
Evaluation of Performance of Secure OS using
Performance Evaluation Mechanism of

LSM-based LSMPMON

Kenji Yamamoto and Toshihiro Yamauchi

Graduate School of Natural Science and Technology，Okayama University,
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan

yamamoto-k@swlab.cs.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp

Abstract. Security focused OS (Secure OS) is attracting attention as
a method for minimizing damage caused by various intrusions. Secure
OSes can restrict the damage due to an attack by using Mandatory
Access Control (MAC). In some projects, secure OSes for Linux have
been developed. In these OSes, different implementation methods have
been adopted. However, there is no method for easily evaluating the per-
formance of the secure OS in detail, and the relationship between the
implementation method and the performance is not clear. The secure
OS in Linux after version 2.6 has often been implemented by Linux Se-
curity Modules (LSM). Therefore, we determine the effect of introducing
the secure OS on the performance of the OS, and a characteristic by the
difference of the implementation method by using the overhead measure-
ment tool, the LSM Performance Monitor (LSMPMON); the LSMPMON
can be used to evaluate three different secure OSes.

Keywords: Performance Evaluation，Secure OS，Linux，LSM

1 Introduction

It is very difficult to prevent all the attacks that occur when the weakness of a sys-
tem is exploited. In addition, applying patches to compensate for vulnerabilities
is not sufficient for preventing attackers from attacking computers. Therefore,
secure OSes have attracted attention as a solution to these problems. A secure
OS provides forced access control (Mandatory Access Control, MAC) and the
minimum special privileges so that minimal damage occurs even if the root priv-
ilege is obtained by an attacker. The secure OS is based on the label system or
path name system or others. There are several methods for implementing the
secure OS, and the functions in these methods are different. Therefore, it is not
easy to select a secure OS that is appropriate for use in the user’s environment.
In addition, the consequences of introducing a secure OS are not clear, and the
change in the specifications and performance with the change of the version is
difficult to determine.



After Linux 2.6, the function of the secure OS is implemented by a hook-
ing system that calls a function group named Linux Security Modules (LSM)
[1]. We paid attention to LSM, and we implement the performance evaluation
mechanism of the LSM-based secure OS; this mechanism is named the LSM Per-
formance Monitor (LSMPMON)[2]. The LSMPMON records the processing time
at the each hook point of LSM and the calling count. Therefore, we can evaluate
the processing time for each hook and the point at which bottlenecks exist in the
secure OS. The monitor enables us to easily compare the performances achieved
by using secure OSes.

LSMPMON has been developed for evaluating LSM-based secure OSes. In
this paper, a new version of LSMPMON developed for 2.6.30 is described and
results of the evaluation of Security-Enhanced Linux (SELinux)[3][4], TOMOYO
Linux [5][6], and LIDS [7], which are representative secure OSes in Linux, are
presented. The unit of access control for resources in SELinux is label-based
MAC, that in TOMOYO Linux is path-name-based MAC, and that in LIDS is
i-node-based MAC. LSMPMON can be used to evaluate the influence of different
methods of resource identification on performance. We evaluate the performance
using a benchmark software and report an analysis of the overhead incurred when
a secure OS and each LSM hook are used. We perform the same evaluation for
different versions of the kernel, namely, for the current kernel (2.6.30) and the
old kernel (2.6.19), in order to verify the changes in performance. As a result,
we clarify influence on performance by using the secure OS, and a characteristic
by the difference of the identification method of resources and a change of the
performance at the version interval.

The contributions of this paper are as follows:
(1) In this paper, a new version of the LSMPMON is described. All evaluation
methods for LSM-based secure OSes require the use of the LSMPMON. The
LSMPMON can record the processing time and the calling count of each LSM
hook. The results are useful for analyzing the performance of secure OSes.
(2) In this paper, first, the difference between different secure OSes is reported.
The reports are based on the evaluation results obtained by using LSMPMON.
The reports clarify the relation between the access control method and the per-
formance of secure OSes.
(3) The difference between different kernel versions of Linux is described. These
results reveal that the performance of the secure OS strongly depends on the
kernel version.

