
Control Method of Multiple Services for CMP
Based on Continuation Model

Hideaki Moriyama, Toshihiro Yamauchi, and Hideo Taniguchi
Graduate School of Natural Science and Technology, Okayama University

3-1-1 Tsushima-naka, Kitaku, Okayama, 700-8530, Japan

Abstract—In a chip multiprocessor based on the continuation
concept, the hardware scheduler controls threads and achieves
high performance on thread scheduling. However, the priority of
threads is not considered during execution because the hardware
thread scheduler schedules threads in a FIFO manner. Therefore,
when multiple services execute simultaneously, the execution of
each service cannot consider the priority of service. In such a
case, software support is needed to control the execution of each
service. This paper presents a software scheduler for multiple
services that supports the hardware scheduler. In addition, this
paper also reports the evaluation of the software scheduler, which
targets multiple services.

I. INTRODUCTION

With the increase in the use of multi-core processors, the
effective execution of parallel computation in a computer with
multiple cores has become important. However, in parallel
computation that involves a commodity processor and an
operating system, the overheads of the operating system, such
as the system call or context switch, are a major disadvan-
tage [1]. Previously, a study reported a method for parallel
computation by using the data flow machine [2]. By using
this machine, a thread that is in ready state starts executing
sequentially. Therefore, this method helps in achieving fast
parallel computation by reducing the overheads of thread
management. However, it has two disadvantages. First, it is not
possible to control the priority of individual threads precisely.
Second, owing to the type of instruction set architecture, it is
difficult to implement this method.

To solve the abovementioned problems, the concept of
fine-grained multithreading was introduced [3]. This method,
which is based on the data-flow-computation model, achieves
effective parallel execution of the threads. The FUsion of
Communication and Execution (Fuce) processor is devel-
oped as a variant of the chip multiprocessor (CMP) [4]
[5], which has multiple Thread Execution Units (TEUs) and
adapts fine-grained multithreading. Services built on Fuce
are apt to have many threads. An individual thread is al-
lowed to run throughout without any interruption. Fast thread-
synchronization mechanism called continuation is realized
using a hardware scheduler. Therefore, the Fuce processor
achieves high performance with regard to thread scheduling.

Figure 1 shows the concept of continuation. The figure
shows dependence among the four threads A, B, C and D.
Threads B and C need the result of calculation by thread
A. Thread D needs the result of calculation by threads B
and C. For executing these four threads, it is necessary to

Thread A Thread B
Thread C Thread D continuation

Fig. 1. Concept of continuation.

transmit the results of calculation and signals from thread
A to threads B and C, and then from threads B and C to
thread D. On a Fuce processor, this signaling mechanism is
called continuation. In Figure 1, thread A continues to threads
B and C, and threads B and C continue to thread D. The
hardware thread scheduler on the Fuce processor schedules
the threads in a FIFO manner. Therefore, the bare hardware
for thread scheduling is not sufficient to control the priority
of the individual threads precisely. Therefore, on parallel and
concurrent execution of multiple services, the execution of
each service cannot be prioritized.

We proposed a scheduling method that is used by the
software scheduler to control the continuation between threads
[6], and we evaluated the scheduling method for single service
[7]. On evaluation, we found the characteristics of the control
parameters and established the control method. However, to
control the execution of multiple services, it is important to
extend the existing scheduling method.

In this paper, we propose a software scheduler, which helps
in controlling the priority of execution of individual services
on parallel and concurrent execution of multiple services.
First, we propose a scheduling method for multiple services,
which is the extension of [7]. Second, we describe a control
method, which can control the execution of multiple services
on the basis of priority. Finally, we describe the result of
the evaluation of the scheduling method on a Fuce Software
Simulator.

II. CONTINUATION-BASED SCHEDULING

A. Basic Method

Following are the prerequisites for a scheduling method.
1) Processing is performed only by the Processing Units

(PUs).
2) The number of threads that can execute in parallel at

same time N is known.
3) The total number of TEUs, E is known.

yamauchi
タイプライターテキスト
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

softwarescheduler
thread ixthread ixthread ix thread iythread iythread iy

number of the control M�control probability P 1－P
activation period ω

Fig. 2. Basic method of the software scheduler.

