

Complicating Process Identification by Replacing Process

Information for Attack Avoidance

Masaya Sato and Toshihiro Yamauchi

Graduate School of Natural Science and Technology, Okayama University,

3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan

m-sato@swlab.cs.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp

Abstract. Security-critical software is open to attacks by adversaries that disa-

ble its functionality. To decrease the risk, we propose an attack avoidance meth-

od for complicating process identification. The proposed method complicates

identification based on process information by dynamically replacing the in-

formation held by a kernel with dummy information. Replacing process infor-

mation makes identifying the attack target difficult because adversaries cannot

find the attack target by seeking the process information. Implementation of the

proposed method with a virtual machine monitor enhances the security of the

mechanism itself. Further, by implementing the proposed method with a virtual

machine monitor, modification to operating systems and application programs

are unnecessary.

Keywords: Attack avoidance, process information, virtual machine.

1 Introduction

Attacks exploiting vulnerabilities in programs to illegally control computers are

increasing. Therefore, software is developed to prevent such attacks and mitigate

their effects. However, attacks still succeed when they are able to deactivate such

software. For instance, Agobot [1] has the functionality to stop anti-virus software.

T0rnkit [2] and Dica [3] stop log collectors in order to hide the installation pro-

cess of malware from the system administrator of a target computer. The risk of

damages to target computers increases when protective software (essential ser-

vices) is deactivated. Therefore, it is an important challenge to detect and prevent

attacks on programs such as anti-virus software and log collector to reduce dam-

age to a computer, and to avoid the attack.

To prevent attacks on essential services, methods using a virtual machine moni-

tor (VMM) have been proposed [4], [5]. These methods prevent the essential ser-

vices from being affected by isolating them from the target computer using virtu-

alization technology. Research [4] reveals a method for offloading the intrusion

detection system (IDS) from one virtual machine (VM) to another. Moreover,

Jiang et al. proposed a method for malware detection using a VMM [5]. However,

these methods do not utilize existing essential services and software already in-

mailto:m-sato@swlab.cs.okayama-u.ac.jp

2 Complicating Process Identification by Replacing Process Information

stalled and operational. Research [6] has proposed a method to prevent anti-virus

software from being terminated without the consciousness of the anti-virus soft-

ware users. This method monitors Windows APIs by SSDT hooking and filter out

hazardous API calls that will terminate anti-virus software. This method is effec-

tive for termination of anti-virus software using API calls. However, this method

is vulnerable to SSDT (System Service Descriptor Table) patching commonly

used by rootkits because this method replaces some SSDT entries to their han-

dlers. Protecting the system from kernel-level malware is a challenging problem.

To address these problems, this paper proposes an attack avoidance method to

complicate process identification for adversarial software. The proposed method

complicates the identification of an essential service by replacing the process

information with a dummy. Specifically, this method detects context switches and

replaces the original process information with dummy process information when

a process is not running. Once the process is dispatched, the original information

is restored. The process information of the essential service is replaced without

disturbing its functionality. Adversaries cannot detect and identify a target for

attack because the process information of the target is replaced. For security and

adaptability, the proposed method is implemented using a VMM. Because of its

design, a VMM is more difficult to attack than an operating system (OS). Fur-

thermore, implementation with modification to a VMM can reduce the costs in-

volved in modifying existing software.

The contributions made in this paper are as follows:

─ We propose an attack avoidance method complicating process identification

from adversaries. Because adversaries identify and attack a target process using

process information, replacing the process information complicates the identi-

fication of an attack target.

─ We design a system for replacing the process information of essential processes

with a VMM. Because the proposed system is designed with modifications to

the VMM along with an additional application program (AP) on a manager

VM, the proposed system requires no modification to OSes and APs on a VM

providing essential services.

─ An evaluation using a prototype of the proposed system shows the effective-

ness of the method for attack avoidance.

2 Background

2.1 Attacks for Anti-virus Software

Agobot is malware that attacks anti-virus software. Agobot installs backdoor to

Windows hosts. The malware seeks target processes by searching out the name

from the process list in order to disable it. An investigation on August 8
th
, 2013,

revealed that Agobot included 579 targeted process names. When anti-virus soft-

ware is disabled by malware such as Agobot, the risk of damage to the computer

system increases.