2 Security focused OS

2.1 Evaluation of secure OS

Secure OS indicates OS that has the function to achieve MAC and the minimum
privilege. In the secure OS, a security policy is enforced, according to which op-
erations are limited to permitted operations that consume permitted resources;
further, access control is implemented in the root privilege. Therefore, a secure



/usr/sbin/httpdino: 123label: httpd_tProcess
/var/www/index.htmlino: 456label: web_contents_tResource

read/usr/sbin/httpdino: 123label: httpd_tProcess
/var/www/index.htmlino: 456label: web_contents_tResource

read
Fig. 1. Process by which the Web server reads a Web page

OS can limit its operation, even if an attacker obtains root privileges via an
unauthorized access.

In addition, by the secure OS, it can authorize every user and process to the
minimum privilege. We evaluated the secure OS developed by using LSM that
is implemented on Linux. In particular, we used SELinux, TOMOYO Linux,
and LIDS. These secure OSes (refer to Figure 1) are used to explain the dif-
ference between the features and resource identification schemes. The resource
identification methods used in the secure OS involve the use of a label, a path
name, and an i-node number for management. In this example, the Web server
is the target to be accessed, the path name is /usr/sbin/httpd, and the i-node
number is 123, and the Web server is attached to the label called httpd t. The
resource is accessed as an object, the path name is /var/www/index.html, the
i-node number is 456, and it is attached to the label called web contents t.

SELinux is included in the Linux kernel standard as a secure OS. In SELinux,
offers increased safety since it is based on TE (Type Enforcement), MAC, and
RBAC (Role-Based Access Control). In SELinux, the label base method is used
for resource identification and control by assigning a label, which is called a
domain, and attaching a type to a process or a file. In the example shown in
Figure 1, it can be seen that the process in which a domain called httpd t was
added reads the file that was assigned a type called web contents t.

TOMOYO Linux is included in a Linux kernel standard as a secure OS. In
TOMOYO Linux, the path name base method is used for resource identifica-
tion. In the example shown in Figure 1, it is understood that /usr/sbin/httpd
reads /var/www/index.html. In addition, the identification process is based on
knowledge of the path name and the execution history of the process.

LIDS uses the path name for setting the access control. On the other hand,
it uses an i-node number internally in order to manage resources.

2.2 LSM

LSM is a function that defines the hook system calls for function group to the
security check mechanism in the Linux kernel. A user can initially expand the
security check function of the kernel by using this function. After Linux2.6, the
LSM is incorporated in a kernel, and the function of the secure OS is often
implemented by the LSM. When LSM is valid, this is checking of the safety
before accessing an object of the kernel inside by the callback function of LSM
which is registered by user. The structure of the LSM is described below. When
an AP invokes a system call, the DAC performs a security check. Next, a hook



AP1
DAC checks
LSM hook
System-call

LSMPMONsecurityfs
Getting the processing timeand LSM hook information.Comparing and Storing the result.

AP2Control Getting the result

Secure OS checks

AP1
DAC checks
LSM hook
System-call

LSMPMONsecurityfs
Getting the processing timeand LSM hook information.Comparing and Storing the result.

AP2Control Getting the result

Secure OS checks
Fig. 2. Structure of the LSMPMON

function of the registered LSM is called at a security checkpoint (Linux 2.6.30,
186 points) in the kernel, and a security check is performed by each secure
OS. When the operation is approved by these checks, system call processing is
performed, and access to resources is enabled. In addition, the security check is
performed not only before system call processing but also during the system call
processing.

3 LSMPMON

3.1 Function

The main functions of LSMPMON are described below.
(1) Performance measurement of each LSM hook

Figure 2 shows the structure of the LSMPMON. The LSMPMON records
the time before and after all the LSM hooks are called, in order to measure the
processing time and calling count of the LSM hooks.
(2) Detection of the context switch

We prepare the flags that are used to detect context switches during the
processing of the LSM hooks. The value of the flag can be checked in order to
determine whether a context switch has occurred.
(3) Control using a simple interface We use “securityfs” to simplify the user
interface. Securityfs is a special virtual file system for security modules available
in Linux 2.6.14. Securityfs is mounted on /sys/kernel/security, and it is used
as an interface for controlling the secure OS and confirming the policy mainly.
The module in which securityfs is used along with the LSM can easily perform
data exchange in the user space and the kernel space without making original
file system.

