
HeapRevolver: Delaying and Randomizing
Timing of Release of Freed Memory Area to

Prevent Use-After-Free Attacks

Toshihiro Yamauchi and Yuta Ikegami

Graduate School of Natural Science and Technology, Okayama University,
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan

Abstract. Recently, there has been an increase in use-after-free (UAF)
vulnerabilities, which are exploited using a dangling pointer that refers
to a freed memory. Various methods to prevent UAF attacks have been
proposed. However, only a few methods can effectively prevent UAF
attacks during runtime with low overhead. In this paper, we propose
HeapRevolver, which is a novel UAF attack-prevention method that de-
lays and randomizes the timing of release of freed memory area by using
a memory-reuse-prohibited library, which prohibits a freed memory area
from being reused for a certain period. In this paper, we describe the
design and implementation of HeapRevolver in Linux and Windows, and
report its evaluation results. The results show that HeapRevolver can
prevent attacks that exploit existing UAF vulnerabilities. In addition,
the overhead is small.

Keywords: Use-after-free (UAF) vulnerabilities, UAF attack-prevention,
memory-reuse-prohibited library, system security

1 Introduction

Recently, there has been an increase in use-after-free (UAF) vulnerabilities,
which can be exploited by referring a dangling pointer to a freed memory. A
UAF attack abuses the dangling pointer that refers to a freed memory area and
executes an arbitrary code by reusing the freed memory area. Figure 1 shows
the number of UAF vulnerabilities investigated in [1]. The figure shows that the
number of UAF vulnerabilities has rapidly increased since 2010 [1]. Further, the
number of exploited UAF vulnerabilities has increased in Microsoft products
[2]. In particular, large-scale programs such as browsers often include many dan-
gling pointers, and the UAF vulnerabilities are frequently exploited by drive-by
download attacks. For example, many UAF attacks exploit the vulnerabilities of
plug-ins (e.g. Flash Player) in browsers. As a modern browser has a JavaScript
engine, an attacker can exploit the UAF vulnerabilities using JavaScript, which
creates and frees memory area.

To show the characteristics of a UAF attack, we investigated CVE-2012-4792,
CVE-2012-4969, CVE-2013-3893, and CVE-2014-1776 as UAF vulnerabilities

0

50

100

150

200

250

300

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

N

u

m

b

e

r

o

f

U

A

F

V

u

l

n

e

r

a

b

i

l

i

t

i

e

s

Year

Fig. 1. Number of UAF vulnerabilities

used for attacks in real world. Investigation results show that in a UAF attack,
memory is reused immediately after a target freed-object is reused to reduce
the possibility of a target memory area being reused by another process after
it is released. Various methods to prevent UAF attacks have been proposed [3]-
[13]. However, only a few methods can effectively prevent UAF attacks during
runtime with low overhead. Furthermore, the memory usage of existing methods
is inefficient, and these methods utilize considerable memory area for preventing
UAF-attacks.

Thus, many related works have used techniques such as the DelayFree deploy
technique that delays the time of freeing a memory object. In [15]-[17], methods
were proposed to prevent UAF attacks against Internet Explorer (IE) by calling
functions that have recently taken measures against UAF attacks. However,
DelayFree [16] and Memory Protector [17] do not release the freed memory areas
for a fixed period, thus complicating UAF attacks. This period remains until the
total size of the freed memory area is more than the threshold (beyond 100 KB).
However, when the freed total memory size increases beyond the threshold, all
memory areas that were prevented to be released are released and can be reused.
In addition, each program must be altered to apply these methods, resulting in
the increase in man-day requirement to modify a program and develop a patch.
An attack against DelayFree is reported in [18], indicating that an attack against
DelayFree will succeed. In addition, an attack against IE with Isolated Heap
and Memory Protector was reported [19]. Therefore, new countermeasures are
required to prevent UAF attacks.

In this paper, we propose HeapRevolver, which is a novel UAF-attack preven-
tion method that delays and randomizes the release timing of a freed memory
area by using a memory-reuse-prohibited library. By delaying release of freed
memory area, HeapRevolver prohibits the reuse of the memory area for a cer-
tain period. Thus, the abovementioned UAF attacks are prevented. The thresh-
old for the conditions of reuse of the freed memory area can be randomized by
HeapRevolver. This function makes it more difficult to reuse memory area for

UAF attacks by randomizing the timing of the release of the memory area. In
addition, we added a reuse condition in which the freed memory area is merged
with an adjacent freed memory area before release. By adding this condition, a
UAF attack will fail if an offset of the dangling pointer to the memory area is
not appropriately calculated. Furthermore, HeapRevolver can be implemented
in a library and be applied without altering the targeted program for protection.
Thus, applying HeapRevolver to targeted programs is not difficult. As HeapRe-
volver can reuse the freed memory area under the reuse conditions, the memory
can be efficiently used. Finally, we describe the design and implementation of
HeapRevolver in Linux and Windows and report the evaluation results. The re-
sults show that the performance overhead of HeapRevolver is relatively smaller
than that of DieHarder [14], which is one of the representative methods to pre-
vent UAF attacks by library replacement.

