VMBLS: Virtual Machine Based Logging
Scheme for Prevention of Tampering and Loss

Masaya Sato and Toshihiro Yamauchi

Graduate School of Natural Science and Technology, Okayama University,
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
m-sato@swlab.cs.okayama-u.ac. jp, yamauchi@cs.okayama-u.ac. jp

Abstract. Logging information is necessary in order to understand a
computer’s behavior. However, there is a possibility that attackers will
delete logs to hide the evidence of their attacking and cheating. More-
over, various problems might cause the loss of logging information. In
homeland security, the plans for counter terrorism are based on data.
The reliability of the data is depends on that of data collector. Because
the reliability of the data collector is ensured by logs, the protection of
it is important problem. To address these issues, we propose a system
to prevent tampering and loss of logging information using a virtual ma-
chine monitor (VMM). In this system, logging information generated by
the operating system (OS) and application program (AP) working on the
target virtual machine (VM) is gathered by the VMM without any mod-
ification of the OS. The security of the logging information is ensured by
its isolation from the VM. In addition, the isolation and multiple copying
of logs can help in the detection of tampering.

Keywords: Log, security, virtualization, virtual machine monitor, dig-
ital forensics.

1 Introduction

The countermeasure for terrorism is one important topic in homeland security.
In the field of counter-terrorism, enormous quantity of data is gathered and an-
alyzed for the planning of countermeasures. Computers and networks are used
to gather and analyze data, computer science is deeply committed to home-
land defence and security. In the field of computer science, countermeasures are
considered for cyber terrorism as an activity in homeland security. Recently,
information technology is used as a tool to control infrastructures. Cyber ter-
rorism is able to cause critical damage on infrastructures in low cost. Thus, the
countermeasure for cyber terrorism have been discussed.

The countermeasures might be weakened by attacking on the data gathered
for homeland security. Therefore, the protection of the data is important. The
protection of the logs of the APs is also necessary to ensure the validity of
gathered information.

The computer terrorism has two characters: anonymity and the lack of evi-
dences of attacks. In computer terrorism, it is difficult to acquire the information

2 M. Sato, T. Yamauchi

that specifies the attacker. Because there are no evidences left on attacks using
network, the logs that records the behavior of the systems are important. For
this reason, the protection of the information is necessary for the prevention and
investigation of computer terrorism.

Digital forensics is a method or technology for addressing these problems.
This is a scientific method or research technology for court actions, which allows
us to explain the validity of the electronic records. Many researchers are working
in this area of the protection of logging information[3,5,9,11, 13].

Syslog is commonly used as a logging program in Linux. In this case, the
logging information generated by the AP (user log) and kernel (kernel log) is
gathered by syslog. Syslog writes logs to file according to the policy, so attackers
can tamper with logs by modifying the policy. Moreover, if the syslog program
itself is attacked, the log files written are not reliable. In addition, the kernel
log is stored in a ring buffer, and therefore, since the kernel log is gathered on a
regular schedule, if many logs are generated and stored in the ring buffer before
the next gathering time, old logs may be overwritten by new logs. As described
above, the user log and kernel log can be tampered with or lost.

In this paper, we propose a logging system to prevent tampering and loss of
logs with the virtual machine monitor (VMM). In this system, the OS that should
be monitored (monitored OS, MOS) works on the virtual machine (VM). Logs
in the MOS are gathered by the VMM without any modification of the MOS’s
kernel source codes. The VMM gathers user logs by hooking the system calls
invoked in the MOS. Because the system gathers logs before they are gathered
by syslog, any possibilities for tampering are excluded. The VMM gathers current
kernel logs from the buffer before new kernel logs have accumulated. Therefore,
the system can gather current kernel logs in conjunction with the accumulation
of new ones. Thus, no logs are lost through the buffer being overwritten by new
kernel logs.

As mentioned above, the system gathers logs using the VMM. The VMM is
independent of and invisible to the MOS, so it is difficult to detect and attack this
system. Thus, the system itself is secure. In addition, because the logs gathered
by the system are copied to the logging OS (LOS), it is easy to determine which
part has been modified by attackers. Moreover, with the isolation of logs, any
attacks on the MOS have no effects on the logs gathered by the system. These
features mean that this system provides secure logging.

The contributions of this paper are as follows:

(1) The logging scheme for prevention of tampering and loss of logging informa-
tion using VMM is proposed. The scheme can solve the problems in existing
schemes and researches described in Section 2. The implementation has no
modification of guest OSes and easy to introduce in existing systems.