Complicating Process Identification by Replacing Process Information 3

T0rnkit and Dica are malware for disabling a logging program. T0rnkit is a

rootkit that aims to install a backdoor for concealing their location. Its target sys-

tem is Linux. When installing programs used by T0rnkit, the malware stops the

syslog daemon, thus hiding the installation process from a system administrator.

Consequently, the system administrator cannot detect the installation or even the

existence of other malware.

Some malware stops or disables software that prohibits their activity on the

computer. If essential services are stopped or disabled, the risk of damage to the

system increases. For this reason, detection, prevention, moderation of damages,

and avoidance of attacks for an essential services are required.

2.2 Existing Countermeasures for Attacks

Research into an offloading host-based intrusion detection system (IDS) with a

VMM is proposed in VMwatcher [4]. Implementing an IDS by modifying a

VMM makes it difficult to attack the IDS. In a same manner, NICKLE [5], which

prevents the execution of a kernel-level rootkit, has been proposed. Because it

monitors the execution of kernel code with a VMM, only authorized code can be

executed. These methods help to prevent attacks that are difficult for existing

methods without a VMM to detect and prevent.

2.3 Problems with Existing Methods

Existing methods cannot use essential services without modifying them. Further-

more, these methods are effective only when they are not themselves attacked. If

these methods are themselves attacked by adversaries, a system administrator

cannot utilize those services to avoid attack. The methods described in Section 2.2

are advantageous given that attacks on a VMM are more difficult than attacks on

an OS. However, porting the functions from existing software to a VMM is diffi-

cult and expensive. The IDS offload method without modification is an effective

approach. However, it is difficult to apply to general application because the

method involves the emulation of each system call. To completely offload the IDS,

it is necessary to emulate all system calls. However, complete emulation is diffi-

cult to implement.

Even though effective VMM-based methods have been proposed, many of

them cannot use existing software without modification. Moreover, exporting

existing functions used by anti-virus software to a VMM is difficult. Further, the

information collected by existing application programs (APs) and kernel is differ-

ent from the information a VMM collects. This semantic gap makes it difficult to

port functions from existing software to a VMM.

4 Complicating Process Identification by Replacing Process Information

3 Attack Avoidance Method for Complication of Process

Identification

3.1 Purpose

The following explains the purposes of our research:

Purpose 1) Avoidance of attacks to essential services

Purpose 2) Use of existing software without modification

It is difficult to handle various attacks with existing methods. Therefore, we aim

not to protect but to avoid such attacks. Even if offloading the functionality of

existing services is considerably effective, the cost of doing so is high. Thus, it is

preferable to avoid attacks without modifying existing software.

3.2 Basic Idea

To achieve the purposes outlined in Section 3.1, we propose complicating process

identification to avoid attacks by replacing the process information for essential

processes providing the security services. Because adversaries identify a target to

attack, we propose replacing the original process information of the target process

with dummy process information. Moreover, by implementing our method in a

VMM, the existence of our system is difficult to identify. Because of this, an at-

tack on the proposed method itself is difficult and unlikely.

Because a VMM is developed only for providing VMs, interfaces for accessing

it are limited and the total amount of source codes involved is far less than in a

normal OS. Thus, attacking the VMM is more difficult than attacking the OS.

Moreover, implementing the proposed method does not necessitate modifications

to the source code of the guest OS or its essential services. With this feature, ex-

isting software resources are utilized efficiently. For these reasons, we utilize a

VMM with the proposed method.

3.3 Hiding Process Information of Essential Processes

The complication of process identification consists of the following:

1. Limiting access to the process information

2. Replacing the process information

Figure 1 provides an overview of the procedure for limiting access to the process

information. With this method, the kernel text area, which can access process

information, is pre-defined. Access to the page that includes process information

is set as forbidden. When an access violation to that page occurs, the method re-

turns a dummy value when the subject is not included in the pre-defined area. If

the subject is included in the pre-defined area, the method returns the original

content. With this approach, the original process information is invisible from

Complicating Process Identification by Replacing Process Information 5

adversaries because only legitimate functions in the kernel text are permitted to

access process information.

Fig. 1. Access control to process information.