0x000200010x00030002���
thread ID pool 1

register_addr cont_addr
service01thRegisterservice01src ID：0x00030002

�11 P−1P
1ω 1M

21 P−2P

2ω
2M

hardwaretimer
thCONTservice01thContservice01dst

0x000400010x00050002���
thread ID pool 2

register_addr cont_addr
service02thRegisterservice02src ID：0x00050002

�service02thContservice02dst

src continues the control probability

src continues the control probability continues threads

continues threads
continues byinterval of

continues byinterval of

continues by interval of 100 clocks

Fig. 3. Processing flow for scheduling two services.

The basic method of scheduling is to control continuation.
Figure 2 shows the basic method of scheduling, and details
are explained below.

1) In continuation from thread xi to thread yi, thread xi

changes destination of continuation to the thread of the
software scheduler with the control probability P .

2) The hardware timer continues the threads from the
software scheduler in an interval of ω clocks, where ω is
called the activation period, and the software scheduler
begins execution.

3) The software scheduler continues M threads; M is the
number of the control.

B. Extension for Multiple Services

According to the basic method shown in Figure 2, we
have described the details of implementation of the scheduling
method for single service in [7]. To control the multiple
services on the basis of priority, in this section, we propose
the scheduling method, which is an extension of the scheduler
for single service.

Figure 3 shows the processing flow for scheduling two
services, and following are the details of this scheduling
process.

1) In each service, the preceding thread (src) changes
the destination thread (dst) of the continuation to the
registration thread (thRegister) of the software scheduler
with the control probability P .

2) thRegister registers the thread ID of dst with the thread
ID pool. By updating the thread ID pool, thRegister
attempts exclusion control if necessary.

3) The hardware timer continues to the continuation thread
(thCont), and thCont starts processing. The interval of
continuation by hardware timer is denoted by ω, which
is the activation period. thCont gets M thread IDs from
the thread ID pool.

4) thCont continues M threads.

III. CONTROL METHOD OF MULTIPLE SERVICES

A. Priority Execution and Even Execution
In the parallel and concurrent execution of multiple services,

a priority is set for each service. The priority of service i is
indicated by pi(1, 2, · · ·, i, · · ·), and the number of services
with priority pi is indicated by mi. If the value of i is small,
then the priority of the service is high. For example, services
with priority pi have higher priority than the services with
priority pi+1.

By controlling the number of TEUs available for services
with high priority, such services can use many TEUs. Thus, it
is possible to run each service on the basis of priority.

By controlling the number of TEUs available for services
with the same priority, it is possible to run such services
evenly.

B. Control Method
The control method requires the settings of the control

parameters to control the execution of multiple services on
the basis of priority. The settings of the control parameters
are described as follows.

1) The value of ω is set to T , and T is the value of the
average execution time of thread. This implies that the
setting ω = T helps in achieving low overhead of the
software scheduler.

2) P is set to 0 for the number of services, m1, with p1.
Setting P = 0 implies that the software scheduler cannot
control the number of TEUs available for these services.

3) If the service satisfies the following definition, then it
implies that the service is not necessary for controlling
execution, and P is set to 0.

E ≥
j∑

i=1

mi × N > E − mj+1 × N (1)

4) In a service with the next priority, the software scheduler
equally controls the TEUs available for each service. If
the following is defined,

Ej =
j∑

i=1

mi × N (2)

then the software scheduler evenly controls the number
of TEUs available in each mj+1 service. The following
definition gives the number of TEUs available for these
services.

E − Ej

mj+1
(3)

1

24

0
10
20

numbe
r of TEU
sused

time

2 10

(A) Ideal.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

time (10,000 clock)

n
u

m
b

e
r

o
f
T

E
U

s
 u

s
e

d

(B) Measurements.

Fig. 4. The number of TEUs used by 2 controlled services (AP1 = AP2).

This is the target value for control of the number of
TEUs used. In order to control the number of TEUs used
by the service to be close to the target value, we use
the result of the evaluation of control for single service.
Then, the average number of TEUs used by the service
is given by the following expression.

Nav =
1

ET

ET∑
t=1

Nt (4)

Here, ET is the execution time of the service, and Nt

is the number of TEUs used by the service in t clocks
(1≤t≤ET). By setting P to 1 and M to an appropriate
value, the software scheduler controls the number of
TEUs used by the service to be close to the target value.

5) In services with priority lower than pk+1, the control
parameters are set to P = 1 and M = 0. Then, the
state of the thread of these services is in waiting for
continuation and cannot begin execution.

When the service with the highest priority finishes execution,
the software scheduler resets the control parameters again.

