
I/O Buffer Cache Mechanism Based on the Frequency of File Usage

Tatsuya Katakami Toshihiro Tabata and Hideo Taniguchi
Graduate School of Natural Science and Technology, Okayama University
katakami@swlab.cs.okayama-u.ac.jp, {tabata, tani}@cs.okayama-u.ac.jp

Abstract

Most operating systems manage buffer caches for
buffering I/O blocks, because I/O processing is slower
than CPU processing. Application programs request
I/O processing from files. In order to improve the
performance of I/O processing, a buffer cache should
be managed with regard to both blocks and files. This
paper proposes an I/O buffer cache mechanism based
on the frequency of file usage. This mechanism
calculates the importance of each file. Then, blocks of
important files are stored in a protected space. The
blocks stored in the protected space are given priority
for caching. We evaluated the proposed mechanism by
kernel make processing. The results show that the
proposed mechanism improves the processing time by
18 s (5.7%) as compared to the LRU algorithm.

1. Introduction

Buffer cache management is an important function
of the Operating System (OS). In many existing OSs,
the buffer cache is managed by a block unit, and the
Least Recently Used (LRU) algorithm is employed for
replacing blocks.

Block replacement schemes are roughly classified
into three categories: (1) a block is replaced on the
basis of the reference order or reference frequency;
block replacement algorithms such as the LRU, FIFO,
LFU, FBR [1], LRU-k [2], IRG [3], and Aging
algorithms are employed. (2) a block is replaced on the
basis of a block reference pattern offered beforehand
by a user; algorithms such as ACFC [4] and UBM [5]
are employed. (3) a block is replaced on the basis of
the regularity of the reference; algorithms such as 2Q
[6], SEQ [7], and EELRU [8] are employed. These
schemes are employed on the basis of the access to a
block; further, they are independent of the information
in the file.

Application Programs (APs) request I/O as a unit of
file. In addition, the usage of files depends on the AP.
The reference frequency and the tendency of I/O are
different for every file. Furthermore, several APs are
executed on the OS. For every AP, the reference

frequency of a file and the tendencies of I/O for the
same file are different. The I/O processing is
significantly slow in comparison to CPU processing.
Therefore, a buffer cache mechanism that reduces the
gap between I/O and CPU processing is necessary for
executing I/O processing efficiently.

This paper proposes a mechanism for managing a
buffer cache on the basis of the frequency of file usage.
The proposed system collects file system state
information, frequency of usage of the file in the past,
and the size of the file. The information collected is
called as File Management Information (FMI).
According to FMI, the importance of files is
determined. A block constituting a file of high
importance is stored in a protected space. When a
block is replaced, the buffer cache mechanism
performs block replacement on the basis of the
importance of the files. The I/O performance of the AP
is improved by storing blocks in the protected space.

2. Buffer Cache Mechanism Based on the
Frequency of File Usage

2.1 Design

Figure 1 shows the design of the buffer cache
mechanism based on the frequency of file usage. The
proposed mechanism divides the buffer cache into a
protected space and normal space. When system calls

A blockSearch
importance

Judgment
results

Protected space

Normal space

Buffer cache

If not important・

・

・

・

・

・

IJT

・

・

・

・

・

・

Open or close system call

Collect FMI

Update IJT and
calculate importance

Log information table

If important

Read or write system call

Fig. 1 Design of the proposed I/O buffer cache
mechanism

 1

yamauchi
タイプライターテキスト
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

such as open and close are requested, the cache
mechanism collects FMI and stores it in a log
information table. The importance of every file is
calculated on the basis of the data in the log
information table, and the Importance Judgment Table
(IJT) is updated. During the process of reading a block
into the cache, the buffer cache is managed on the basis
of importance of the files. The buffer cache is managed
according to the following steps:
(1) During the process of reading a block into the

cache, the replacement block is selected from
among those stored in the normal space, by using
the LRU algorithm. If the normal space does not
have any block, the least important file stored in
the protected space is selected, and all blocks that
constitute the file are transferred to the normal
space. Further, the replacement block is selected
from among those stored in the normal space, by
using the LRU algorithm.

(2) When block reading is completed, the cache
mechanism judges whether or not the file of the
read block is important. If the file is important,
the block is stored in the protected space;
otherwise, the block is stored in the normal space.

