Java object to attack. For

this reason, access control must be applied on the security-
sensitive APIs.

B. Concept of Proposed Method

We know that the threat from JavaScript code stems from
the use of security-sensitive APIs. However, as described in
the previous chapter, the Java object is one of the necessary
elements that could pose a threat, and controlling the Java
object can prevent attacks from JavaScript code. Therefore,
we applied access control on the security-sensitive APIs at
Java object level. If the security-sensitive APIs are detected
in methods that the Java object could execute, we control this
Java object. The following are the requirements for achieving
this purpose:
a) Be able to identify whether a specific Java object needs

to be controlled.
b) Be able to manage the Java object that needs to be

controlled.
To achieve these requirements, the following three challenges
must be met:
a) Clarify what APIs can be executed by the Java object.
b) Address the security-sensitive APIs at Java object

level.
c) Prompt the user to manage the potential threat that has

been addressed.
To satisfy Requirement a), Challenges a) and b) need to be
resolved. To satisfy Requirement b), Challenge c) needs to be
resolved.

C. Solution

1) Solution for Challenge a): To determine what APIs
could be executed by Java objects, we need to refer to the
source code of the associated Java class. However, the Android
app is compiled and packaged in the form of apk files, and we
could not refer directly to the source code of the Java class.
Therefore, we use static analysis to determine what APIs are
used in the Android app.

Dedexer [7] and dex2jar [8] are commonly used analysis
tools. Dedexer can convert the dex file into assembly code, and
dex2jar can convert the dex file into a jar file that contains the
Java class file. By using the JD-GUI [9], the Java class file
can be converted back to the Java code. However, these tools
are used in Windows and are not available in the Android
OS. Therefore, we use dexdump, which is a disassembly tool
for Android, to convert the dex file into assembly code. By
analyzing the assembly code, we can determine what APIs
were used. In addition, to make the assembly code simple
and easy to be analyzed, we removed unnecessary features of
dexdump to make it lighter, thereby reducing the overhead of
the static analysis.

The time when the static analysis is performed also has an
effect on the performance of the proposed method. One option
is during installation of the Android app, and another is when
the addJavascriptInterface API is invoked. If we perform static
analysis during installation, the time spent on static analysis
could be perceived as part of the installation time, so the user
does not feel inconvenienced. However, we cannot determine



TABLE I. SECURITY-SENSITIVE APIS

getCellLocation getAccounts
getDeviceId getAuthToken
getNetworkOperator getPassword
getPhoneType getUserData
getSubscriberId peekAuthToken
getLine1Number removeAccount
getSimSerialNumber setPassword
getVoiceMailAlphaTag getName
getVoiceMailNumber getProfileConnectionState
sendDataMessage getProfileProxy
sendMultipartTextMessage getParams
sendTextMessage getUngzippedContent
getAllProviders getCertificate
getBestProvider clearHistory
getGpsStatus clearSearches
getLastKnownLocation getAllBookmarks
clearPassword getAllVisitedUrls
editProperties

which application needs to be analyzed at installation time;
therefore, static analysis would need to be performed on
every Android app. If we perform static analysis when the
addJavascriptInterface API is invoked, we are certain that the
static analysis is performed only on applications that use the
addJavascriptInterface API. However, the user would need to
wait until the static analysis is completed. User experience
is important for mobile applications; therefore, the proposed
method performs the static analysis during installation.

2) Solution for Challenge b): By analyzing the assembly
code generated by dexdump, we can determine which Java
class includes the security-sensitive APIs that need to be con-
trolled. In our work, we investigate on API Level 15, and we
define security-sensitive APIs as the APIs that communicates
with outside or that deal with personal information. TABLEI
shows the list of APIs that we defined to be security-sensitive.

3) Solution for Challenge c): In Android OS, no threat
detection has been done during registration of the Java object.
In our method, we hook the addJavascriptInterface API at
runtime to detect whether a threat exists in the Java object.
Threat detection is based on the result of the static analysis. If
the Java object is determined to invoke the security-sensitive
APIs, the user will be warned and prompted to decide whether
to grant permission based on the information presented. By
disabling the dangerous Java objects, the user can prevent
attacks from web pages.