Fig. 2. Replacement of process information between essential process and normal process

In replacing the process information, process information for the essential pro-

cesses must first be replaced. When an essential process is running, the original

process information is restored. The overall procedure for replacing the process

information is shown in Figure 2. Here, we define normal processes as all pro-

cesses excluding essential processes. When a context switch from an essential

process to a normal process occurs, the method exchanges the original process

information with a dummy. Alternatively, when a context switch from a normal

process to an essential process occurs, the method restores the original process

information. With this approach, the original process information for the essential

processes is invisible from other processes. This method does not disturb the exe-

cution of essential processes. The replacement of process information is described

Permitted area for access to process information.

Forbidden area for access to process information.

Process information
(Read access to the area is forbidden)Kernel text area

Permitted

Forbidden

Essential Process Normal Process

Context switch

(A-1) Evacuation

User space
Kernel space

Original
process information

Dummy
process information

(A-2) Replacement
to dummy

VM

VMM

Context switch

Essential Process

(B-2) Restoration

(B-1) Evacuation

6 Complicating Process Identification by Replacing Process Information

in detail in Section 4.

3.4 Method for Identifying Essential Processes and Countermeasures

Identification method. Adversaries can stop or disable essential processes if

they detect the existence of the proposed system and identifying the essential

process. Thus, it is necessary to make it difficult for adversaries to judge whether

a process is an essential process or not.

Adversaries can identify an essential process by comparing the processing time

of the context switch between an essential process and a normal process or by

continuously monitoring the process information. With the proposed system, the

process information of the essential process is replaced. Thus, the time for essen-

tial process context switches is longer than with a normal process. Given this

difference, adversaries can identify which process is an essential one.

Adversaries can identify the essential process by continuously monitoring the

process information for each process to determine whether the process infor-

mation has changed during a context switch. If a process is an essential process,

its process information is replaced during a context switch whereas the process

information for a normal process is remains unchanged. Therefore, if part of the

process information has changed, even though given a normal context switch it

would not, adversaries can identify that process as an essential process.

Countermeasures. To conceal the difference in the processing times of context

switches, it might suffice to apply the same processing time to normal processes.

This done, the difference in the processing times of context switches between the

essential processes and the others becomes meaningless. However, the perfor-

mance of the entire system degrades.

As an alternative, a time controlling function is effective. This function is used

in malware analysis. Some malware detect the presence of debuggers by measur-

ing the processing time and respond by changing their behavior to avoid analysis.

To prevent this from happening, a time controlling function is proposed. This

function stops a virtual CPUs allocated for malware. When the CPU is stopped,

the debugger analyzes malware and resumes the CPUs when the analysis is com-

plete. This function enables us to evade the detection of the proposed system by

adversaries.

To prevent detection by continuous monitoring of process information, a com-

bination of access control and process information replacement is effective. Here,

we assume an adversary who continuously monitors process information with a

loadable kernel module in Linux. At first, the VMM forbids read access to areas

containing process information from kernel codes. This is done to prepare for

avoiding attacks. The area containing kernel code without kernel modules must be

Complicating Process Identification by Replacing Process Information 7

pre-defined. In this situation, if an access violation to the designated area occurs,

the VMM determines whether the access is acceptable or not by following the

procedure shown in Figure 3. If an instruction pointer is out of range from the

designated area, the VMM returns the dummy value to the guest. If not, the VMM

traces back the kernel stack and collects the virtual addresses of each function. If

all the addresses are contained within the designated area, the VMM emulates the

read access and returns an original value. If not, the VMM returns the dummy

value.

Because this access control model depends on an integrity of the guest kernel,

an attack patches a kernel text must be considered. DKSM attack is one of an

attack patching kernel text area [7]. To patch kernel text area, manipulation of

CR0 is required. Because kernel text area is write protected ordinarily, adversaries

manipulate CR0 to remove write protect of kernel text area. In fully virtualized

environment with VT-x, access to control registers causes VM exit. Therefore, the

VMM can detect patching of kernel text area by monitoring access to CR0. This

monitoring ensures kernel code integrity and functionality of above access control

model.

With this procedure, even if adversaries continuously monitoring process in-

formation, identifying an essential process is impossible.

.

Is the instruction pointer
contained in the
acceptable area?

All collected virtual
addresses are contained
in the acceptable area?

The VMM traces back the kernel stack and
collect virtual address of each function.

The VMM assigns the dummy value to
the result of read access.

The VMM emulates the memory access.

Detect an access violation to the
designated area.

The VMM returns the processing to the guest.

No

Yes

Yes

No

8 Complicating Process Identification by Replacing Process Information

Fig. 3. Determination procedure for access to process information.