(2) Evaluations are described and they show that the system is effective on
protection of logs. The measurement of the performance with the system
shows the overheads in the system calls that are related to logging is 50us,
and are not related to logging is only 2~b5us.

VMBLS: VM Based Logging Scheme for Prevention of Tampering and Loss 3

0 O
Remote Remote
sysklogd sysklogd
= g Forward
User
» sysklogd
Process >
'y Store
g |
Klogd i Load Policy
i
. \ 4

Kernel — 5
. Kernel Log
Logging syslog.conf Log File
) Buffer
Function

Fig. 1. Architecture of syslog.

2 Existing logging schemes

This section describes the architecture and problems of existing logging schemes.
Section 6 also refers to these schemes, the comparisons between these schemes
and our proposed system are in there.

2.1 Syslog

Syslog is a protocol for system management and security monitoring standard-
ized by Internet Engineering Task Force (IETF)[7]. Syslog counsists of a library
and a daemon. The syslog library provides interfaces for logging, and the syslog
daemon gathers logs and stores them as a file. Figure 1 shows the architecture
of syslog. User and kernel logs are gathered as follows:

— Gathering of user logs
The syslog library provides functions for user program to send log messages
to the syslog daemon. The syslog function sends messages to /dev/log with
the send or write system call, and the syslog daemon gathers logs from
/dev/log with the read system call.

— Gathering of kernel logs
The kernel accumulates logs in internal buffer (kernel log buffer). The kernel
logging daemon (klogd) gathers logs from the kernel log buffer, and after-
wards, klogd similarly sends logs to the syslog daemon.

Syslog also has a filtering function. Its policies are described in the configuration
file (syslog.conf).

Syslog has the following problems:
(1) Modification of syslog.

The behavior of the syslog daemon can be modified by tampering with the

configuration file. In addition, if the syslog daemon itself is tampered with,
its output can be unreliable.

4 M. Sato, T. Yamauchi

(2) Threats for tampering with the log file.
Users who have permission to access logs can tamper with them intentionally.
(3) Problems with kernel logging.
Kernel logs in Linux are accumulated in the ring buffer and are gathered at
fixed intervals. Thus, if the logs are not gathered for a long time, old logs
can be overwritten by new ones. Old logs will also be overwritten if many
logs are accumulated in a time that is shorter than the gathering interval.

Although improved syslog daemons have been developed [1,12], these problems
have not been solved.

2.2 Protection of logs

Some research has been carried out on the protection of files by the file system.
The system NIGELOG has been proposed for protecting log files [11]. This
method has a tolerance for file deletion. It produces multiple backups of a log file,
keeps them in the file system, and periodically moves them to other directories.
By comparing the original file and the backups, any tampering with the log file
can be detected. Moreover, if any tampering is detected, the information that
has been tampered with can be restored from these backups.

The protection of files with the file system is still vulnerable to attacks that
analyze the file system. Therefore, a log-protection method using virtualization
has been proposed [13]. This method protects logs by saving them to another
VM, so it is impossible to tamper with the logs from other VM. However, this
method aims to protect the log of a journaling file system, so the scope of the
protection target is different from that in our research.

The hysteresis signature is used to achieve the integrity of files. However,
it is known that the algorithm of the hysteresis signature has a critical weak
point. Although the hysteresis signature can detect the tampering and deletion
of files, it cannot prevent tampering and deletion. Moreover, the manager of the
signature generation histories can tamper with the histories and files. Therefore,
a mechanism to solve this problem using a security device has been proposed
[3]. This method constructs a trust chain from the data in the tamper-tolerant
area of the security device. Because the source of the trust chain is protected
from attackers, the problem has been solved. Nevertheless, this method is not
versatile because it uses the special device.

2.3 Protection of syslog

The methods mentioned above are for the purpose of protecting files. However,
they cannot protect logs before the logs have been stored. Thus, a method to
guarantee syslog’s integrity has been proposed [5], which uses a combination of a
Trusted Platform Module (TPM) and a late launch by a Secure Virtual Machine
(SVM) to ensure the validity of syslog. The validated syslog receives logs and
sends them to a remote syslog.