Figure 3 shows an example LSMPMON behavior. Transferring data between
kernel space and user space such that data is transmitted to an existing AP and
performed, by using securityfs.
(4) Limited function of the measurement target

The manner in which a measurement target can be limited by using securityfs
has been illustrated in (3). If the character string “s foo” is written for a specific



電子情報通信学会論文誌

される． フック関数からの復帰時に，このフラ
グの値を確認することでコンテキストスイッチの有無
を把握する．

簡易なインタフェースの実現
ユーザインタフェースの簡易化には， を
用いることによって対応した． は，

で採用されたセキュリティモジュール用の特
殊な仮想ファイルシステムである． は，

にマウントされており，主
に，セキュア の制御やポリシの確認用インタフェー
スとして使用されている． を用いることに
より， を使用するモジュールは，独自のファイル
システムを作成することなくユーザ空間とカーネル空
間でのデータのやり取りを簡易に行うことができる．

の動作例を図 に示す． を
用いることで，カーネル空間とユーザ空間でデータを
授受し，既存 にデータを受け渡して処理できるこ
とがわかる．
実装した は，既存カーネルのソー
スコードの を変更し，

用のソースコードを追加しているのみで
ある．このため，既存のセキュア のインタフェー
スとソースコードは，変更を行うことなくそのまま使
用可能である．
また， 起動時から，本測定機能の有効 無効を設
定可能にするため，カーネルコマンドラインに対応し
た．カーネルコマンドラインを利用し， と
いう文字列が渡された場合に， を起動時
から有効にできるものとした．

測定対象の限定
測定対象を限定するために， 節で挙げた
を利用する． 上の特定のファイルに対

し， という文字列を書き込めば，サブジェクト
名が の場合のみ測定結果を保存する．オブジェ
クトの場合も同様に， という文字列を書き込
めば，オブジェクト名が の場合のみ測定結果を
保存する．

システムコール情報の利用
測定時のシステムコール情報の取得方法について
述べる．システムコール処理と ，および

の関係を図 に示す． が有効な場
合，システムコールインタフェースにおいて，システ
ムコールを発行したプロセス のタスク構造体
のメンバである 構造体にシステムコー

Enable LSMPMON

% echo 1 > /sys/kernel/security/lsmpmon/control

Disable LSMPMON

% echo 0 > /sys/kernel/security/lsmpmon/control

Show the result

% cat /sys/kernel/security/lsmpmon/result

hook min max ave count cs_count

-----------------------------------------------

.

.

.

inode_create 97 67103 105 2725605 0

inode_link

inode_unlink 97 72728 114 2725600 0

.

.

.

図 の動作例

AP1

DAC checks

LSM hook

System-call

LSMPMON

securityfs

AP2

audit_context

System-call I/F

AP1 task structure

Secure OS checks

AP1

DAC checks

LSM hook

System-call

LSMPMON

securityfs

AP2

audit_context

System-call I/F

AP1 task structure

Secure OS checks

図 システムコール処理を追加した のデー
タフロー

ル番号等が保存される． は， フック
関数の処理時間を受け取ると， のタスク構造体の
メンバである を参照してシステムコー
ル番号を取得する．

とは，ユーザーの行動やシステム内にある
プログラムの動作を記録することを指す言葉である．

における は， デーモンが行ってい
る． デーモンは，カーネルに対して発行される
システムコールを監視し，このシステムコールに関す
る情報を保存している．セキュア を使用する場合
には， が有効になっていることが必須であるこ
とが多いため，システムコール情報を取得できる．

の処理の流れ
これまでの実装内容を図 に示す． がシステム

コールを発行する．ここで， フック関数の呼び出

Fig. 3. A behavior example of the LSMPMON

file in securityfs, the LSMPMON stores a measurement result only when the
subject name is “foo.” Similarly, If the character string “o bar” is written for a
specific file in securityfs, the LSMPMON stores a measurement result only when
the object name is “bar.”
(5) Function using the information of the system call

When an audit is effective, in the system call interface, the system call num-
bers are saved in the audit context structure, which is a member of the task
structure of the process (AP1) that published the system call. When the LSMP-
MON monitor determines the processing time of the LSM hooks, it refers to
audit context that is the member of the task structure of AP1 in order to ac-
quire the system call number. For this reason, the system calls for each LSM will
be able to measure the processing time, and thus, processing time can be saved.