3.5 Structure of the Proposed System

The overview of the proposed system is shown in Figure 4. The proposed system

consists of a process information manager, replacing process information and

controlling access to process information. The process information manager mon-

itors context switches in the target VM. The process information manager ex-

changes essential process information with dummy information, and in legitimate

case, restores the original. The original process information is evacuated from the

VM and stored in an area allocated in the VMM. The area is allocated and man-

aged by the VMM for each VM. A variety of dummy process information is pre-

pared in advance and the system determines what information is paired with each

process when a context switch occurs.

In the proposed system, the Control AP designates which process is an essential

process. Thus, a security administrator responsible for the protection of the target

VM must communicate to the VMM manager in advance which processes are

essential.

Fig. 4. Overview of proposed system.

3.6 Limitations

Because the proposed method only makes process identification difficult, the

essential processes are visible from adversaries. Therefore, if an adversary stops a

process at random, it is possible that an essential process will be stopped. To pre-

Process Information Manager

Protection Target VMManager VM

Essential
Process

Process Information

Control
AP

Evacuation/restore
Designation of

Essential Process

VMM

Replacement

Dummy
Process Information

Area for Evacuation

User Space

Kernel Space

Complicating Process Identification by Replacing Process Information 9

vent attacks on essential processes, regulating access control to process infor-

mation is effective. However, because attack prevention diverges from our stated

purpose, we do not discuss strategies in attack prevention.

Because the proposed methods replace the legitimate process information of an

essential process with dummy information, a security administrator tasked with

protecting the target VM cannot control the essential process. This is inconvenient

for the administrator. We assume that the essential process is a kind of resident

programs. Thus, the scope for the application of the proposed method is restricted

to resident programs. We do not assume this method will feasibly apply to other

programs. To do so, an additional interface would be needed for the security ad-

ministrator to communicate with the process information manager. However, this

addition would expose vulnerabilities. Thus, we do not consider implementing

any additional communication interface to the VMM.

4 Replacement Method of Process Information

4.1 Replacement Target

Definition of Process Information. Assuming Linux for x86 or x64, we defined

the following as process information:

(1) Process control block

(2) Kernel stack

(3) Hardware context

(4) Page tables

(5) Memory used by a process

Hiding all of the above information is necessary to make the process completely

invisible. However, identifying a process from (3), (4), and (5) is considerably

difficult. On the other hand, (1) and (2) include especially helpful information for

process identification. For these reasons, we treat (1) and (2) as process infor-

mation.

The following describes the process information in detail:

Process control block (task_struct)

The process control block contains information that is effective for process

identification including the PID (Process ID), the TGID (Thread Group ID), the

executable file name, and the PID of the parent process. In Linux, the process

control block is given as task_struct structure, and it is generated for each pro-

cess or thread.

Kernel stack and thread_info structure

Both the kernel stack and thread_info structure are allocated in a union, named

10 Complicating Process Identification by Replacing Process Information

thread_union. A thread_union is allocated for each task_struct. A kernel stack

contains the address, arguments, and return value of functions called in the ker-

nel space. The thread_union and task_struct are linked to one another.

Replacement Target. The process information defined above includes infor-

mation used with a kernel when a process is not running. For example, a kernel

schedules processes or delivers signals by reference to the process information for

each process. For this reason, process scheduling and signal delivery would be

obstructed were all process information replaced. Thus, two policies are consid-

ered for replacing process information.

Policy (1). Replace as much process information as possible, with the ex-

ception of information used by a kernel while the process is not dispatched.

Policy (2). Replace only information helpful to adversaries for identifying

processes.

When replacing process information under Policy (1), processes are more difficult

to identify than under Policy (2). However, replacement under Policy (1) requires

many more replacement copies leading to overall performance degradation. Re-

placement under Policy (2) results in less overhead than Policy (1). However, the

strategy suggested under Policy (2) requires that we survey what information is

used by malware for identifying the attack target.

Understood merely as a countermeasure to adversarial attack, replacement un-

der Policy (1) is preferable. However, practical utility requires the efficient sup-

pression of any superfluous performance overhead. Therefore, in this paper, we

employ Policy (2) for a replacement strategy.