D. Design

1) Overview of Proposed Method: Fig.4 is an overview
of the proposed method, which mainly consists of three
components: the Static Analysis Unit, the Threat Detection
Unit, and the Alarm application. As shown in Fig.4, our
method controls the Java object at the framework layer. By
intercepting the call to the addJavascriptInterface API, the
threat that exists in the registered Java object is detected and
the user is informed. Then, the user can decide whether to
disable the Java object. In addition, the Threat Detection Unit
detects whether a potential threat exists in the Java object based
on the API Class Matching List, which is generated by the

Fig. 4. Overview of proposed method

Fig. 5. Processing flow of static analysis unit

Static Analysis Unit to show the association between the Java
class and the security-sensitive APIs. The dotted arrow from
the Static Analysis Unit to the Threat Detection Unit represents
a reference to the API Class Matching List. The following
process describes the flow in the proposed method:
(1) The Android app calls the addJavascriptInterface API.
(2) The proposed method intercepts the call to the ad-

dJavascriptInterface API and passes the information
about the Java object to the Threat Detection Unit.

(3) If a threat is detected by the Threat Detection Unit,
the proposed method calls the Alarm application;
otherwise, it proceeds to Step (7).

(4) The proposed method warns the user of the threat.
(5) The user replies to the Alarm application to decide

whether to disable the Java object.
(6) The Alarm application forwards the user’s decision to

the Threat Detection Unit.
(7) The Threat Detection Unit forwards the decision to

the addJavascriptInterface API.
(8) If the user granted the use of the Java object, the Java

object is registered into WebView as usual. Otherwise,
the registration is aborted.

2) Static Analysis Unit: Fig.5 shows the processing flow of
the Static Analysis Unit. The Static Analysis Unit consists of
the Disassemble Unit and the API Class Matching Unit. The
following process describes the flow in the Static Analysis
Unit:



(1) The Static Analysis Unit gets the dex file from the
apk file of the Android app.

(2) The Disassemble Unit converts the dex format to
assembly code by using dexdump.

(3) The API Class Matching Unit compares the assembly
code with the Security-Sensitive API List, which was
defined previously.

(4) If the assembly code contains APIs that are included
in the Security-Sensitive API List, the Static Analysis
Unit stores the API information and the associated
Java class information in the API Class Matching
List.

The static analysis must be done once on each Android app
and again, if the Android app is updated.

3) Threat Detection Unit: When the Java object informa-
tion is passed to the Threat Detection Unit, the detection
is performed based on the API Class Matching List that
was generated by the Static Analysis Unit. If a threat is
detected, the Alarm application would be called. The Threat
Detection Unit also passes the decision made by the user to
the addJavascriptInterface API.

4) Alarm AP: If a threat is detected, the Alarm application
warns the user and prompts the user to make a decision
whether to grant permission to the Java object. In order to
support the user in making a decision, the following informa-
tion is displayed:

• Name of Android app
• URL that WebView is supposed to load
• Name of Java object that was determined to be a threat
• Security-sensitive API associated with the Java object

The user can press either the Enable or Disable button
located below the warning information to indicate whether to
allow the use of the Java object. In addition, by clicking the
URL displayed, the default browser will be invoked to load the
web page. As sandbox protection is implemented in general
browser, the Java object cannot be used to interact with the
Android app. Therefore, if the user is not certain of the safety
of the Java object, the user can use the default browser to load
the web page, instead of loading it in WebView.

V. EVALUATION

A. Experiment to test the operation of proposed method

We implemented the proposed method on Android 4.0.3
and experimented with the operation of the proposed method.
We used an Android app named HelloWebView, which has
the functionality to obtain the phone number and the device
ID using JavaScript code embedded in the web page and using
the Java object named Obj for JS. The warning information is
shown in Fig.6. By choosing Disable , the user denies access
to the getLine1Number API and the getDeviceID API, which
are the security-sensitive APIs that detected by the proposed
method.