VMBLS: VM Based Logging Scheme for Prevention of Tampering and Loss 5

2.4 Original logging method

An original logging method, independent of syslog, has been proposed for audit
[9]. This method uses Linux Security Modules (LSM) to gather the logs, and
Mandatory Access Control (MAC) to ensure their validity. The system also
uses SecVisor [10], and DigSig [2]. SecVisor ensures the security of the logging
framework, and DigSig prevents rootkit from making modifications to access
permissions. DigSig adds a signature to a program, and prevents the execution of
an unknown program by verifying its signature in the execution of the program.
This method gathers logs in its own way. However, the method modifies the
kernel source codes. In general, kernel modification is difficult and complex, so
the method lacks versatility. And the method uses variety of mechanisms, the
overheads arising from them have large effect on daily operations on computers.

2.5 Problems of existing logging schemes
From the descriptions above, we find that there are three problems for logging:

(1) Attacks on logging information.
(2) Attacks on logging mechanism.
(3) Loss of kernel log.

The security of logging information is the main focus of the current research,
and is of utmost important in digital forensics. However, this is not enough to
ensure secure logging. For the protection of logging information, it is necessary
to protect the logging mechanism itself. The reliability of logs generated by a
program is determined by the reliability of the generator, so the security of
the logging mechanism is also important. The third problem depends on the
architecture of the Linux kernel log buffer. We currently assume that the guest
is Linux, and so this problem needs to be addressed.

3 VMBLS: Virtual Machine Based Logging Scheme

3.1 Requirements and Approaches

To address problems in Section 2, we propose a system to prevent tampering
and loss of logging information. There are three requirements for addressing the
problems:

(1) Detection of all outputs of log (user log and kernel log).
We need to detect and gather all logs to keep them secure. Where we support
only user logs and kernel logs. We do not support other logs: binary format
logs, logs not sent to syslog.

(2) Isolation of log.
In order to secure a log, we obtain a copy of the log and isolate it from the
MOS. Since the protection method using the file system is not secure, we
isolate the logs in the LOS, assuming that the working environment is on

6 M. Sato, T. Yamauchi

a VM. As the LOS are isolated, attacks on the working environment have
no effect on the logs. This isolation also enables us to detect loss of and
tampering with logging information, because a comparison between copied
logs and original ones will show any differences arising from such attacks.
(3) Security of logging mechanism.

To achieve security of the logging mechanism, we use a VMM. Since the
VMM is independent of the VM, it is generally difficult to detect its existence
and to attack it from the VM. A logging method in kernel space (for example,
LSM or kernel modification) is weakly defended from attacks. If attackers
obtain root privileges, they can use bugs in kernel or user programs to attack
some programs and tamper with the logs to hide their activities. Therefore,
the isolation of the logging mechanism provides greater security than the
method in kernel space.

Furthermore, a demand exists.

— Simplicity and ease of introduction.

The mechanism using a VMM makes our proposed system easier to intro-
duce. The original logging method and security mechanism with kernel mod-
ification is difficult to apply to a new version of the kernel because of the
kernel’s complexity. The VMM, for which no modification of the kernel of
the MOS is required, makes our method more flexible than methods that
need kernel modification. Thus, we choose the use of a VMM as our method
for the protection of logging information.

3.2 Architecture

Figure 2 shows the architecture of the proposed system. The MOS and LOS
work on the VM. The LOS is a guest OS for storing logs gathered by the logging
module. The logging module works in the VMM, and its properties are described
below. The logging module receives logs and sends them to the LOS, which then
stores them in files.

3.3 Logging module

User log collector The collector acquires logs when the requirement for send-
ing logs occurs. As shown in Fig. 2, the VMM hooks the system call that was
invoked for sending logs from the user process to the syslog daemon.

The procedures for user log collection are detailed below:

(1) Detect a connect system call for a socket of /dev/log

(2) Determine the socket number from the first argument of the connect system
call invoked at (1)

(3) Detect a send system call for the socket used at (2)

(4) Acquire the string as the log specified in the second argument of the send
system call invoked at (3)

VMBLS: VM Based Logging Scheme for Prevention of Tampering and Loss 7

Logging OS (LOS) Monitored OS (MOS)
O O
Storing Module User syslog
Process Daemon

User Space

Y

Kernel Logging Kernel Space

Function

Kernel Log
Buffer

_—
i - Logging path of
===*| Log File the proposed system

Logging path of
Logging Module the existing system
using syslog

Log File

VMM

Fig. 2. Architecture of the proposed system.

To send logs, the user process creates a socket and invokes a connect system
call for /dev/log. The user log collector detects this connect system call and
specifies the socket number that will be used to send the logs. Finally, the user
log collector acquires logs by detecting the send system call for that socket.