Information Used for Process Identification. We turn now to a discussion of the

information used by malware to identify an attack target process. Agobot, devel-

oped for Windows, searches the name of a program from a process list in a target

computer. If a name matches an entry in the list, Agobot issues the Terminate-
Process() function to stop the process and all threads within the process. Dica,

developed for Linux, stops syslogd with the killall command. The killall com-

mand acquires the process PID to suspend processes by searching the name of

the attack target from the proc filesystem. After acquisition, the command in-

vokes a kill system call to stop the process.

Whereas it is not un-common to find malware that stop processes, many of

these programs discern the target process with the name of the program. There-

fore, it is effective to replace the process name as well.

Adequate Dummy Information. To hide the existence of essential processes,

dummy information should be chosen properly. For instance, to hide a process,

the process name should be replaced with a name of a common program, running

Complicating Process Identification by Replacing Process Information 11

on common servers. If the name of an essential process is replaced with a com-

mon name, it will be more difficult for adversaries to detect the existence of the

essential process. Additionally, the name should be chosen randomly. It would be

easy to detect the existence of the proposed method were the dummy information

always the same.

4.2 Trigger for Replacement of Process Information

To replace the process information, it is necessary to determine whether or not a

process-switch from and a process-switch to are replacement targets. For this

mechanism, the detection of context switches in a VM from a VMM is required.

In fully virtualized environments, a guest OS works in VMX non-root mode

and a VMM works in VMX root mode. Some instructions in non-root mode cause

a VM exit and the processing is switched to the software running in the VMX root

mode. Instructions not permitted in VMX non-root mode contain write to CR3

register. In an OS supporting multiple virtual address spaces, write to CR3 occurs

when context switching to change address space because CR3 contains a begin-

ning address of a page directory. Therefore, a context switch in a VM can be de-

tected by monitoring VM exits caused by writes to CR3.

4.3 Acquisition of Process Information in Guest OS

Acquisition of process information of current process. As shown in Figure 5,

thread_info and task_struct can be acquired by calculating the address from the

RSP register with the VMM. Because the beginning address of a thread_info can

be calculated from the RSP register and a task member of the thread_info indi-

cates the beginning address of a task_struct, the VMM can acquire the process

information in a guest OS from the RSP register. In this regard, the VMM must

hold the definitions for each structure beforehand.

Fig. 5. Relation between thread_union and task_struct.

task_structthread_union

thread_info

task

Process control block
in Linux

state

Kernel
Stack

rsp

stack

X

X+(Page Size)

X+(Page Size)*2

pid

comm

tgid

Address

12 Complicating Process Identification by Replacing Process Information

Acquisition of next-process information. The method for acquiring the process

information stated above is not effective for any processes set to run next (i.e. for

the next-process). Therefore, another method is needed. What is about to be writ-

ten to the CR3 register is usable information for the acquisition of process infor-

mation concerning the next-process. Considering this, there are three methods for

identifying the next-process to acquire its process information.

 Scanning method: this method scans the process list of the protection target

VM to determine the next process.

 List-based method: With this method, the VMM holds a list, containing the

CR3 value and the address of the task_struct for each essential process. This

method searches the value for what is going to be written to the CR3 register to

identify the next-process.

 Trigger-insertion method: This method inserts a trigger, switching execution

from the protection target VM to the VMM, in the kernel of the protection tar-

get VM for the identification of the next-process. For example, inserting the

INT3 instruction in the kernel memory area is effective. The trigger must be in-

serted in the place where the proposed method can acquire the process infor-

mation concerning the next-process.

The advantages and limitations for each method are shown in Table 1. The

scanning method is easy to implement because it requires only a look-up of the

next process from the process list of the protection target VM. However, this

method creates debilitating performance overhead because the method scans the

process list after each context switch on the protection target VM. By contrast, the

list-based method and the trigger insertion method do not require significant per-

formance overhead. The list-based method uses a VM exit, which occurs uncondi-

tionally in a fully virtualized environment. Because unnecessary VM exits do not

occur using the list-based method, performance overhead is minimal in above

three methods. With the trigger-insertion method, unnecessary VM exits occur.

Thus, from a viewpoint of performance, the list-based method is considered best.