3.2 Processing flow of the LSMPMON

Processing performed by the LSMPMON is described below. First of all, AP
invokes a system call. This time, if LSM hooks are called, rdtscll() function
loads current Time Stamp Counter before LSM hooks is processed. Then actual
processing of the LSM hook is done, Time Stamp Counter read again after the
results came back. Then get the subject name and object name which performed
access control and make a decision whether it is a measurement save object.

If it is a measurement object, confirmed the presence of context switches. If
no context switch occurs, compare the processing time and the registered data of
the processing time of same LSM hooks that same result in the access control. In
that case, the shortest or longest processing time is saved the value. Furthermore,
this processing time is added to the total processing time of the LSM hook that
called in this time. Next, one adds the caling count that no context switch, and
return to the original process. Finally, if a context switch occurs, one adds the
calling count context switch. It will come back to the original process.

In the behavior example in Figure 3, min is the shortest processing time, max
is the longest processing time, ave is the average processing time for no context



switch, count is the calling count without a context swich, cs count is the calling
count of the no context switch.

4 Evaluation of Secure OS using LSMPMON

4.1 Criteria in the evaluation

We evaluated the secure OS on the basis of the following three criteria in order to
determine the performance of the secure OS and effects of using different Linux
kernels.
(A) Effect of introducing the secure OS on performance
(B) A characteristic by the difference from the access control unit for resources
in the secure OS
(C) Changes in the performance and specifications across different versions

4.2 Evaluation methods

We evaluated the file operation that the secure OS frequently performed access
control processing. Contents of Evaluations are described below.
(A) Effect of performance by the secure OS
(Evaluation 1) By using the benchmark software LMbench[8], we measured
the performance of each secure OS and evaluated the results in terms of the file
operation. We show the effect of introducing the OS on performance.

(B) A characteristic by the difference from the access control unit for
resources in the secure OS
Evaluation 1 does not indicate the time consumed by each LSM hook and the
location of the bottleneck point. Therefore, we implemented the following steps:
(Evaluation 2) We measured the processing time corresponding to every LSM
hook by using the LSMPMON in order to compare and evaluate these values.
Thus, we clarify the effect of differences in the access control unit for resources
on performance and show the characteristics of this effect.

(C) Changes in performance and specifications across versions
(Evaluation 3) We perform similar evaluation in the Linux kernel of the ver-
sion that is different from that in Evaluation 1; then, we compare the results and
consider the change in the performance of each secure OS. However, by evalua-
tion in LMbench alone, we cannot understand the factors that cause the change
in the performance and determine the bottleneck point. Therefore, in order to
determine the point at which the performance changed in this evaluation, we
implemented the following steps:
(Evaluation 4) We compared every system call with the LSMPMON in de-

tail. We measured the overhead of the LSM hooks in each system call by the
LSMPMON, and we compared the results for different versions and evaluated
the results. Therefore, we compare the overhead in detail and show the change in
the performance and specifications across versions. The evaluation environment



Table 1. Compare to each secure OS in the new kernel

SELinux TOMOYO Linux LIDS
Use of LSM hooks 154 14 46

Identification method of the resource label path-name + execution history inode
Version 3.6.12-39.fc11 2.2.0 2.2.3rc8

Table 2. Compare to each secure OS in the old kernel

SELinux TOMOYO Linux LIDS
Use of LSM hooks 149 17 38

Identification method of the resource label path-name + execution history inode
Version 2.4.6-80.fc6 2.0 2.2.3rc1

was as follows: CPU, Pentium 4 (3.0 GHz); Memory, 1 GB; OS, Linux 2.6.30.4
(new kernel) and Linux 2.6.19.7 (old kernel) is. In addition, all the measure-
ments were obtained while running LMbench five times, and the results show
the average processing time. The identification method for each secure OS and
the object that performs access control, the calling count of LSM hooks, and the
Secure OS version are shown in Table 1 and Table 2.