IV. EVALUATION

A. Target Service

As a target service for evaluation, we used the 10-Queens
Problem Solver, which is a typical example for the evaluation
of thread parallelism. We had described the evaluation of
control of a 10-Queens Problem Solver in [7], and we have
used this result of evaluation in scheduling multiple services.

B. Point of View

In the evaluation, we describe the measurement and also the
case when the software scheduler controls multiple 10-Queens
Problem Solvers on the basis of priority.

Table I shows the combination of the priorities of the
services. Following are the different numbers of services
considered: 2, 3, and 5. In the table, multiple services are
denoted by AP1, AP2, · · ·. The column Priority lists the
magnitudes of priority for each service. The last column of
the table, Setting of the control parameters, lists the settings
of the control parameters on the basis of the priority of each
service.

We evaluate our proposed method on the basis of the
following viewpoints.

1) The total degree of parallelism is lower than E.
2) The total degree of parallelism is higher than E.

a) Each service is executed evenly.
b) A service is given high priority and each service

is executed on the basis of priority.
c) Two services are given high priority and each

service is executed on the basis of priority.
d) More than three services are given high priority and

each service is executed on the basis of priority.

C. Consideration

We used an ordinary PC and installed our in-house Fuce
Software Simulator, which has 24 TEUs. In this section,
we show the number of TEUs used by multiple controlled
services, as shown in Figure 4. In addition, the points shown in
the figure indicates the average number of TEUs used between
10000 clocks. To evaluate the controllability, we considered
a criterion, namely V (S). V (S) is the variance number of
TEUs used, and it indicates the stability of our scheduler. The
following expressions define V (S).

st =
Nt

Nav
(5)

V (S) =
1

ET

ET∑
t=1

(st − s̄)2 (6)

If our scheduler can limit V (S) to a low value, then it implies
that the variance of execution throughput is small, and it
is easy to control execution when many thread groups run
simultaneously.

1) When the total degree of parallelism is lower than
E: Figure 4 shows the evaluation of control for 2 services
(AP1 = AP2), which is indicated by number 1 in Table
I. This evaluation shows the case where the total degree of
parallelism is lower than the total number of TEUs E. The
total degree of parallelism is 2 × 10 = 20, and this value
is lower than E = 24. Therefore, the number of TEUs used
by each service is 10. The average number of used TEUs
is Nav = 9.52, and it is close to the degree of parallelism
N = 10. In addition, V (S) = 0.021.

TABLE I
COMBINATION OF PRIORITIES.

Number # of ser-
vices

Priority Setting of the control parameters

1 2 AP1 = AP2 (default) AP1, AP2:P = 0
2 3 AP1 = AP2 = AP3 (default) AP1 to AP3:P = 0
3 AP1 > AP2 = AP3, (default) AP1:P = 0, AP2, AP3:M = 10(target value is 7, and control

AP1 > AP2 > AP3 Nav = 5.80)
(finished AP1) AP2, AP3:P = 0

4 AP1 = AP2 > AP3 (default) AP1, AP2:P = 0, AP3:M = 6(target value is 4, and control
Nav = 3.58)
(finished AP1, AP2) AP3:P = 0

5 5 AP1 = AP2 = AP3 = AP4 = AP5 (default) AP1 to AP5:P = 0
6 AP1 > AP2 = AP3 = AP4 = AP5 (default) AP1:P = 0, AP2 to AP5:M = 5(target value is 3.5, and control

Nav = 2.98)
(finished AP1) AP2 to AP5:P = 0

7 AP1 = AP2 > AP3 = AP4 = AP5, (default) AP1, AP2:P = 0, AP3 to AP5:M = 2(target value is 2, and
AP1 > AP2 > AP3 = AP4 = AP5 control Nav = 1.23)

(finished AP1, AP2) AP3 to AP5:P = 0
8 AP1 = AP2 = AP3 > AP4 = AP5, (default) AP1 to AP3:P = 0, AP4, AP5:M = 0

AP1 = AP2 = AP3 = AP4 > AP5, (finished AP1 to AP3) AP4, AP5:P = 0
AP1 = AP2 = AP3 > AP4 > AP5

9 AP1 > AP2 = AP3 > AP4 = AP5, (default) AP1:P = 0, AP2, AP3:M = 10(target value is 7, and control
AP1 > AP2 = AP3 > AP4 > AP5 Nav = 5.80), AP4, AP5:M = 0