2 Problem and HeapRevolver design

2.1 Problem of existing methods

The problems of the related studies [15]-[17] are as follows:
(Problem 1) The reuse timing can be guessed by attackers: The related
methods do not release the freed memory area for a fixed period and complicates
UAF attacks. Owing to the period being fixed, attackers can guess the reuse
timing. Thus, the reuse time estimation must be made difficult.
(Problem 2) Need to alter the program code: Some methods alter the
program of IE and call the recently added functions, thus preventing a UAF
attack. Therefore, altering a program is necessary.
(Problem 3) Target application and OS’s are limited: The methods pro-
tect IE in Windows against UAF attacks. Therefore, a more easy deployment
method for various OS’s and application programs is required for UAF attack
mitigation.

In this paper, we propose a novel UAF attack-prevention method to resolve
these three problems.

2.2 Design of HeapRevolver

In this paper, we focus on the objective that UAF attacks can be prevented by
preventing reuse of the freed memory area. However, when the reuse of freed
memory area is prevented, memory usage becomes extremely inefficient. In ad-
dition, the overhead of creating new memory area increases because brk and
sbrk system calls are issued to expand the heap area. To solve this problem,
we prohibit the reuse of a memory area for a certain period after it is freed.
When a certain period has passed, the memory area can be reused. We assume
that if this period is fixed, the reuse timing can be predicted by the attackers.
Therefore, we randomize the prohibited period of reuse in HeapRevolver.

To prevent UAF attacks by reusing the memory objects, HeapRevolver pre-
vents a UAF attack by altering an existing library. The altered library prohibits

reuse of the freed memory for a certain period. The conditions for reuse are as
follows.
(Condition 1) The total size of the freed memory area is beyond the designated
size.
(Condition 2) The freed memory area is merged with an adjacent freed memory
area.

When condition 1 is satisfied, the memory area that satisfies condition 2 is
released. The released memory size is at most half of the designated total size
in the freed memory. Condition 1 refers to technique used in DelayFree [16]
and Memory Protector [17]. The designated total size (threshold) in the freed
memory in these techniques is constant. The threshold is 100 KB. When an
attacker creates a memory area of 100 KB, the freed memory is released; thus,
an attacker can attempt to reuse a memory area by creating a memory area.

In HeapRevolver, we develop two countermeasures for this problem. First, the
total size threshold of the freed memory area is set to a larger value than that in
DelayFree. This measure increases the threshold entropy against UAF attacks
because threshold estimation becomes more difficult. Second, the threshold is
randomized in some ranges. In addition, the threshold is randomly updated
when condition 1 is satisfied. Furthermore, HeapRevolver releases at most only
half of the freed memory area, implying that the randomly selected memory is
delayed. This results in a certain memory area that cannot be reused for a long
period. Furthermore, by adding condition 2, a UAF attack fails if an offset of a
dangling pointer to the memory area is not appropriately calculated.

3 Implementation of HeapRevolver

3.1 Implementation of HeapRevolver in Linux

In this section, we describe the implementation of HeapRevolver for glibc (x86 64)
in Linux by altering only the free() function of the malloc algorithm that releases
the memory area. Figure 2 shows the memory structure of malloc in HeapRe-
volver.

The free() function process of HeapRevolver is explicated as follows. Lock bins
and wait bins are added to the malloc state structure for HeapRevolver.

(1) The freed memory area (chunk) is stored in the head of the list (lock bins).
(2) When the total size of the freed chunk stored in lock bins and wait bins

is beyond the threshold limit, the freed chunks are released from the lock bins
list until half of the designated total size is released. The freed chunks must
be merged with a chunk located in an adjacent memory cell before the chunks
are released. When a freed chunk is removed from the lock bins, HeapRevolver
searches for a freed chunk that can be merged with the adjacent chunk from the
wait bins and unsorted chunks. If HeapRevolver finds a chunk for merging, the
freed chunk is merged with it and is entered into the unsorted chunks for release.

(3) If no chunk can be merged, the chunks in lock bins are moved to wait bins
after attaching an attribute, indicating means that the chunk must be merged
before reuse.

��������	
�����

�
�	����

����

�

�

�

��

�
	�����

��

��

��

��

��

��

��

��

��

��

��

��

����	����
��

��
��

��

��

��

Fig. 2. Memory structure of malloc in HeapRevolver

We believe that the threshold for the total size of the freed chunks is 1
MB, which is sufficient to complicate UAF attacks. In glibc of Linux/x86 64,
a memory area that is larger or equal to 128 KB is created by the mmap()
function. Thus, if the chunk size is smaller than 128 KB, the chunk is entered in
the lock bins. Therefore, more than seven chunks are entered in lock bins when
threshold ≥ 1 MB. Furthermore, HeapRevolver randomizes the threshold of the
total size when the total size of freed memory is larger than the threshold value.