4.3 Evaluation of the effect on performance by the introduction of
the secure OS

Table 3 shows the results of Evaluation 1. In SELinux, the rates of increase in the
processing time of stat, read/write, and 0K file creation are the highest among
the rates for the three secure OSes. In addition, in the other items of Table 3, the
rate of increase in the processing time is comparatively high. Thus, it is thought
that file processing involves a large overhead.

The processing time for the stat operation in TOMOYO Linux is the shortest
among that in the three secure OSes. On the other hand, the file creation and
deletion in this are much slower in this kernel than in the old kernel. Further, a
large overhead is incurred in open/close. Thus, the overhead in particular may
become large as the email server repeats the creation of a file.

The processing time of file generation and deletion in LIDS is shorter than
in the two other secure OSes. Thus, the rate of increase in the processing time
is small in the other items of Table 3. Therefore, it is thought that LIDS is the
most suitable OS for file processing.

4.4 Features of differences of implementation

Table 4 shows the results of Evaluation 2. In addition, “N/A” in Table 4 indicates
that the LSM hooks are not implemented. LSM hooks based on i-node are used
in SELinux and LIDS, while LSM hooks based on the path name are used in
TOMOYO Linux.

In SELinux, the processing time of inode create and inode init security is
particularly long. This is because it is necessary to perform the recomputation
of the label and to initialize each i-node that is newly created. In TOMOYO
Linux, the processing time increases because of the function based on path name,



Table 3. Processing time of file operations and its increase rate in Linux kernel 2.6.30
measured by LMbench (unit:µs)

Normal SELinux TOMOYO LIDS
stat 1.79 2.67 (48%) 1.83 (2%) 2.20 (22%)
open/close 2.74 3.94 (44%) 4.78 (75%) 3.28 (20%)
read/write 0.37 0.47 (29%) 0.37 (0%) 0.37 (0%)
0Kfile Create 15.16 58.18 (283%) 53.58 (253%) 16.84 (11%)
0Kfile Delete 8.20 9.26 (12%) 33.10 (303%) 9.91 (21%)
10Kfile Create 47.84 89.38 (87%) 83.32 (74%) 48.42 (1%)
10Kfile Delete 20.06 20.18 (0.6%) 42.68 (112%) 21.16 (5%)

Table 4. Processing time of LSM hooks called in each file operation (unit:µs)

hookname No secure SELinux TOMOYO LIDS
path mknod 0.045 N/A 13.609 N/A
path unlink 0.035 N/A 23.164 N/A
path truncate 0.060 N/A 13.426 N/A
inode init security 0.036 20.658 N/A N/A
inode create 0.035 19.037 N/A N/A
inode unlink 0.036 0.216 N/A 0.127
inode permission 0.035 0.159 N/A 0.192
dentry open 0.041 0.222 17.381 N/A

such as path mknod and path unlink. It is thought that in order to check access
permissions, it is necessary to compare of the character string and to obtain the
path name.

In LIDS, there is no need to obtain the path name and to determine the label
on LSM hooks. Thus, the total processing time consumed by the LSM hooks is
short. It is thought that this is the factor because of which the overhead of the
whole secure OS is small.

From the above evaluations, the following results were obtained:
(1) In SELinux, the overhead of creating files is large. This is because labeling
is necessary. Further, other items have a relatively large overhead.
(2) In the case of for TOMOYO Linux, where the path name is distinguished,
the overhead is particularly large when the path name is obtained and deleted.
In addition, the open/close operation is slow because it is necessary to reference
the path name (compare the character string).
(3) LIDS has a small overhead in file processing because in LIDS, it is not
necessary to perform labeling and to obtain the path name.

4.5 Differences between performance and specifications of different
kernel versions

Comparison of performance of different kernel versions
Table 5 lists the results of the Evaluation 3. In SELinux, the performance

of current kernel is considerably better than that of the old kernel in almost all
aspects. In particular, the rate of increase in the processing time for read/write
reduced from 157% to 29%. Similarly, the rate of increase in the processing time
for 0K file delete reduced from 80% to 12%. However, the rate of increase in the
processing time for stat, read/write, and 0K file create are still highest among
the three secure OSes.