(finished AP1) AP2, AP3:P = 0, AP4, AP5:M = 3(target value is 2, and
control Nav = 1.82)
(finished AP2, AP3) AP4, AP5:P = 0

10 AP1 > AP2 = AP3 = AP4 > AP5 (default) AP1:P = 0, AP2 to AP4:M = 7(target value is 4.67, and control
Nav = 4.12), AP5:M = 0
(finished AP1) AP2 to AP4:P = 0, AP5:M = 0
(finished AP2 to AP4) AP5:P = 0

11 AP1 = AP2 > AP3 > AP4 = AP5, (default) AP1, AP2:P = 0, AP3:M = 6(target value is 4, and control
AP1 > AP2 > AP3 > AP4 = AP5 Nav = 3.58), AP4, AP5:M = 0

(finished AP1,AP2) AP3:P = 0, AP4, AP5:M = 10(target value is 7,
and control Nav = 5.80)
(finished AP3) AP4, AP5:P = 0

12 AP1 = AP2 > AP3 = AP4 > AP5, (default) AP1, AP2:P = 0, AP3, AP4:M = 3(target value is 2, and control
AP1 > AP2 > AP3 = AP4 > AP5 Nav = 1.82), AP5:M = 0

(finished AP1,AP2) AP3, AP4:P = 0, AP5:M = 6(target value is 4, and
control Nav = 3.58)
(finished AP3,AP4) AP5:P = 0

13 AP1 > AP2 > AP3 > AP4 > AP5, (default) AP1, AP2:P = 0, AP3:M = 6(target value is 4, and control
AP1 = AP2 > AP3 > AP4 > AP5 Nav = 3.58), AP4, AP5:M = 0

(finished AP1,AP2) AP3, AP4:P = 0, AP5:M = 6(target value is 4, and
control Nav = 3.58)
(finished AP3) AP4, AP5:P = 0
(finished AP4) AP5:P = 0

2) When the total degree of parallelism is higher than
E: Here, we consider the case in which the total degree of
parallelism is higher than E. Figure 5 shows the execution
of each of three services (AP1 = AP2 = AP3) evenly,
which is indicated by number 2 in Table I. In addition,
Figure 6 shows the execution of each of the 5 services
(AP1 = AP2 = AP3 = AP4 = AP5) evenly, which is
indicated by number 5 in Table I. We can observe the following
in Figures 5 and 6.

1) By setting P to 0 for mi number of pi services, the
software scheduler can execute each service evenly. In
Figure 5, each of the 3 services uses 8 TEUs, and in
Figure 6, each of the 5 services uses 4.8 TEUs. This
reason is that each service uses the same 10-Queens
Problem Solver.

2) When the total degree of parallelism is higher than
E, V (S) for each service is high. In particular, V (S)

increases with the number of the services. The value of
V (S) for AP1 shown in Figure 5 is 0.025, which is
higher than that shown in Figure 4, which is 0.021. The
value of V (S) for AP1 shown in Figure 6 is 0.112,
which is higher than that shown in Figure 5, which is
0.025.

Next, we consider a case where a service is given high
priority and then each service is executed on the basis of
priority. Figure 7 shows the execution of each of the 3 services
(AP1 > AP2 = AP3) on the basis of priority, which is
indicated by number 3 in Table I. Figure 8 shows the execution
of each 5 services (AP1 > AP2 = AP3 = AP4 = AP5) on
the basis of priority, which is indicated by number 6 in Table
I. We can observe the following in Figures 7 and 8.

3) By setting P = 1 and M to an appropriate value, the
software scheduler can control the number of used TEUs
to be close to the target value. In Figure 7, the target

3
2
10

8
16

824

numbe
r of TEU
sused

time
(A) Ideal.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

time (10,000 clock)

n
u

m
b

e
r

o
f
T

E
U

s
 u

s
e

d

(B) Measurements.

Fig. 5. The number of TEUs used by 3 controlled services (AP1 = AP2 = AP3).

12
34
5

04.89.614.419.2 4.824

numbe
r of TEU
sused

time
(A) Ideal.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350
n
u

m
b
e

r
o

f
T

E
U

s
 u

s
e
d

time (10,000 clock)

(B) Measurements.

Fig. 6. The number of TEUs used by 5 controlled services (AP1 = AP2 = AP3 = AP4 = AP5).