The proposed method is applied to a library, which is introduced by replacing
an existing library in a specific directory or changing a linked dynamic library
before it is loaded. For example, a linked dynamic library can be changed by
modifying the path names of LD PRELOAD and LD LIBRARY PATH.

3.2 Implementation of HeapRevolver in Windows

The Windows’ APIs kernel32.dll and ntdll.dll provide similar memory manage-
ment processing as the glibc library in Linux. In addition, the HeapFree() func-
tion in kernel32.dll is often used to release a heap area. Thus, we implemented
a function of HeapRevolver in the HeapFree() function. In our implementation,
the HeapFree() function is hooked by our original function.

The hook function of HeapRevolver is implemented using a dynamic link
library (DLL) injection and Windows API hook. DLL injection is a DLL map-
ping method to other processes and executes DLL processing in the processes.
Windows API hook is a method that hooks a Windows API call and executes a
certain processing before the hooked Windows API call. We deployed an import
address table (IAT) hook for the Windows API hook. IAT hook is a method
that modifies the address of APIs in IAT to call a target function.

Figure 3 shows the flow of hooking the HeapFree() function to the target pro-
cess. When the Hook HeapFree() function of Hook.dll is called by IAT hook, the
Hook HeapFree() function of Hook.dll obtains the arguments of the HeapFree()
function and stores them in a ring buffer. Next, the Hook HeapFree function
checks whether the sum of the freed memory are beyond the threshold. If the

��������	
����

�
	�����	
����

���

��
��	��

�������

�

����
��	��

�������

���

�
	�����	
����

���

��
��	��

�������

�

����
��	��

�������

���

��� ������

!�	"	#��

Fig. 3. Flow of hooking HeapFree() function on Windows

sum exceeds the threshold, the Hook HeapFree() function obtains the arguments
of the HeapFree() function and calls the HeapFree() function to release the freed
memory area. The Hook HeapFree() function calls the HeapFree() function until
half of the threshold is released. If the sum of the freed memory does not exceed
the threshold, the proposed function returns without any operation. Thus, the
Hook HeapFree() function delays the release of the freed memory area until the
sum of the freed memory area exceeds the threshold.

The implementation of HeapRevolver in Windows is almost the same as in
Linux. However, the prototype implementation of Windows does not include the
determination of whether a memory area is already merged with an adjacent
memory area. This needs to be further studied. In addition, the prototype im-
plementation in Windows uses the number of freed memory areas as a threshold
instead of the sum of the freed memory area sizes because the process of man-
aging the size is complex. Even when the amount of freed memory area is used
as a threshold, the entropy can increase and can complicate UAF attacks using
a large number of thresholds and randomizing them.

4 Evaluation

4.1 Security Analysis

Possibility of success of UAF attacks in HeapRevolver We analyzed
the possibility of attacks against HeapRevolver. For an attack to succeed, an
attacker must reuse the freed memory area and overwrite the memory. Subse-
quently, malicious codes must be executed by referring to a dangling pointer. In
HeapRevolver, the freed memory area cannot be reused until it satisfies the reuse
condition because the area is entered into a wait bin queue. Thus, most of the
aforementioned UAF attacks can be prevented using HeapRevolver. Only when
a memory area is freed, the sum of the freed memory area exceeds the threshold
and the target memory area is merged to an adjacent memory area. The freed
memory area can then be immediately reused after it is released. However, in
this case, reusing the freed memory area is difficult because the attacker must
predict the size of the merged memory area (described in the next paragraph).
In addition, the attacker must understand the number and total size of the freed

memory areas. Because the threshold of reuse is randomly set when the freed
memory area is released and large-scale programs such as browsers process many
memory allocations and releases, predicting when the sum of the freed memory
area exceeds the threshold is very difficult.

The additional condition for attacks is the immediate reuse of the freed mem-
ory area after it is released. In many attacks, the requested size of memory al-
location is the same as that of the target freed memory area. In HeapRevolver,
the reusable memory area must be merged to an adjacent memory area. Thus,
the possibility of reuse is considerably reduced when the same size is designated
for the memory allocation. For example, in Linux, unused memory area with a
size is the same as the requested size is reused prior to the reuse of the memory
area with another size.

If a dangling pointer is referred to before all the previous conditions are
satisfied, the attacks will fail because of segmentation or other faults. After the
faults, the application is terminated, and the next attack becomes impossible.
Because such failure in attacks reveals the attempts of attacks, we believe that
attackers will avoid performing low-possibility attacks.