However, the collector cannot recognize the process that sends the logs. To
address this issue, the collector uses CR3 control register to determine the pro-
cess; CR3 contains a unique value for each process because it indicates the page
directory.

Kernel log collector The collector acquires logs when the kernel logging func-
tion is called in a guest OS. Typically, the VMM cannot detect a function call
in a guest OS. To solve this problem, the system sets a breakpoint in the guest
OS. Breakpoint exception occurs when some process reaches this breakpoint.
In the proposed system, since the guest OSes are fully virtualized, breakpoint
exception is processed by the VMM. Using the exception as an opportunity to
acquire logs, the VMM can gather kernel logs.

When the processing is brought to the VMM, the logging module checks the
state of the kernel log buffer of the MOS. If new logs have been accumulated in
the buffer, the logging module gathers them. After that, the VMM returns the
processing to the guest OS. Since these processes have no effect on the state of
the guest OS, the guest OS can continue to write the kernel log.

In this method, since kernel logs are gathered when a kernel logging function
is called, old logs are never overwritten by new ones.

3.4 Storing module

The storing module stores logs gathered by the logging module. The storing
module is an AP working on the LOS, and stores the logs as log files. There are

8 M. Sato, T. Yamauchi

two methods that can be considered for the design of the storing module. In one
method, the storing module passively receives logs sent by the logging module,
and in the other, the storing module actively gathers logs from the buffer of the
VMM. The first method is efficient for gathering logs automatically, but is more
complex than the latter. For simplicity, we use the second method.

4 Implementation

4.1 Environment

We implement the system with Xen [4] as the VMM and Linux as the MOS.
This version of Xen supports full virtualization. We did not modify the kernel
source codes. However, the system needs the System.map file of the MOS, so this
information must be provided beforehand. The reason for the system requiring
this System.map information is that it uses the address of the kernel log buffer
and the kernel logging function. Because of the need for full virtualization, we
prepared a CPU that supports virtualization extension.

In this work, we implemented a logging module and a storing module. How-
ever, the storing module was implemented in the VMM for simplicity. This simple
implementation is also available for the purposes of preventing tampering with
and loss of logs. The implementation using the LOS is work in progress.

4.2 Detecting a system call

The user log collector detects the invoking of system calls; such a mechanism is
necessary because the proposed system is implemented with a VMM.

Therefore, in the proposed system, we applied a mechanism that causes a
page fault when a system call is invoked [6]. In a fully virtualized environment,
if a page fault occurs on the VM, then the VMM is raised (VM exit) [8]. After
the VMM has been raised, the logging module acquires the user logs and hides
the occurrence of the page fault. Finally, the VMM raises the guest OS, which
works as if no event has occurred.

In this method, to cause a page fault, we modified some registers of the
MOS. A system call using the sysenter instruction (fast system call) refers the
value in sysenter_eip_msr and jumps to its address to execute the system
call function (sysenter_eip_msr is one of the machine-specific register (MSR)
values). Through modification of this value to another address to which access is
not permitted from the guest OS, a page fault is made to occur when a system
call is invoked in the MOS.

4.3 Setting a breakpoint

In the proposed system, we set a breakpoint in the kernel logging function of the
MOS to gather kernel logs. The breakpoint is realized by embedding of a INT3
instruction. VM exit appears if a breakpoint exception occurs in the MOS, and
the VMM gathers kernel logs with this exception.

VMBLS: VM Based Logging Scheme for Prevention of Tampering and Loss 9

Table 1. Environment used for evaluation.

OS Domain0 Linux 2.6.18-xen
Fully virtualized domain Linux 2.6.26
VMM Xen 3.4.1
syslog rsyslogd 3.18.6
CPU Intel Core 2 Duo E6600
Memory Physical 2,048 MB
Domain0 1,024 MB

Fully virtualized domain 1,024 MB

In the following, we detail the procedure for setting breakpoints and gathering
kernel logs. Here, we assume that the first INT3 instruction is already embedded.

(1) Breakpoint exception occurs and switches to the VMM.

Kernel logs are gathered after the processing is switched to the VMM.
(2) Embed INT3 instruction to the next one.
(3) Restore the altered instruction.

Restore the value at the address at which the exception occurred.
(4) Restart the processing from the restored instruction.
(5) Breakpoint exception occurs and switches to the VMM.
(6) Embed INT3 instruction to the firstly embedded address
(7) Restore altered instruction.

Restore the value on the address at which the exception occurred.
(8) Execute instruction from restored point.