10
10
17 2

3

2
3

10

7
10

24

numbe
r of TEU
sused

time
(A) Ideal.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

n
u

m
b
e

r
o

f
T

E
U

s
 u

s
e
d

time (10,000 clock)

(B) Measurements.

Fig. 7. The number of TEUs used by 3 controlled services (AP1 > AP2 = AP3).

value of AP2 and AP3 is 7 while executing AP1.
By controlling the scheduling method, these services
execute with Nav = 5.80, which is close to the target
value of 7. Then, the number of the control M is
set to 10 for AP2 and AP3. In Figure 8, the target
value of AP2 to AP5 is 3.5 while executing AP1.
By controlling the scheduling method, these services
execute with Nav = 2.98, which is close to the target
value 3.5. Then M is set to 5 for AP2 to AP5.

4) Values of V (S) for AP1 is 0.112 and 0.036 in Figures
7 and 8, respectively. This implies that the number of

TEUs used by a service of high priority is not limited
by other services.

We consider the case in which 2 services are given high
priority and each service is executed on the basis of priority.
Figure 9 shows the execution of each of 3 services (AP1 =
AP2 > AP3) on the basis of priority, which is indicated by
number 4 in Table I. Figure 10 shows the execution of each
of the 5 services (AP1 = AP2 > AP3 = AP4 = AP5) on
the basis of priority, which is indicated by number 7 in Table
I. We can observe the following in Figures 9 and 10.

5) For the case in which 2 services are given high priority

0 1
2
5
34

3.5

101013.517
20.5

2
3
4
5 624

numbe
r of TEU
sused

time
(A) Ideal.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

n
u

m
b
e

r
o

f
T

E
U

s
 u

s
e
d

time (10,000 clock)

(B) Measurements.

Fig. 8. The number of TEUs used by 5 controlled services (AP1 > AP2 = AP3 = AP4 = AP5).

10
10
20

2
3

10
3

4

10

24

numbe
r of TEU
sused

time
(A) Ideal.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350
n
u

m
b
e

r
o

f
T

E
U

s
 u

s
e
d

time (10,000 clock)

(B) Measurements.

Fig. 9. The number of TEUs used by 3 controlled services (AP1 = AP2 > AP3).

10
10
20

210 345
1.33

3
4
5 824

numbe
r of TEU
sused

time
(A) Ideal.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

n
u

m
b
e

r
o

f
T

E
U

s
 u

s
e
d

time (10,000 clock)

(B) Measurements.

Fig. 10. The number of TEUs used by 5 controlled services (AP1 = AP2 > AP3 = AP4 = AP5).

and each service is executed on basis of priority, the
number of TEUs used by the service of high priority
is not limited by other services. In Figure 9, AP1 and
AP2 are the services with high priority. Nav of AP1 is
9.44 and that of AP2 is 9.37; these results imply that
the service with high priority can execute with a degree
of parallelism of approximately 10. In addition, V (S)
of AP1 is 0.025 and AP2 is 0.030, and both of these
values are small.

Finally, we consider the case in which more than 3 services
are given high priority and each service is executed on the
basis of priority. Figure 11 shows the execution of each of the
5 services (AP1 > AP2 > AP3 > AP4 > AP5) on the
basis of priority, which is indicated by number 13 in Table I.
We can observe the following in Figure 11.

6) In this figure, the scheduling method can control the
execution of 5 services on basis of priority.

5

10
10
20

2
3

10
4

3
4

4
5

5

24

numbe
r of TEU
sused

time
(A) Ideal.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

n
u

m
b
e

r
o

f
T

E
U

s
 u

s
e
d

time (10,000 clock)

(B) Measurements.

Fig. 11. The number of TEUs used by 5 controlled services (AP1 > AP2 > AP3 > AP4 > AP5).

V. RELATED WORK

Scheduling Support Hardware (SSH) [8] is realized as dedi-
cated hardware that performs task scheduling. In addition, SSH
was adapted to Linux and evaluated [9]. In this evaluation,
the risk was described that adapting the fine-grained parallel-
computation model to a general-purpose operating system such
as Linux causes an increase in the overhead of a context
switch. As the Fuce processor has preload units that enable to
perform a lookahead, it can reduce the overhead of the context
switch.

In the execution of multiple services, gang scheduling
[10][11] is an effective scheduling method in case the number
of threads executing at the same time is larger than the number
of TEUs. However, in the execution of multiple services, when
the number of threads in a single service is less than the
number of TEUs, gang scheduling cannot use TEUs effectively
because occupying all the TEUs by single service in time
slice causes wastage of the use of TEUs. We considered this
viewpoint and designed our scheduling method to prevent this
wastage.