Even though the list-based method is disadvantageous in terms of amount of

memory usage, it can be estimated as sufficiently small. The amount of memory

used by the list-based method can be estimated as under 100 bytes given that an

entry in the list created by the method averages at nearly 10 bytes. Memory used

by Xen [8] one of the more popular VMM is about 182 megabytes. The amount

of memory used by the list-based method is therefore sufficiently small relative to

Xen. One disadvantage to the trigger-insertion method is the limitation to the

number of triggers. The use of debug registers and the insertion of the INT3 in-

struction are pertinent triggers with the method. Using debug registers is faster

than inserting INT3 instruction. However, the number of debug registers is limited.

For these reasons, we employ the list-based method.

Complicating Process Identification by Replacing Process Information 13

Table 1. Pros and cons of identification methods of next process.

Methods Pros
 Cons

Scanning method
Ease of implementation. Large performance over-

head.

List-based method
Performance overhead is

small.

Total amount of memory

usage increases.

Trigger-insertion

method

Performance overhead is

small.

Number of triggers is lim-

ited.

4.4 Designation of Essential Process

The proposed method requires the Control AP to designate the essential processes

prior to replace their process information. Because of the structure of the pro-

posed method, it is necessary for the administrator of the protection target VM to

provide the essential process information to the administrator of the manager VM

via e-mail, or by other means. The proposed method does not provide a notifica-

tion mechanism because additional interfaces to the VMM must be kept at a min-

imum. Such additions of the VMM interface risk exposing it to vulnerabilities.

Before the program initiates, the administrator for the protection target VM must

provide ether the full path of the essential process’s executable file or a command

name. The administrator of the manager VM takes that information and provides

it in the process information manager. The exchange is implemented with an

event channel a mechanism for VMs to communicate with a Xen hypervisor.

When the process information manager receives the information, it can monitor

the name of the process running on the protection target VM. If it detects that the

process with the designated name is scheduled, the process information manager

replaces the process information of that process on the protection target VM. Be-

cause the procedure for designating essential processes is conducted as described

above, the information must be exchanged before the essential process initializes

on the protection target VM.

4.5 Handling Multi-Core Processors

We shall here assume an environment with multi-core processors. When an essen-

tial process is running on one CPU core, other processes might be running simul-

taneously on the other CPU cores if multiple CPU cores are allocated to a VM. In

this situation, a process running on one CPU core is able to refer to the process

information of essential processes running on other CPU cores because the origi-

nal process information is restored when the process is dispatched.

To address this problem, we prohibit running normal processes while essential

14 Complicating Process Identification by Replacing Process Information

processes are running. This is accomplished by suspending all virtual CPUs ex-

cept the virtual CPU used by an essential process. Therefore, any reference to

essential process information by normal processes is restricted.

5 Evaluation

5.1 Environment for Evaluation

The environment for evaluation is shown in Table 2. We evaluated the proposed

system with an Intel Core i7-2600. The protection target VM is fully virtualized

by Intel VT-x.

Table 2. Environment for evaluation.

VMM Xen 4.2.0

OS (Manager VM) Debian 7.3 (Linux 3.2.0 64-bit)

OS (Protection target VM) Debian 7.3 (Linux 3.2.0 64-bit)

5.2 Purpose and Evaluation Method

The purpose of the evaluation is to confirm effectiveness of the proposed method

to attacks. In our experiment, we examined whether the name of an essential pro-

cess was replaced when the proposed method was applied to the essential pro-

cesses. We assumed the killall command as a tool used by adversaries. The killall

command searches the name of a program from the proc filesystem to determine

the PID of the attack target. In this experiment, we examined whether or not the

original name of the essential process is listed under a ps command. These com-

mands refer to the same information inside a kernel. To evaluate the proposed

method, we assumed syslogd as an essential process and changed its name to

apache2.

5.3 Evaluation Results

On the protection target VM, we listed the names for all processes. The list did

not contain syslogd. Instead, apache2 was listed in its place. This result shows

that the name of the essential process was successfully changed—thus concealing

it. The results also show that adversaries basing their attacks on the process name

can be avoided using the proposed method.

6 Related Work

Some researchers have proposed methods for preventing the illegal alteration of

memory contents [9], [10]. While these researches methods are indeed useful in

preventing attacks, the proposed method avoids them. Even if these methods suc-

Complicating Process Identification by Replacing Process Information 15

ceed in preventing an attack, the existence of essential services is still detectable

to adversaries. When adversaries detect essential services, they can nonetheless

disable them to avoid detection. Because our method complicates process identi-

fication, adversaries will find it difficult to avoid detection by essential services

hidden with the proposed method.