5 Evaluation

5.1 Simplicity and ease of introduction

We implemented a prototype of the proposed system by modifying the Xen
hypervisor. The total amount of source codes that we added and modified on
Xen are only about 1,000 lines. The source codes of the MOS is not modified.

5.2 Purposes and environment

We evaluated the system from two points of view: the prevention and detection
of tampering, and the loss of logging information. This paper also describes the
overheads of the system. Table 1 details the environment used for this evaluation.

5.3 Prevention of tampering

A log gathered by the proposed system is kept in a place where it is independent
of the MOS. Thus, with the MOS working on a VM, it is difficult for attackers
to tamper with the log even if they obtain root privileges.

10 M. Sato, T. Yamauchi

Aug 19 20:09:25 debian sendlog: Logging test:

0.
Aug 19 20:09:25 debian sendlog: Logging test:?. logs before the modification of the log
1

Aug 19 20:09:25 debian sendlog: Logging test:
Aug 19 20:09:25 debian sendlog: Logging test:

- —_ e e e e L e - = - = = ="~ =— = = restartof the syslog daemon
Aug 19 20:10:24 debian sendlog: Logging test:0. | frer th dification of the |
Aug 19 20:10:24 debian sendlog: Logging test:1. ogs after the modification of the og

Fig. 3. A user log gathered by syslog.

(XEN) send:[<14>Aug 19 20:09:25 sendlog: Logging test:0.]
(XEN) send:[<22>Aug 19 20:09:25 sendlog: Logging test:0.]
(XEN) send:[<14>Aug 19 20:09:25 sendlog: Logging test:1.]
(XEN) send:[<22>Aug 19 20:09:25 sendlog: Logging test:1.]
(XEN) send:[<85>Aug 19 20:09:49 sudo: *kxkkk . TTY=console ;
PWD=/home/*¥¥¥** /¥¥¥xx% - |SER=root ;
COMMAND=/usr/bin/vim /var/log/user_and_mail.log] checking the log
(XEN) send:[<85>Aug 19 20:10:04 sudo: *kxkxk o TTY=console ;
PWD=/home/**¥¥*x* /k*xx*x* - |SER=root ;
COMMAND=/usr/bin/vim /etc/rsyslog.conf] modifying the policy
(XEN) send:[<85>Aug 19 20:10:18 sudo: *kxkkk T TTY=console ;
PWD=/home/ ****¥* /¥xk¥*% - JSER=root ;
COMMAND=/etc/init.d/rsyslog restart] <] restart of the syslog daemon
(XEN) send:[<14>Aug 19 20:10:24 sendlog: Logging test:0.]
(XEN) send:[<22>Aug 19 20:10:24 sendlog: Logging test:0.] _ :
(XEN) send:[<14>Aug 19 20:10:24 sendlog: Logging test:1.] logs after the modification of the policy
(XEN) send:[<22>Aug 19 20:10:24 sendlog: Logging test:1.]

logs before the modification of the policy

Fig. 4. A user log gathered by the proposed system.

‘user‘,mail.* -/var/log/user_and_mail.log ‘
‘ Disable the policy for mail.*.
‘user‘.* -/var/log/user_and_mail.log ‘

Fig. 5. Manipulation of configuration.

5.4 Prevention of loss

Loss of user log We assume that an attacker tampers with the policy of syslog
to suppress some parts of the log. We show that the proposed system can gather
logs even if the policy has been tampered with. Figure 3 shows the logs gathered
by syslog, and Fig. 4 shows those gathered by the proposed system. We compared
both logs around the time when the policy was manipulated, as shown in Fig. 5.
In the logs gathered by syslog, the logs decreased after the manipulation of the
policy because of the exception of the mail facility. On the other hand, there are
no changes in the logs gathered by our proposed system around the time of the
manipulation of the policy. Thus, it is proved that the proposed system gathers
logs regardless of the behavior of syslog.

VMBLS: VM Based Logging Scheme for Prevention of Tampering and Loss 11

Nov 29 20:12:42 debian kernel: [17.398956] 1p@: using parport@ (interrupt-driven).
Nov 29 20:12:42 debian kernel: [17.419593] ppdev: user-space parallel port driver
Nov 29 20:14:24 debian kernel: th world.

Nov 29 20:14:24 debian kernel: [118.900091] Hello 51th world.

Nov 29 20:14:24 debian kernel: [118.900098] Hello 52th world.

Fig. 6. A kernel log gathered by the existing system.