Attack possibility against HeapRevolver To defeat HeapRevolver, attack-
ers consider repeating memory allocation and releasing memory. In addition, to
increase the probability of successful attacks, heap spraying is used. Heap spray-
ing is effective when the memory layout is predictable or memory fragmentation
in the heap area is suppressed. In HeapRevolver, freeing the memory area is
randomly delayed, and memory fragmentation such as external fragmentation
in the heap area frequently occurs. In this situation, large area of heap spraying
is often allocated in the last part of the heap area, and we believe that the suc-
cess of heap spraying is low. For the attacks against HeapRevolver to succeed,
both UAF attacks and heap spraying must succeed; thus, the possibility of the
success of two attacks is low, and the risk of revealing attack attempt is high
because of failures.

As a typical attack, to overwrite a freed memory area referred by dangling
pointer, the attacker attempts to allocate a large memory area after the target
memory area is freed. Next, the attacker overwrites the entire target memory
area. Overwriting a large memory area is expected to improve the possibility of a
successful attack. This type of attack can succeed after the target memory area is
freed and reused. As aforementioned, reuse of the target memory area is difficult.
In addition, the timing of freeing the target memory area is non-deterministic;
thus, creating attack codes with a high success probability against HeapRevolver
is difficult.

4.2 Evaluation environment

We used a computer with Intel Core i7-3770 (3.40 GHz) and 4-GB main mem-
ory for the evaluation. The OS’s and versions used in the evaluations are Linux
3.13.0-45-generic/x86 64 (Ubuntu 14.04 LTS) and Windows 7 (64 bit). The
HeapRevolver was implemented in glibc-2.19 in Linux.

yuta@debian:~$./uaf 100 10

result = 110

Addnum = 0x602010

buf = 0x602010

$

yuta@debian:~$ LD_PRELOAD=“/usr/local/test2

/lib/libc.so.6” ./uaf 100 10

result = 110

Addnum = 0x602010

buf = 0x602030

Segmentation fault

(A) Before application of HeapRevolver

(B) After application of HeapRevolver

Fig. 4. Experimental results of UAF attack prevention in Linux

To show the feasibility and overhead of the HeapRevolver, we evaluated its
performance on Linux and Windows. The following experiments were performed.
The UAF-attack prevention experiments in Linux and Windows show that UAF
attacks can be prevented by HeapRevolver. In addition, we evaluated the per-
formance overhead and memory usage of HeapRevolver. Finally, we compared
HeapRevolver with DieHarder, which is one of the UAF prevention methods that
use library replacement. In the overhead evaluations, we used fixed thresholds
on HeapRevolver because we clarified the relationship between the threshold size
and performance and memory overhead of HeapRevolver.

4.3 Prevention experiments of UAF attack in Linux

We describe the experimental results of attempting UAF attacks using a pro-
gram. In the program, an object of an Addnum class is created and deleted.
Subsequently, when a memory area with the same size as that of the Addnum
object is created, the memory area of the deleted Addnum object is reused.
The address where a pointer of the shell code is stored is overwritten on the
vtable address of the Addnum object. The shell code is executed by a call to
the overwritten vtable. The program was executed when address space layout
randomization and data execution prevention were disabled.

Figure 4 shows the execution results before and after the application of
HeapRevolver in Linux. Figure 4-(A) shows that the Addnum object and buf
were allocated in the same memory area. Next, the UAF attack was performed
by referring to a dangling pointer. Thus, the shell codes were executed. In con-
trast, Figure 4-(B) shows that an Addnum object and buf were allocated in
different memory areas. Here, the UAF attack failed due to segmentation fault
because the memory area accessed by referring to the dangling pointer did not
have access rights. Therefore, HeapRevolver can prevent the UAF attack.

Table 1. Overheads in malloc-test.

Memory size
lib

thread num
1 3 5

glibc 0.335 1.02 1.71
100 B HeapRevolver (100 KB) 0.398 (18.8%) 1.200 (17.6%) 2.015 (18.1%)

HeapRevolver (1 MB) 0.399 (19.1%) 1.205 (18.1%) 2.020 (18.4%)

glibc 0.371 1.132 1.885
512 B HeapRevolver (100 KB) 0.425 (14.5%) 1.310 (15.7%) 2.195 (16.4%)

HeapRevolver (1 MB) 0.437 (17.8%) 1.324 (17.1%) 2.210 (17.2%)

glibc 0.374 1.137 1.903
1024 B HeapRevolver (100 KB) 0.526 (40.6%) 1.495 (31.5%) 2.481 (30.4%)

HeapRevolver (1 MB) 0.543 (45.2%) 1.503 (36.6%) 2.509 (31.8%)

4.4 Evaluation of performance overhead in Linux

To compare the performances of HeapRevolver and the original glibc, they were
evaluated using several program types. The thresholds of HeapRevolver in eval-
uation were 100 KB and 1 MB.

First, the malloc-test benchmark was used to evaluate the processing time.
The malloc-test benchmark contains some tests for the malloc and freeing pro-
cesses. The tests were performed by multi-threading. The processing time was
measured when the process was repeated 10,000,000 times. The requested mem-
ory sizes were 100, 512, and 1,024 bytes. The number of threads was changed
from one to five.