B. Effectiveness of modified dexdump

In the proposed method, we modified the dexdump to make
the assembly code simple and easier to analyze. We compared
the unmodified and the modified dexdump. The comparison

Fig. 6. Example of warning information

TABLE II. COMPARISON BETWEEN UNMODIFIED DEXDUMP
AND MODIFIED DEXDUMP

Android App A B C D
The Weather Channel 4,944 KB 74,630 KB 31,193 KB 58.20%
Vyclone-Film together 4,659 KB 71,885 KB 27,494 KB 61.75%
Contacts+ 3,131 KB 53,704 KB 19,633 KB 63.44%
Instructables 2,628 KB 41,272 KB 16,321 KB 60.46%
Sports Republic 3,531 KB 48,396 KB 22,865 KB 52.75%
Appy Gamer 2,496 KB 35,776 KB 13,014 KB 63.62%
Note: Column A shows the size of the dex file. Column B shows the size of the
assembly code generated by the unmodified dexdump. Column C shows the size
of the assembly code generated by the modified dexdump. Column D shows the
rate of reduction.

details are shown in TABLEII. We used six free Android apps
that downloaded from the Recommended Apps This Week
on Google Play on June 11, 2013. The dex file of each Android
app was disassembled by the unmodified dexdump and by the
modified dexdump. The size of the assembly code generated by
the modified dexdump was reduced by about 60%, compared
to the one generated by the unmodified dexdump.

C. Overhead of the Static Analysis Unit

We measured the processing time of the static analysis. The
environment we used are shown in TABLEIII and TABLEIV.
We ran the guest OS using VMware Player 4.0.4 on the
host OS and then ran Android 4.0.3, which the proposed
method has been implemented, on the guest OS. We tested two
representative Android apps using WebView: HelloWebView,
which is the smallest Android app that uses WebView, and
LivingSocial, which has been introduced in [4] is the size of
a typical Android app that uses WebView. The static analysis
was performed 5 times on each Android app, and we averaged



TABLE III. ENVIRONMENT OF THE HOST OS

OS Windows 7 Home Premium
CPU Intel(R) Core(TM) i7-3517U 1.90GHz
Memory 8 GB
Virtualization Software VMware Player 4.0.4

TABLE IV. ENVIRONMENT OF THE GUEST OS

Distribution Ubuntu 10.04 LTS
Kernel Linux 2.6.32-44-generic
Number of virtual CPU 2
Memory 4 GB

TABLE V. PROCESSING TIMES OF STATIC ANALYSIS

Android App Size of Dex File Average of Processing Time
HelloWebView 5.6 KB 182 ms
LivingSocial 781.8 KB 12,324 ms

the processing times. As shown in TABLEV, the processing
time of HelloWebView is 182 ms, which is very short. On
the other hand, the processing time of LivingSocial is about
12 s, which needs to be reduced. However, because the static
analysis is performed only once at installation, 12 s may not
be a serious inconvenience to the user.

VI. RELATED WORK

Nowadays, JavaScript has been widely used and many
works have been done to enhance the security in web browsers.
Reference [10] identified the fundamental lack of fine-grained
JavaScript access control mechanisms in modern web browsers
and proposed a method that enables fine-grained access control
in JavaScript contexts. Reference [11] presented a client-side
advice implementation called CONSCRIPT, which allows the
hosting page to express fine-grained application-specific secu-
rity policies at runtime. On the other hand, the researches on
Android security are also booming. Reference [12] presented
a methodology for the empirical analysis of permission-based
security models and made a discussion of improvement for
the coarse-grained permission model. Reference [13] adopted
bytecode rewriting to implement fine-grained access control
at the API level. Reference [14] proposed DroidTrack, a
method for tracking the diffusion of personal information and
preventing its leakage on Android device.

In this paper, we focus on WebView and make an im-
plementation in Android OS to protect the Android device
from the malicious JavaScript. Vulnerabilities caused by the
use of WebView have attracted the attention of the research
community [3], [6]. Reference [4] reported that WebView is
used in 86% of the top 20 most downloaded Android apps
in 10 different categories. Further, two attack models (attacks
from malicious web pages and attacks from malicious Android
apps) were discussed.