(XEN) KERNLOG:<6>[17.398956] 1p@: using parport® (interrupt-driven).
(XEN) KERNLOG:<6>[17.419593] ppdev: user-space parallel port driver
(XEN) KERNLOG:<4>[118.899567] Hello oth world.
(XEN) KERNLOG:<4>[118.899567] Hello 1th world.
(XEN) KERNLOG:<4>[118.899567] Hello 2th world.

(XEN) KERNLOG:<4>[118.900085] Hello 50th world.
(XEN) KERNLOG:<4>[118.900091] Hello 51th world.
(XEN) KERNLOG:<4>[118.900098] Hello 52th world.

Fig. 7. A kernel log gathered by the proposed system.

Loss of kernel log We show that the proposed system can gather logs under the
condition of a massive output of kernel logs even if the existing system cannot.

The size of the kernel log buffer of the standard kernel on Debian 5.0.3 is
131,072 bytes. To exhaust this buffer, the program outputs logs with a total size
greater than that of the buffer by printk (kernel logging function). One output
has a size of 21 bytes, whereas in printk format, the size of the output is 38
bytes. Thus, in order to exhaust the buffer, the program needs to output the log
3,450 times. In this experiment, we compared the logs gathered by the existing
system and our proposed system after 4,000 outputs of the log.

Figure 6 shows the log in the MOS, and Fig. 7 shows the log gathered by the
proposed system. In the third row of Fig. 6, the log is unusual because something
has been lost through overwriting. In contrast, Fig. 7 shows that the proposed
system has correctly gathered all the logs with no interruption. Whereas the
existing system could not gather logs before the fiftieth output, the proposed
system gathered all the logs. Thus, we have shown that the proposed system can
gather all logs, even if they are lost by the existing system.

5.5 Detection of tampering and loss

The comparison of logs gathered by the existing and proposed systems enables
us to detect any tampering with or loss of logs. Therefore, we show that it is
possible to detect tampering by comparing these logs.

In preparation, we tamper with the log file. After that, we compare the logs
gathered by the existing and proposed systems. This comparison indicates that
the proposed system is able to detect tampering.

12 M. Sato, T. Yamauchi

For this comparison, we use sudo as a program that uses syslog to output
user logs. If a command is executed with sudo, the user name, tty, and the name
of the command are sent to the syslog daemon. At this point, the information
in the log gathered by the existing system and the proposed system is the same.

To hide the executed command, we modify the name of the command in a
log in the existing system. Now, comparison between the logs allows a difference
in the name of the command to be detected.

As a result, it is seen that tampering with a log in the MOS has no effect
on the logs in our proposed system. Moreover, the experiment shows that a part
tampered with in the MOS can be detected through comparison between the
logs in the MOS and in the proposed system.

5.6 Overheads

The user log collector hooks all system calls in the MOS. In this mechanism, the
VMM is raised upon each system call, and therefore, the processing time of the
system call increases. To determine the overheads of the system, we measured
the overheads in some of the system calls that are mainly invoked in the syslog
function and the function itself. The results are shown in Tables 2 and 3.

Table 2 shows the overheads of connect and write system calls that were
invoked in syslog function. To show the overhead when switching between the
MOS and VMM, we also measured the overhead of the getpid system call. From
the margin between the overhead of getpid and other system calls, it is found
that switching between the VMM and MOS takes about 2 ps. In invoking a
connect system call, our system decides the target of the connect system call.
The measurement shows that this decision takes about 3 us. In the write system
call, the proposed system takes about 47 us. This overhead derives from copying
of the message between the MOS and the VMM.

In addition, since the difference between the overhead in the syslog function
in Table 3 and the write system call is 5 us, it can be concluded that the main
reason for the overhead in the syslog function is the write system call. Table 3
also shows the overheads of the kernel log collector. The overhead of the proposed
system in the printk function is 57 ps. This result is similar to that for the syslog
function. The reason is thought to be that the printk function copies data to the
memory in the same way as the syslog function. It can be estimated that the 10
us overhead derives from the breakpoint exception.

From these measurements, such overheads have little effect on performance
in usual operation.

6 Discussion

6.1 Opportunity for gathering kernel logs

The proposed system sets a breakpoint at the starting point of the kernel logging
function for the opportunity to gather kernel logs. Thus, the system gathers old
logs just before the output of current logs, the logs are older than current ones.