VI. CONCLUSION

We proposed and evaluated a method for CMP-oriented
thread scheduling based on the continuation model. The goal
of the scheduling method is to limit the number of TEUs used
by each service and control the execution of each service
on the basis of priority. According to the priority of each
service, the software scheduler sets the control probability P ,
the activation period ω, and the number of the control M .

In evaluation, we showed the results of the measurement and
also controlled the execution of multiple 10-Queens Problem
Solvers on the basis of priority of each service. We evaluated
the scheduler from the viewpoint of the following cases: when
the total degree of parallelism is lower than the total number
of TEUs; when each service is executed evenly; and when
one, two, or more than two services are given high priority
and each service is executed on the basis of priority. In this
evaluation, we showed that our scheduling method can control
the execution of services on the basis of priority, and the

service with high priority does not limit the number of TEUs
used by the execution of a service with a low priority.

REFERENCES

[1] Shigeru Kusakabe, Yoshinari Nomura, Hideo Taniguchi, and Makoto
Amamiya, “Wrapped System-Call: Cooperating Interactions between
User and Kernel Mode in an Operating System for Fine-Grain Multi-
Threading, ” Proc. of the 21st IASTED International Multi-Conference
on Applied Informatics, pp.656-661, 2003.

[2] Ben Lee, A.R.Hurson, “Dataflow Architectures and Multithreading, ”
IEEE COMPUTER, vol.27, no.8, pp.27-39, 1994.

[3] Shigeru Kusakabe, Satoshi Yamada, Mitsuhiro Aono, Masaaki Izumi,
Satoshi Amamiya, Yoshinari Nomura, Hideo Taniguchi, and Makoto
Amamiya, “OS Mechanism for Continuation-based Fine-grained Threads
on Dedicated and Commodity Processors, ” Proc. of Workshop on Multi-
Threaded Architectures and Applications, published in CD, 2007.

[4] Makoto Amamiya, Hideo Taniguchi, and Takanori Matsuzaki, “An ar-
chitecture of fusing communication and execution for global distributed
processing,” Parallel Processing Letters, vol.11, no.1, pp.7-24, 2001.

[5] Takanori Matsuzaki, Satoshi Amamiya, Masaaki Izumi, and Makoto
Amamiya, “A Multi-thread Processor Architecture Based on the Continu-
ation Model,” Proc. of 8th Innovative Architecture for Future Generation
High-Performance Processors and Systems (IWIA05), pp.83-90, 2005.

[6] Hideaki Moriyama, Yoshinari Nomura, and Hideo Taniguchi, “A Method
for CMP-oriented Thread Scheduling Based on Continuation Model,”
Proc. of the 2009 2nd International Conference on Computer Science
and its Applications (CSA2009), vol.2, pp.697-702, 2009.

[7] Hideaki Moriyama, Yoshinari Nomura, and Hideo Taniguchi, “Evaluation
of the S/W Scheduler for CMP Based on Continuation Model,” IPSJ SIG
Technical Report, vol.110, no.278, pp.11-16, 2010, (in Japanese).

[8] Takahiro Sasaki, Tetsuo Hironaka, Naoki Nishimura, and Seiji Fujino,
“Microprocessor LSI with Scheduling Support Hardware for Operating
System on Multiprocssor System, ” The 6th Asia Pacific Conference on
cHip Design Languages(APCHDL’99), pp.67-72, 1999.

[9] Kazuki Ohara, Takahiro Sasaki, Kazuhiko Ohno, Toshio Kondo, “Ac-
celeration for fine grained parallel processing on Linux with hardware
scheduler,” IPSJ SIG Technical Report, 2006-ARC-170, vol.2006, no.127,
pp.25-30, 2006, (in Japanese).

[10] D.G. Feitelson and L. Rudolph, “Gang Scheduling Performance Benefits
for Fine Grain Synchronization,” Journal of Parallel and Distributed
Computing, vol.16, no.4, pp.306-318, 1992.

[11] A. Gupta, A. Tucker, and Shigeru Urushibara, “The Impact of Oper-
ating System Scheduling Policies and Synchronization Methods on the
Performance of Parallel Applications,” ACM SIGMETRICS, pp.120-132,
1991.