Reference [5] proposed a static analysis method, which is
similar to the one we used in our method, to estimate the threat
while using WebView. The static analysis technique detects
threat based on a malignant API list which was previously
defined. However, the threat is evaluated at the Android app
level, and the user is only notified whether the Android app is
dangerous or not. Therefore, the user can do nothing, except to

keep the dangerous Android app unused. In addition, there is
not much information prompted to the user, so that the Android
app would be estimated as a dangerous one even if it is benign.
The method proposed in this paper addresses the potential

threats at the Java object level and provides the information
to the user. By disabling potentially malicious Java objects,
the user can prevent attacks that come from web pages. The
proposed method can prevent the threat to Android devices,
even if web pages with malicious JavaScript are loaded in
WebView.

VII. CONCLUSION
In this paper, we described the attacks to Android devices

from web pages caused by exploiting the vulnerabilities of
WebView. To resolve these attacks, we applied access control
on the security-sensitive APIs at the Java object level. The
threat detection is performed when the addJavascriptInterface
API is invoked to register the Java object into WebView,
and the user is notified if a threat is detected. By disabling
the malicious Java object, attacks from web pages could be
prevented. In future work, we will reduce the overhead of the
proposed method.

REFERENCES
[1] Android, the world’s most popular mobile platform - Android Develop-

ers. [Online]. Available: http://developer.android.com/about/index.html
[2] WebView - Android Developers. [Online]. Available:

http://developer.android.com/reference/android/webkit/WebView.html
[3] (2012, Jun.) Dangers lurking in the implementation of the browser

features to smartphone app - issue of WebView class. (In Japanese).
[Online]. Available: http://codezine.jp/article/detail/6618

[4] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, Attacks on webview
in the android system, in Proc. 27th Annual Computer Security
Applications Conference (ACSAC’11), pp.343-352, 2011.

[5] H. Kawabata, T. Isohara, K. Takemori, and A. Kubota, Threat of script
abuse android permissions and static analysis, IPSJ SIG Technical
Report (In Japanese), vol.2011-CSEC-53, no.3, pp.1-6, 2011.

[6] (2009, Jan.) lexanderA - WebView examples. [Online]. Available:
http://lexandera.com/category/webview examples/

[7] (2011, Dec.) Dedexer user’s manual. [Online]. Available:
http://dedexer.sourceforge.net/

[8] (2013, Jun.) dex2jar - Tools to work with android .dex and java .class
files. [Online]. Available: http://code.google.com/p/dex2jar/

[9] (2012, Oct.) JD-GUI - Java Decompiler. [Online]. Available:
http://java.decompiler.free.fr/?q=jdgui

[10] K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang, Towards fine-
grained access control in javascript contexts, in Proc. 31st International
Conference on Distributed Computing Systems (ICDCS’11), pp.720-
729, 2011.

[11] L. Meyerovich, and B. Livshits, CONSCRIPT: specifying and en-
forcing fine-grained security policies for javascript in the browser, in
IEEE Symposium on Security and Privacy (SP’10), pp.481-496, 2010.

[12] D. Barrera, H. Kayacik, P. Oorschot, and A. Somayaji, A methodology
for empirical analysis of permission-based security models and its
application to android, in Proc. 17th ACM Conference on Computer
and Communications Security (CCS’10), pp.73-84, 2010.

[13] H. Hao, V. Singh, and W. Du, On the effectiveness of api-level
access control using bytecode rewriting in android, in Proc. 8th ACM
Symposium on Information, Computer and Communications Security
(AsiaCCS’13), pp.25-36, 2013.

[14] S. Sakamoto, K. Okuda, R. Nakatsuka, and T. Yamauchi, DroidTrack:
tracking information diffusion and preventing information leakage on
android, in Proc. 7th FTRA International Conference on Multimedia
and Ubiquitous Engineering, Lecture Notes in Electrical Engineering
(LNEE), vol.240, pp.243-251, 2013.