VMBLS: VM Based Logging Scheme for Prevention of Tampering and Loss 13

Table 2. Overheads in the proposed system when a system call was invoked (us).

connect write getpid
ave overhead ave overhead ave overhead
unmodified 1.16 — 92.90 — 0.23 —
modified 6.55 5.39 142.20 49.30 2.23 2.00

Table 3. Overheads in the proposed system when a syslog and printk are invoked (us).

syslog printk
ave overhead ave overhead
unmodified 102.39 — 9.89 —
modified 156.56 54.17 67.34 57.45

In order to acquire the latest logs, it is necessary to set the breakpoint imme-
diately after the output. The current implementation uses the starting address
of the kernel logging function from the System.map. Starting points of functions
are described here, so it is easy to set a breakpoint. In order to gather logs
immediately after the output of a kernel log, we need the returning point of
the function. But to acquire the point, we need to analyze the kernel. Although
the method can gather latest logs, there is a problem in terms of analyzing the
kernel each time it is updated. The method of the proposed system only requires
System.map, so there is no difficulty arising from kernel updates.

6.2 Tolerance for attacks

Security of logs in logging path To guarantee the integrity of a log, it is
necessary to ensure the security of the logging path from its output to the time
it is stored in a file. Here, we compare the security of the logging paths of the
existing and proposed systems.

Firstly, we analyze the logging path of a user log. A user log might be attacked
at the following points:

(1) The time when a user process generates a log

(2) The time between the sending of a log and its receipt by syslog
(3) The time between the receipt of a log and storing it to a file
(4) After the output of a log

The existing system cannot detect and prevent tampering or the loss of log-
ging information at any time. In the proposed system, time (1) is the only pos-
sible time when attacks might be suffered. An example of an attack at time (1)
would be someone tampering with the program itself. To protect the logs from
tampering in this case, it is necessary to ensure the integrity of all programs that

14 M. Sato, T. Yamauchi

generate logs. DigSig [2] is a method that ensures the integrity of a program by
assigning a signature to the program. However, this method does not satisfies
our demand because it modifies the kernel codes. Moreover, the method causes
a large overhead. For time (2) to (4), some research has been carried out, but
those methods do not satisfy our demand. The method ensures the integrity of
syslog has proposed [5], but the method needs logging server, so if the network
is down, it is unavailable. For time (4), hysteresis signature enables us to detect
tampering with a log, but it has a problem mentioned in Section 2. In addition,
to prevent such tampering, protection methods using the file system already ex-
ist [11]. However, these methods modify the source codes of the kernel, so our
demand is not satisfied.

Secondly, we analyze the logging path of a kernel log. A kernel log might be
attacked at the following moments:

) The time to generate a kernel log in a kernel

) The time to output the log to a kernel log buffer

) While stored in the kernel log buffer

) The time during which a kernel logging daemon gathers a log
) While the kernel logging daemon sends the log to syslog

) While syslog stores the log to a file

) Afther the output of a log

In the existing system, it is impossible to protect a log from an attack by
a rootkit at any time. Furthermore, there is a possibility of attack similar to
the logging of a user log if the kernel is safe. The proposed system gathers a
log at time (2). We can consider tampering with the kernel logging function
as an example of an attack at time (2). However, the log gathered by the pro-
posed system is the previous one. Therefore, the logs might be attacked at time
(3). Thus, the proposed system can address attacks on and after time (4). The
improvement of the proposed system for gathering a log immediately after its
output enables it to address time (3) as well.

However, to prevent attacks before time (3), it is necessary to modify the
parts related to kernel logging. In this situation, our demand is not satisfied.
SecVisor [10] is a technology that ensures the integrity of the kernel, and is
effective for the prevention of attacks at times (1) and (2). However, it is im-
possible to prevent attacks after time (3) with SecVisor alone. Thus, since the
proposed system can prevent attacks on or after time (4), the security of logging
is ensured unless the kernel logging function itself is attacked.

Security of logs after storing There is a method for avoiding attacks on a
log file with the file system. Nevertheless, as long as a log file exists on the same
file system, there is a possibility for tampering with the file by analyzing the file
system. Thus, in the existing system, logs can be tampered with or lost through
attacks by malware or the cheating of users.

By contrast, the proposed system isolates the log through the VM. For this
reason, logs gathered by the proposed system are secure if the MOS is affected by

VMBLS: VM Based Logging Scheme for Prevention of Tampering and Loss 15

attacks. However, in the proposed system, we assumes that there is no cheating
by the manager of the LOS and the VMM.