Table 1 lists the evaluation results, which shows that the overhead of HeapRe-
volver was less than 20% in the malloc-test when the memory sizes were 100 and
512 bytes. The overhead of HeapRevolver increased by approximately 30%–45%
when the requested memory size was 1024 bytes. We believe that this increase
caused the repeated issue for the sbrk system call to change the size of the data
segment in this evaluation. The evaluation results show that the large threshold
of the HeapRevolver involved large overhead for every requested memory size.

Next, the performance overhead of the HeapRevolver was measured using
UnixBench, SysBench and Himeno benchmarks. Table 2 lists the evaluation re-
sults, which show that the overhead of HeapRevolver was less than 0.25% in
every benchmark evaluation. The performance overhead of the 1-MB HeapRe-
volver is greater than that of the 100-KB HeapRevolver. We suppose that the
performance overhead increases according to the size of the threshold and that
the performance overhead is small and acceptable.

Next, the overhead in applying the proposed method to glibc was measured
using browser benchmarks; we used Firefox and Chrome as browsers for the
evaluation. The processing time of the browser benchmarks was measured using
Google’s Octane 2.0, Apple’s SunSpider 1.0.2, Mozilla’s Kraken 1.1, Microsoft’s
LiteBrite, FutureMark’s Peacekeeper, and Mozilla’s Dromaeo. Figures 5 and 6
show the comparison results of HeapRevolver with glibc in Firefox and Chrome
respectively, considering their performance overhead.

Table 2. Evaluation results on UnixBench, SysBench, and Himeno benchmark.

lib UnixBench SysBench (s) Himeno benchmark

glibc 4,139.18 25.98 2,690.24

HeapRevolver (100 KB) 4,131.38 (0.19%) 26.21 (0.23%) 2,689.64 (0.02%)

HeapRevolver (1 MB) 4,130.57 (0.21%) 26.22 (0.24%) 2,688.05 (0.08%)

0

0.5

1

1.5

2

2.5

3

Octane SunSpider Kraken LiteBrite Peacekeeper Dromaero

P

e

r

f

o

r

m

a

n

c

e

o

v

e

r

h

e

a

d

(

%

)

HeapRevolver (100 KB)

HeapRevolver (1 MB)

Fig. 5. Performance overhead of browser
benchmarks on Firefox

0

0.5

1

1.5

2

2.5

3

Octane SunSpider Kraken LiteBrite Peacekeeper Dromaero

P

e

r

f

o

r

m

a

n

c

e

o

v

e

r

h

e

a

d

(

%

)

HeapRevolver (100 KB)

HeapRevolver (1 MB)

Fig. 6. Performance overhead of browser
benchmarks on Chrome

Figure 5 shows that the overhead was less than 1.8% in both 100 KB and 1
MB in Firefox. The overhead in the 1 MB HeapRevolver, in which the duration
of reuse was longer, was larger than that in the 100 KB HeapRevolver because
the change in the amount of data segment size (heap area), such as sbrk system
call, increased when allocating a new memory area. Furthermore, Figure 6 shows
that the overhead in Chrome was less than 2.6% in both the 100 KB and 1 MB
HeapRevolvers. The overhead of the 1 MB HeapRevolver in Chrome was larger
than that of 100 KB in Firefox.

Finally, the response time of a web server was measured. The thttpd 2.25b
was used as a web server, and ApacheBench was used as a benchmark in mea-
suring the response time of the web server in this evaluation. The size of the
requested file varied from 100 bytes, 1 KB, 10 KB, and 100 KB.

Table 3 lists the evaluation results of the response time of thttpd. It shows
that the overhead of HeapRevolver in every result was small. However, the over-
head of HeapRevolver increased when the requested file size was 0.1 KB. This
process included network and CPU processes. Thus, we assume that the overhead
of the memory allocation and release were hidden by these processes.

4.5 Evaluation of memory consumption in Linux

We performed three experiments to evaluate the memory consumption of HeapRe-
volver in Linux. The thresholds of HeapRevolver were 100 KB and 1 MB.

We measured the memory usage of the malloc algorithm with HeapRevolver
and compared it with that of original glibc. We used a malloc-test program. In
this experiment, five threads were run, and the allocation and freeing processes
were performed when the memory size was 512 bytes. Each thread repeated this

Table 3. Response time (overheads) of thttpd web server (ms)

Method Request file size (KB)
0.1 1 10 100

glibc 74.0 75.3 131.1 1,057.8

HeapRevolver (100 KB) 77.1 (4.2 %) 80.0 (6.3%) 130.6 (-0.4%) 1,053.4 (-0.4 %)

HeapRevolver (1 MB) 77.6 (4.9 %) 76.4 (1.5 %) 131.4 (0.2 %) 1,057.9 (0.0 %)

Table 4. Memory usage of the malloc-test

Method Memory us-
age (KB)

glibc 588

HeapRevolver (100 KB) 588

HeapRevolver (1 MB) 1452

Table 5. Memory usage after Firefox fin-
ished browsing the 10 websites

Method Memory us-
age (MB)

glibc 282

HeapRevolver (100 KB) 279

HeapRevolver (1 MB) 294

process 10 million times. We measured the memory usage when the processing
of the five threads was finished.