Table 5. Processing time of file operations and its increase rate in Linux kernel 2.6.19
measured by LMbench (unit:µs)

Normal SELinux TOMOYO LIDS
stat 2.64 4.34 (64%) 2.63 (0%) 2.79 (6%)
open/close 3.98 6.45 (62%) 9.33 (134%) 3.96 (0%)
read/write 0.58 1.49 (157%) 0.58 (-1%) 0.58 (-1%)
0Kfile Create 11.76 42.80 (264%) 16.36 (39%) 14.00 (19%)
0Kfile Delete 6.25 11.22 (80%) 9.61 (54%) 6.67 (7%)
10Kfile Create 34.34 69.26 (102%) 37.78 (10%) 35.48 (3%)
10Kfile Delete 16.14 19.28 (19%) 19.02 (18%) 16.90 (5%)

In TOMOYO Linux, the performance of file creation and deletion of current
kernel has greatly deteriorated compared to that of the old kernel. On the other
hand, the rate of increase in the processing time for open/close has reduced.

Compared to the previous LIDS kernel, the processing time has increased
for many items. However, there is not the item where processing time extremely
increases. In addition, the processing time for file creation and deletion is con-
siderably shorter than the corresponding time required for the other two secure
OS’s.

Detailed evaluation of the overhead in each system call
On the basis of the results of Evaluation 3, we compared old and new kernel

to measure its performance in detail, especially in the case of items with respect
to which the performance of the old and new kernel differ greatly. Details of
Evaluation 4 and evaluations are provided below.
(Evaluation 4-1) File deletion in SELinux (close system call)
(Evaluation 4-2) File creation in TOMOYO Linux (creat system call)

By using the system call information of LSMPMON, we evaluated the pro-
cessing time required by LSM hooks (µs) for a system call. As in the past eval-
uation, we performed the evaluation by running LMbench five times.

Table 6 lists the results of Evaluation 4-1 A comparison of the new kernel
with the old kernel shows that the processing time of LSM hooks has increased
in the latter for many items. However, the processing time for sock rcv skb hook
has significantly reduced. In the old kernel, this LSM hook has an especially large
overhead. In the new kernel, the processing time of LSM hooks has decreased,
resulting in the reduction of the overall processing time.

Table 7 lists the results of the Evaluation 4-2. The main overheads in the
old kernel are path mknod and dentry open, and the main overheads in the new
kernel is inode create. Both inode create and path mknod are LSM hooks for
acquiring path name. In the case of the old kernel, inode create can also acquire
a relative path, which had used its own implementation of TOMOYO Linux, to
acquire the absolute path. In the new kernel, the absolute pathname is obtained
from the root directory by path mknod. Therefore, the overhead of the LSM
hook function increases. In addition, dentry open is an LSM hook that is used
to reduce the number of times policy search has to be carried out; however, this
function in itself results in a large overhead. The change in the performance of
the LSM hooks results in a large overhead in the case of creat system call. We
arrive at the following conclusions on the basis of the above-mentioned evalua-



Table 6. Close system call in defferent version of SELinux kernel (unit:µs)

2.6.30 2.6.19
hookname sum count ave hookname sum count ave
file free 183043.630 1370941 0.133 file free 166246.612 1591046 0.104
inode free 2105.578 10458 0.201 inode free 2380.437 14669 0.162
inode delete 97.809 973 0.100 inode delete 62.058 1074 0.058
sock rcv skb 989.218 8253 0.120 sock rcv skb 11027.765 14583 0.756
sk free 1617.659 5821 0.278 task free 3.907 31 0.126
cred free 10.074 92 0.109

average sum 0.942 average sum 1.206

tion results.
(1) In SELinux, there is a decrease in the overhead for file deletion because of a
decrease in the rate of increase in the processing time of specific LSM hooks. In
addition, it may be said that rate of increase in the processing time for all items
except file creation decreased, and the performance improved.
(2) In TOMOYO Linux, the rate of increase in the processing time for the gener-
ation and deletion of a file is very large. This is because the function of obtaining
the path name that is a unit of access control, from its own implementation for
changes the implementation that using LSM hooks. In addition, the rate of in-
crease in the processing time for open/close decreased.
(3) In LIDS, the rate of increase in processing time has increased in general; how-
ever, in the case of file generation and the deletion, rate of increase in processing
time is the still smallest among the three OS’s.