SecVisor employs a similar approach for access control using a hypervisor [11].

While SecVisor protects kernel codes, the proposed method focuses on the data

area of the guest kernel. Our system is similar to the approach found in Sentry

[12]. Sentry protects data inside the user VM by partitioning the data structure of

the kernel. Our method, however, is advantageous in that it does not require any

modification to the data structure.

ANSS [6] is effective for protecting anti-virus software from termination.

ANSS intercepts and monitors some API calls with parameters that will stop or

suspend anti-virus software to filter out malicious calls. Even though ANSS is

effective, it is vulnerable to malware patching SSDT entries. The paper proposing

ANSS stated working with the anti-hooking mechanism is effective. Our method

is tolerant to attacks patching tables in kernel space because the VMM restores

the original process information when essential processes are running. Moreover,

our method has possibilities to avoid unknown attacks as long as they rely on the

process information.

7 Conclusion

We proposed the replacement of process information for essential process with a

VMM to complicate process identification by adversaries. Because adversaries

identify an attack target process with available process information, a replacement

of that process information by our system is effective in avoiding attacks of that

kind. The proposed method is implemented by modifying the VMM and with a

Control AP on the manager VM. Modification to guest OSes and APs on each

VM is unnecessary.

An experiment using a prototype of the proposed system based on the Xen hy-

pervisor showed that an essential process name was successfully replaced with a

dummy name. This result indicates that attacks based on the process name are

avoidable with the proposed method.

Future work shall include the implementation of tan access control function to

the process information, evaluation with real-world malware, and extensive per-

formance analysis of the proposed method.

References

1. F-Secure: Agobot, http://www.f-secure.com/v-descs/agobot.shtml

2. F-Secure: Tornkit, http://www.f-secure.com/v-descs/torn.shtml

3. Packetstorm: dica.tgz, http://packetstormsecurity.com/files/26243/dica.tgz.html

4. Jiang, X., Wang, X. and Xu, D.: Stealthy Malware Detection Through VMM-Based “Out-of-

16 Complicating Process Identification by Replacing Process Information

the-Box” Semantic View Reconstruction, Proc. 14th ACM Conference on Computer and

Communications Security (CCS ’07), pp.128–138 (2007)

5. Riley, R., Jiang, X. and Xu, D.: Guest-Transparent Prevention of Kernel Rootkits with

VMM-Based Memory Shadowing, Lecture Notes in Computer Science, Vol.5230, pp.1–20

(2008)

6. Fu-Hau, H., Min-Hao, W., Chang-Kuo, T., Chi-Hsien, H. and Chieh-Wen, C.: Antivirus

Software Shield Against Antivirus Terminators, IEEE Transactions on Information Forensics

and Security, vol.7, no.5, pp.1439–1447 (2012)

7. Bahram, S.; Xuxian Jiang; Zhi Wang; Grace, M.; Jinku Li; Srinivasan, D.; Junghwan Rhee;

Dongyan Xu: DKSM: Subverting Virtual Machine Introspection for Fun and Profit, 29th

IEEE Symposium on Reliable Distributed Systems, pp.82–91 (2010)

8. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.

and Warfield, A.: Xen and the Art of Virtualization, SIGOPS Opr. Syst. Rev., Vol.37, No.5,

pp.164–177 (2003)

9. Dewan, P., Durham, D., Khosravi, H., Long, M., Nagabhushan, G.: A Hypervisor-Based

System for Protecting Software Runtime Memory and Persistent Storage, Proc. 2008 Spring

Simulation Multiconference (SpringSim’08), pp.828–835 (2008)

10. McCune, J.M., Yanlin, L., Nung Q., Zongwei, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-

sor: Efficient TCB Reduction and Attestation, Proc. 2010 IEEE Symposium on Security and

Privacy, pp.143–158 (2010)

11. Seshadri, A., Luk, M., Qu, N. and Perrig, A.: SecVisor: A Tiny Hypervisor to Provide Life-

time Kernel Code Integrity for Commodity OSes, Proc. 21st ACM SIGOPS Symposium on

Operating System Principles, pp.335–350 (2007)

12. Srivastava, A. and Giffin, J.: Efficient Protection of Kernel Data Structures via Object Parti-

tioning, Proc. 28th Annual Computer Security Application Conference (ACSAC’12),

pp.429–438 (2012)