Table 4 lists that the memory usages of glibc and 100-KB and 1-MB HeapRe-
volver were almost the same. The size of the freed memory area was less than the
threshold. When the threshold was 1 MB, the size of the exceeded memory usage
was within the threshold limit. Therefore, these results show that the maximum
overhead of the memory usage for each process is less than the threshold.

We used Firefox 31.0 and Selenium IDE to evaluate the memory consump-
tion when browsing 10 websites continuously. We then measured the memory
consumption after Firefox finished browsing the 10 websites.

Table 5 lists the evaluation results of the website browsing. The memory
usage of glibc and HeapRevolver were almost the same. The memory usage was
between 280 and 320 MB because the memory usage overhead of HeapRevolver
was small and the variation in memory usage was relatively large.

To compare HeapRevolver with glibc, the change in the amount of virtual
memory consumption when a browser benchmark was run was measured. In this
evaluation, Octane, SunSpider, and Kraken were used.

Figures 7–8 show the memory consumption of Octane in Firefox and Chrome.
The evaluation results of Octane in Firefox and Chrome show that the memory
consumption of HeapRevolver was almost the same as that of glibc. Furthermore,
the memory consumptions of SunSpider and Kraken of the browser benchmarks
in both browsers were almost the same as those of glibc. Therefore, the overhead
in the memory consumption in HeapRevolver was also small. Table 6 lists the
maximum memory consumption under each condition. The evaluation results
show the overhead of maximum memory consumption is small.

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26 31 36 41 46

M

e

m

o

r

y

u

s

a

g

e

(

M

B

)

time (s)

glibc

HeapRevolver (100 KB)

HeapRevolver (1 MB)

Fig. 7. Memory usage of Octane on Firefox

0

200

400

600

800

1000

1200

1400

1600

1 6 11 16 21 26 31 36 41 46

M

e

m

o

r

y

u

s

a

g

e

(

M

B

)

time (s)

glibc

HeapRevolver (100 KB)

HeapRevolver (1 MB)

Fig. 8. Memory usage of Octane on Chrome

Table 6. Maximum memory consumption on browser benchmarks (KB)

Browser lib Octane SunSpider Kraken

glibc 5,375,276 917,996 1,158,092
Firefox HeapRevolver

(100 KB)
5,382,988 (0.14 %) 922,416 (0.48 %) 1,124,996 (-2.86 %)

HeapRevolver
(1 MB)

5,407,820 (0.61 %) 949,344 (3.41 %) 1,151,620 (-0.56 %)

glibc 1,441,932 1,431,016 1,421,312
Chrome HeapRevolver

(100 KB)
1,427,148 (-1.03 %) 1,414,824 (-1.13 %) 1,406,628 (-1.03 %)

HeapRevolver
(1 MB)

1,428,172 (-0.95 %) 1,415,848 (-1.06 %) 1,406,628 (-1.03 %)

4.6 Prevention experiments against UAF attack in Windows

We experimented on whether UAF attacks using real attack codes distributed
in Metasploit could be prevented. The attack codes used in the environments
exploited CVE-2011-1260 and CVE-2012-4969 of IE 7 onWindows XP and CVE-
2014-0322 of IE10 on Windows 7. We determined that approximately 3,000 freed
memory areas existed and were reserved for reuse in Linux when a threshold of 1
MB was set. Thus, we used 3,000 as the threshold for the Windows experiments.

We applied HeapRevolver to IE on Windows as described earlier. Then, the
attack codes were executed in each environment. Thus, HeapRevolver success-
fully prevented all the UAF attacks that reused memory objects.

4.7 Evaluation of performance overhead in Windows

We measured the overhead of HeapRevolver both before and after the introduc-
tion of HeapRevolver on Windows 7. We ran three types of browser benchmark,
namely, Octane, SunSpider, and Kraken, on IE 10. The threshold of HeapRe-
volver was 3,000. The measured overhead of HeapRevolver in the three browser
benchmarks was less than 2.5%. These browser benchmarks are CPU-intensive
and require large memory. Thus, we suppose that the influence on the perfor-
mance of the browser benchmarks can explicitly be observed. Nevertheless, the

0

0.5

1

1.5

2

2.5

3

3.5

4

Octane SunSpider Kraken

P

e

r

f

o

r

m

a

n

c

e

o

v

e

r

h

e

a

d

(

%

)

HeapRevolver (1 MB)

DieHarder

Fig. 9. Comparison of HeapRevolver and
DieHarder for browser benchmarks in Fire-
fox

0

0.5

1

1.5

2

2.5

3

3.5

4

Octane SunSpider Kraken

P

e

r

f

o

r

m

a

n

c

e

o

v

e

r

h

e

a

d

(

%

)

HeapRevolver (1 MB)

DieHarder

Fig. 10. Comparison of HeapRevolver and
DieHarder for browser benchmarks in
Chrome

Table 7. Evaluation results of malloc-test.