2.2 Concept of Importance

Importance is a parameter or value that is used to
decide whether or not a file in a read block must be
stored in the protected space or normal space. This
parameter is calculated on the basis of information
requested by the open or close system calls in the past.
Furthermore, this parameter predicts file access in the
future. The concept of Importance is employed for two
purposes.
(1) A file to be reused many times is provided high

importance.
(2) A large file is provided low importance in order to

prevent the buffer cache from being occupied by a
single file.

2.3 Problems

A calculation policy by which the AP can express
the possibility of file reuse is necessary. In addition,
the buffer cache mechanism must collect suitable FMI
in order to improve the cache hit rate according to the
importance of files. A method for the updation of the
IJT must be developed in order to suitably reflect the
FMI. The proposed cache mechanism faces three
challenges.
(1) Calculation policy for file importance
(2) FMI
(3) Method for the updation of the IJT

The solutions to these problems are provided in
section 2.4.

2.4 Solutions

2.4.1 Calculation Policy for File Importance

Information for Calculation of File Importance

To realize the purpose of calculating file importance,
as mentioned in section 2.2, the proposed cache
mechanism employs the following parameters for the
calculation of file importance:
(1) Reference counter
(2) Open frequency
(3) File size

The reference counter indicates the number of
processes accessing the file. It shows the current state
of a file reference. Hence, if the reference counter of
the file is high, the probability of immediate file reuse
is high.

The Open frequency indicates the number of times
the open system call is requested. There exists an
important correlation between the reading frequency of
a file and the open frequency of the same file; this is
because in the existing file system, a file is opened
before it is read. Further, it is considered that the
probability of reopening a file, which was opened
frequently in the past, in the future is considerably
high.

The file size indicates the size of an opened or
closed file. When a large file is read, the buffer cache
may be occupied by a single file. This reduces the
cache hit rate. Further, the size of a file that is opened
frequently is comparatively small [9]. For the
abovementioned reasons, the cache mechanism
calculates the file size for the calculation of file
importance.

Calculation of File Importance

Among the three parameters mentioned above, the
reference counter indicates the state of the opened file.
It is assumed that a high reference counter is more read
than a high open frequency. The file size is used for the
calculation of file importance in order to manage the
buffer cache. These parameters do not have a direct
relationship with the possibility of file reuse in the
future. Therefore, the following formula is used for the
calculation of file importance by considering the
possibility of file reuse in the future.

(Reference counter > Open frequency > File size)

 2

2.4.2 FMI

File management information requires the reference
counter, open frequency and file size, which are
necessary for the calculation of file importance.
Furthermore, FMI requires an inode number to specify
a file. In addition, when two files have the same
importance, the files are prioritized according to time.
According to the proposed mechanism, the most recent
open time is required because the open frequency is
used for the calculation of file importance.

The FMI possesses the information required for the
calculation of file importance, inode number, and the
most recent open time.

2.4.3 Method of Updation of the IJT

Opportunity to Update the IJT

The open or close states of a file changes
continuously. Information is not stored in the log
information table, but the IJT is updated. The overhead
related to the I/O processing is high. Further, the IJT
cannot reflect the FMI adequately unless it is updated
with the frequent opening of closing of a file.
Therefore, an updation of the IJT should link the
frequency at which the file is opened or closed. The
IJT must be updated when a file is opened or closed at
a constant frequency after the most recent updation of
the IJT.

The log information table overflows before the
updation of the IJT if the information table has a fixed
size. Therefore, when the FMI is stored in the log
information table, the IJT is updated.

Method of Updation of the IJT
The open frequency represents old information and
new information equally. To reflect recent open
processing in importance more greatly, old information
has lower influence. Figure 2 shows the method of
updation by using the decrease function. When the IJT
is updated, the cache mechanism calls the decrease

function and decreases the influence of old
information.

2.5 Prospective Effect

(1) Improving the I/O performance of APs

By using buffer cache management mechanisms
that improve the I/O behavior and performance of
the AP.

(2) Restraining a current process form using large
files
According to the LRU algorithm, when a large
file is read, the buffer cache is filled up by blocks
that constitute the file, and the blocks used for the
current process are freed from the buffer cache.
According to the proposed mechanism, filling up
the buffer cache by using a file is restrained by its
size. This prevents a decrement in the
performance of the current process.

(3) Restraining the execution of backup processing in
a current process
In backup processing, files are opened only once.
For backup processing, the I/O processing load is
extremely heavy. According to the LRU
algorithm, when backup processing is executed in
a current process, the buffer cache is filled up by
blocks that constitute the backup file, and blocks
used by the current process are freed from the
buffer cache. According to the proposed
mechanism, the blocks used for the current
process are protected because the importance of a
file opened only once is low. Further, this
restrains the decrement in performance of the
current process.