6.3 Applicability for other OSes

No modification of the kernel code in the MOS is necessary because the proposed
system is implemented in a VMM. For this reason, the system can be applied
to any kind of OS. Furthermore, if an OS fulfills the following requirements, the
proposed system can be applied to an OS that is not open-source software. Here,
we discuss the possibility of applying the system to other OSes.

Regardless of how the system is constructed in terms of the logging and
storing modules, the storing module is independent from the MOS. Thus, in the
adaption of the system, we need to consider the requirement for implementing
the logging module. Considering the case of Windows, a widely used OS, the
following requirements can be noted:

(1) Use of sysenter instruction in invoking a system call.

(2) Identification of the system call is used in logging.

(3) Identification of the starting address of the kernel logging function.
(4) Identification of the area of the kernel log buffer.

Requirements (1) and (2) are necessary for the gathering of user logs, and (3)
and (4) for the gathering of kernel logs.

In Windows XP or later, system calls are generally implemented with sysen-
ter. Moreover, since the identifier of the system call is stored in the EAX register
in Windows, the detection of a system call for logging is available with its value.
Requirements (3) and (4) can be achieved by analyzing the kernel.

On the basis of the above considerations, it is concluded that the proposed
system can be applied to various OSes (including Linux and Windows) if these
requirements are fulfilled.

7 Conclusion

This paper describes a logging system with a VMM to prevent log tampering
and loss. In the user log collector, the VMM detects an output of the log of the
MOS and gathers it before it is gathered by syslog. Because the proposed system
gathers logs immediately after the logging request, there is no opportunity for
tampering. Also, because the kernel log collector gathers logs in conjunction with
the kernel log’s output, the system can prevent the loss of logging information
caused by the overwriting of old kernel logs. These functions enable the VMM
to gather logs of the MOS with no modification of its source codes. Moreover,
the system is independent of the MOS because it is implemented as a VMM.
Thus, it is difficult to attack the proposed system.

This paper also presents an evaluation of the proposed system, assuming that
tampering and loss of logging information occurs. Considering the results of these
evaluations, it is proved that it is possible to detect and prevent tampering with

16

M. Sato, T. Yamauchi

log files. Furthermore, the proposed system can address the problem caused by
the structure of the kernel log buffer.

This paper also describes the evaluation of the overheads caused by the sys-

tem. The results show that the overheads associated with the proposed system
is only about 50us at most.

References

10.

11.

12.

13.

. Adiscon’s rsyslog: The enhanced syslogd for Linux and Unix rsyslog. http://www.

rsyslog.com/

Apvrille, A.,; Gordon, D., Hallyn, S., Pourzandi, M., Roy, V.: Digsig: Runtime
authentication of binaries at kernel level. In: Proceedings of the 18th USENIX
Conference on System Administration. pp. 5966 (2004)

Ashino, Y., Sasaki, R.: Proposal of digital forensic system using security device
and hysteresis signature. In: Proceedings of the Third International Conference
on International Information Hiding and Multimedia Signal Processing (ITH-MSP
2007) - Volume 02. pp. 3-7 (2007)

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the
19th ACM Symposium on Operating Systems Principles. pp. 164-177 (2003)
Bock, B., Huemer, D., Tjoa, A.: Towards more trustable log files for digital foren-
sics by means of “trusted computing”. In: 24th IEEE International Conference
on Advanced Information Networking and Applications (AINA). pp. 1020-1027
(2010)

Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM conference on
Computer and Communications Security. pp. 51-62 (2008)

IETF Syslog Working Group: IETF Syslog Working Group Home Page. http:
//wuw.employees.org/~lonvick/index.shtml

Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3B: System Programming Guide, Part 2. http://www.intel.com/Assets/PDF/
manual/253669.pdf (2009)

Isohara, T., Takemori, K., Miyake, Y., Qu, N., Perrig, A.: Lsm-based secure sys-
tem monitoring using kernel protection schemes. In: International Conference on
Availability, Reliability, and Security. pp. 591-596 (2010)

Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. In: Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles. pp. 335-350 (2007)
Takada, T., Koike, H.: Nigelog: Protecting logging information by hiding multiple
backups in directories. International Workshop on Database and Expert Systems
Applications pp. 874-878 (1999)

The free software company BalaBit: Syslog Server | syslog-ng Logging System.
http://wuw.balabit.com/network-security/syslog-ng/

Zhao, S., Chen, K., Zheng, W.: Secure logging for auditable file system using
separate virtual machines. In: IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications. pp. 153 —160 (2009)