Memory size lib
thread num

1 2 3 4 5

512B
HeapRevolver (1MB) 0.437

(17.8%)
0.880
(17.6%)

1.324
(17.1%)

1.765
(16.2%)

2.210
(17.2%)

DieHarder 1.247
(236%)

2.586
(245%)

4.094
(262%)

5.421
(259%)

6.982
(270%)

results show that the overhead of HeapRevolver in Windows is small, and the
overhead is acceptable.

4.8 Comparison with existing method

We compared HeapRevolver with DieHarder [14], which can be classified to be
the same as HeapRevolver. The threshold of HeapRevolver in this evaluation
was 1 MB.

Figures 9 and 10 show the performance overhead of HeapRevolver compared
with that of glibc when Octane, SunSpider, and Kraken were executed in Firefox
and Chrome. The performance overhead of HeapRevolver was less than that
of DieHarder except in Kraken. The performance overhead of HeapRevolver
was less than 3.0% but the overhead of DieHarder in SunSpider was relatively
large (approximately 4%). We will analyze the resultant factor of DieHarder in
future; however, we believe some inefficient processing in the reuse of objects in
DieHarder occurred.

Table 7 lists the evaluation results of the malloc-test. The performance over-
head of DieHarder was more than 200% that of glibc because DieHarder allocated
memory area at random from some ranges in the memory area. In addition, we
evaluated the performance overhead results of original glibc using UnixBench,
SysBench, and Himeno benchmarks (Table 8). The results show that the per-
formance overhead of HeapRevolver was smaller than that of DieHarder in all
benchmarks.

Finally, we evaluated the change in the amount of memory consumption un-
der three browser benchmarks in Firefox. Figure 11 shows that the memory

Table 8. Evaluation results of UnixBench, SysBench, and Himeno benchmarks.

lib UnixBench (KB/s) SysBench (s) Himeno benchmark

HeapRevolver (1MB) 4,130.57 (0.21%) 26.22 (0.24%) 2,688.05 (0.08%)

DieHarder 4,124.77 (0.35%) 26.25 (1.04%) 2,674.44 (0.60%)

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26 31 36 41 46

M

e

m

o

r

y

u

s

a

g

e

(

M

B

)

time (s)

HeapRevolver (1 MB)

DieHarder

Fig. 11. Overheads of Firefox browser
memory usage (Octane)

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17

M

e

m

o

r

y

u

s

a

g

e

(

M

B

)

time (s)

HeapRevolver (1 MB)

DieHarder

Fig. 12. Overheads of Firefox browser
memory usage (SunSpider)

consumption of DieHarder in Octane was more than twice that of HeapRe-
volver. Figure 12 shows that the memory consumption of DieHarder in SunSpi-
der was approximately three times more than that of HeapRevolver. However,
the overhead of DieHarder was very heavy to use in real world. Comparatively,
the results show that the memory usage of HeapRevolver was efficient because
HeapRevolver delayed the reuse of freed memory within the threshold size.

Next, we discuss the results in the Chrome browser. We evaluated the to-
tal memory consumption of the processes created by Chrome because Chrome
creates more than one process. Therefore, we measured the total memory con-
sumption of virtual memory in all Chrome processes, and compared HeapRe-
volver with DieHarder. The total memory consumption of HeapRevolver in Oc-
tane was 45,904,020 KB and that of DieHarder was 87,906,816 KB. These results
show that the memory consumption of DieHarder in Octane was approximately
twice that of HeapRevolver. In addition, the memory usage trend in Chrome is
similar to that in Firefox.

All comparison results show that the overhead of HeapRevolver is smaller
than that of DieHarder in most cases and the amount of memory consumption
of HeapRevolver is less than that of DieHarder. In addition, to apply DieHarder
in Windows, source codes are necessary, and the allocator must be linked and
compiled during the development process. In comparison, HeapRevolver does not
need a source code and can be applied to programs where source codes cannot
be obtained.

5 Related work

Dangling pointer-detection approaches [3]-[7] include dynamic binary transla-
tion, shadow memory, and taint analysis. These approaches detect dangling

pointers before program execution. However, if the dangling pointers are abused,
which cannot be detected before a practical use, UAF attacks cannot be pre-
vented in runtime. In [8]-[10], UAF attacks were prevented by replacing a malloc
library with a new library in which the allocation unit is a page. However, be-
cause the allocation unit of the created memory area consists of pages, the mem-
ory usage is inefficient. In [11]-[13], a UAF attack was prevented using a method
that prevents alteration of vtable. However, these methods cannot handle a UAF
attack that does not alter vtable.