5 Conclusion

The secure OS in Linux is often implemented using an LSM. In this paper, a
new version of LSMPMON developed for 2.6.30 is described, and the results
of evaluation of three secure OSes is presented. We evaluated the LSM hooks
function that is frequently used, especially during file operations. Below, we
present the conclusion on the effect of introducing the secure OS introduction
on performance, the features of the identification method of resources, and the
change in the performance across different versions of each secure OS.

In SELinux, the performance improves in many items. However, the overhead
is large in many file operations that involve file creation, etc. The main factor
affecting the overhead of file creation is the determination and initialization of
the label because it using a label-based method.

The overhead of the file creation and file deletion, for which it is necessary to
obtain and delete of the path name, is large because TOMOYO Linux controls
it by a path-name-based method. In addition, the overhead of the open/close
operation is comparatively large because it is necessary to reference the path
name (compare the character string).

The overhead of file creation and file deletion in LIDS is small compared to
that in the two other methods because LIDS is an i-node-based method, and it
is not necessary to determine a label and obtain of the pass-name. In addition,
the overhead in the other file operations is comparatively small.



Table 7. Creat system call in different version of TOMOYO Linux kernel (unit:µs)

2.6.30 2.6.19
hookname sum count ave hookname sum count ave
inode permission 127585.395 3588000 0.035 inode permission 366962.831 8124000 0.045
file alloc 31367.404 897000 0.035 file alloc 77799.981 2031000 0.038
inode create 31240.724 897000 0.035 inode create 5971299.965 2031000 2.940
inode alloc 31425.973 897000 0.035 inode alloc 72487.431 2031000 0.036
inode init security 33046.422 897000 0.035 inode init security 74019.938 2031000 0.036
d instantiate 32385.181 898000 0.036 d instantiate 72418.537 2031000 0.035
path mknod 12207508.304 897000 13.609 task free 2.593 8 0.324
dentry open 22372903.197 897000 24.942 task kill 0.402 2 0.201
cred free 0.138 2 0.069

average sum 38.830 average sum 3.655

The following features are known as characteristics of the function of each
secure OS: strict and strong security can be realized in SELinux, and a function
for automatic learning of the policy is available in TOMOYO Linux.

On the other hand, the performance of these OSes has not been widely dis-
cusses. In embedded applications, the focus is on the secure OS, and it is im-
portant to evaluate the performance. Further, the effective environments vary
because of differences in the resource identification methods.

In this article, we presented the above evaluation for an index in the intro-
duction. In addition, we showed that the LSMPMON could perform an accurate
evaluation of the LSM hooks in every system call, analyze the performance of
the secure OS, and determine the bottleneck points. Thus, we showed the utility
of the LSMPMON.

The source code of the LSMPMON has been published on the LSMPMON
project page[9].

References

1. Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux Secu-
rity Modules: General Security Support for the Linux Kernel. Proceedings of 11th
Annual USENIX Security Symposium, pp. 17-31 (2002).

2. Matsuda, N., Satou, K., Tabata, T., Munetou, S.: Design and Implementation of
Performance Evaluation Function of Secure OS Based on LSM. The Institute of Elec-
tronics,Information and Communication Engineers Trans. Vol.J92-D, No.7, pp.963–
974，2009.

3. NSA, Security-Enhanced Linux，http://www.nsa.gov/selinux/
4. Loscocco, P., Smalley, S.: Integrating Flexible Support for Security Policies into

the Linux Operating System. Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, pp. 29-42 (2001).

5. TOMOYO Linux, http://tomoyo.sourceforge.jp/
6. Harada, T., Handa, T., Itakura, Y.: Design and Implementation of TOMOYO Linux.

IPSJ Symposium Series Vol. 2009, No. 13, pp. 101-110 (2009).
7. LIDS, http://www.lids.org/
8. LMbench, http://www.bitmover.com/lmbench/
9. LSM Performance Monitor, http://www.swlab.cs.okayama-u.ac.jp/lab/yamauchi/

lsmpmon/