6 Conclusions

In this paper, HeapRevolver was proposed, and its design and implementation
in Linux and Windows were described. As the memory-reuse-prohibited library
prevents the freed memory area from being reused during a certain period, the
HeapRevolver can prevent UAF attacks without altering the targeted program
for protection. As the timing of reuse of the freed memory area is randomized
in HeapRevolver by randomizing the maximum total size of the freed memory
areas (the threshold of HeapRevolver), UAF attacks become more difficult.

The evaluation results in Linux show that the HeapRevolver overhead is suffi-
ciently small. However, the process of repeating memory allocation and releasing
memory slightly influences the performance. Further, the evaluation results show
that the increase in the memory consumption is slight compared with that in the
original glibc, and the overhead is acceptable. The experimental results in Win-
dows using UAF exploit codes show that UAF attacks can be prevented using
HeapRevolver. In addition, the performance evaluation results by using browser
benchmarks show that the HeapRevolver overhead is less than 2.5%. Finally,
we compared HeapRevolver with DieHarder through evaluations. The results of
the browser benchmarks show that the HeapRevolver overhead is smaller than
that of DieHarder in most cases and the amount of memory consumption of
HeapRevolver is approximately half that of DieHarder.

Moreover, HeapRevolver can be easily deployed in existing systems and pro-
grams and can make UAF attacks more difficult. In addition, the HeapRevolver
overhead is sufficiently small to be deployed in real systems. We believe that
HeapRevolver can prevent UAF attacks by exploiting zero-day vulnerability.

Acknowledgement This research was partially supported by Grant-in-Aid for
Scientific Research 16H02829.

References

1. Common Vulnerabilities and Exposures, https://cve.mitre.org/index.html

2. Microsoft Security Intelligence Report Volume 16, http://www.microsoft.com/
en-us/download/details.aspx?id=42646

3. Serebryany, K., Bruening, D., Potapenko, A. and Vyukov, D.: Addresssanitizer: A
fast address sanity checker, in the 2012 USENIX conference on Annual Technical
Conference (USENIX ATC’12), pp.309–318, 2012.

4. Caballero, J. et al.: Undangle: Early Detection of Dangling Pointers in Use-After-
Free and Double-Free Vulnerabilities, in the 2012 International Symposium on
Software Testing and Analysis (ISSTA 2012), pp.133–143, 2012.

5. Nethercote, N. and Seward, J.: Valgrind: A framework for heavyweight dynamic
binary instrumentation, in the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’07), pp.89–100, 2007.

6. Bruening, D. and Zhao, Q.: Practical Memory Checking with Dr. Memory, in 9th
Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, pp. 213–223, 2011.

7. Lee, B. et al.: Preventing Use-after-free with Dangling Pointers Nullification, in
the 2015 Network and Distributed System Security Symposium (NDSS), 2015.

8. GFlags and PageHeap, https://msdn.microsoft.com/en-us/library/windows/
hardware/ff549561\%28v=vs.85\%29.aspx

9. Electric Fence, http://elinux.org/Electric_Fence
10. D.U.M.A. - Detect Unintended Memory Access, http://duma.sourceforge.net/
11. Younan, Y.: FreeSentry: Protecting Against Use-After-Free Vulnerabilities Due to

Dangling Pointers, in the 2015 Network and Distributed System Security Sympo-
sium (NDSS), 2015.

12. Zhang, C. et al.: VTint: Protecting Virtual Function Tables’ Integrity, in the 22th
Annual Network and Distributed System Security Symposium (NDSS), 2015.

13. Gawlik, R., Holz, T.: Towards Automated Integrity Protection of. C++ Virtual
Function Tables in Binary Programs, in the 30th Annual Computer Security Ap-
plications Conference (ACSAC ’14), pp.396–405, 2014.

14. Novark, G., Berger, E.D.: DieHarder: Securing the heap, in the 17th ACM Con-
ference on Computer and Communications Security (CCS ’10), pp.573–584, 2010.

15. Tang, J.: Isolated heap for internet explorer helps mitigate uaf ex-
ploits, http://blog.trendmicro.com/trendlabs-security-intelligence/

isolated-heap-for-internet-explorer-helps-mitigate-uaf-exploits/

16. Tang, J.: Mitigating uaf exploits with delay free for internet ex-
plorer, http://blog.trendmicro.com/trendlabs-security-intelligence/

mitigating-uaf-exploits-with-delay-free-for-internet-explorer/

17. Security Intelligence, Understanding IE’s New Exploit Mitigations: The
Memory Protector and the Isolated Heap, https://securityintelligence.

com/understanding-ies-new-exploit-mitigations-the\

memory-protector-and-the-isolated-heap/

18. Security Week: Microsoft’s Use-After-Free Mitigations Can
Be Bypassed: Researcher, http://www.securityweek.com/

microsofts-use-after-free-mitigations-can-be-bypassed-researcher

19. Abdul-Aziz Hariri et al., Abusing Silent Mitigations - Understanding Weaknesses
Within Internet Explorers Isolated Heap and MemoryProtection, https://www.
blackhat.com/us-15/briefings.html