Info

(i – 2)

Info

(i – 1)

Info

(i)

IJT = w(Info(i)) +

w(w(Info(i))) +

w(w(w(Info(i)))) +

…

When opportunity comes,
the mechanism reduces
open frequency by weight

period iperiod i - 1period i - 2

Weight
w

Weight
w

Weight
w

Weight
w

Fig. 2 Method of Updation by using the
decrease function

Open or close system call

Registration method

Method to update IJT

Method of
freeing buffer

Method of buffer allocation

Block read

Requirement of block read

Open or close system call Read or write system call

Protected
space

Normal
space

Judgment method to
update IJT

Method to
decide importance

Buffer cache

Log information
table

IJT

Sort IJT

(1)

(2)

(3)

(4)

(5)

(6)

Update

Reference

Update and
reference

Processing flow

Read or write system call

Fig. 3 Process flow

 3

3. Implementation

3.1 Process Flow

Figure 3 shows the process flow of the proposed
mechanism. The open, close, read, and write system
calls are requested in the proposed cache mechanism.
The open and close system calls correspond to
opportunities for collecting FMI. The read and write
system calls correspond to opportunities for managing
the buffer cache.

When the open or close system call is requested, (1)
the mechanism collects the FMI and stores it in the log
information table by using a registration method.
Subsequently, (2) a judgment method is employed to
update the IJT; if the IJT is not to be updated, the
mechanism returns to the open or close system call.
However, if the IJT is to be updated, (3) the IJT is
updated by employing the abovementioned method of
updation of the IJT. After updating the IJT, (4) the
cache mechanism calculates the file importance and
sorts the IJT with respect to the order of file
importance order and then returns to the open or close
system call.
When the read or write system call is requested along
with the demand for reading a block, (5) the cache
mechanism selects a block stored in the normal space,
by using the LRU algorithm. Then, the block is freed
by freeing the buffer. If there exists no block in the
normal space, blocks that constitute the least important
file are transferred to the normal space. Subsequently,
a block is selected in the normal space by using the
LRU algorithm, and the block is freed by freeing the
buffer. When a block is read, buffer allocation is
decided according to the buffer allocation method.
Subsequently, if the importance of a file that is
constituted by read blocks is high, the block is stored
in the protected space. Otherwise, the block is stored in
the normal space. Finally, the cache mechanism returns
to the read or write system calls.

3.2 Design of Each Process

3.2.1 Registration Method

In the registration method, the FMI is collected and
registered in the log information table. When the FMI
of file concerned is already registered in the log
information table, the mechanism updates the FMI.
Table 1 shows the FMI and updation of information in
there registration method.

The reference counter is registered or updated when
a file is opened or closed because the reference counter
indicates whether or not a file is opened. The open
frequency is registered or updated when a file is
opened. Because the file size indicates the size of the
current file, it is registered or updated when a file is
opened or closed. The inode number does not change
after a file is created. Hence, the inode number is
registered when a new file is created, and the inode
number is not updated. The most recent open time is
registered or updated when a file is opened.

3.2.2 Judgment Method for the Updation of the IJT

In the judgment method employed for updating the
IJT, the cache mechanism judges whether or not to
update the IJT on the basis of the opportunities
available for updation, as described in section 2.4.3.

If the cache mechanism detects an opportunity to
update the IJT, it shifts to the method of updation of

start

end

Reduce influence of old information by
decrease function

Open frequency<Ud
and

Reference counter=0

Remove the entry from IJT and
move the blocks related with
the entry to normal space

Search an entry
from IJT

Choose an entry

No

Yes

Yes

No

Fmax – Fn > Nd

Yes

No

(1)

(2)

(3)

(5)

(4)

Fig. 4 Method of Updation of the IJT

ImportanceLast open timeInode numberFile sizeOpen frequencyReference counter

・

・

・

ImportanceLast open timeInode numberFile sizeOpen frequencyReference counter

・

・

・

Fig. 5 Importance of the Judgment Table

Table.1 Registration or updation of information
in the registration method
Information Registration or update opportunity
Reference counter When file is opened or closed
Open frequency When file is opened
File size When file is opened or closed
inode number When new file is made
Last open time When file is opened

 4

the IJT; otherwise, it returns to the open or close
system calls.

3.2.3 Method of Updation of the IJT

For updating the IJT, the cache mechanism updates
the IJT on the basis of the method described in section
2.4.3. Figure 4 shows the flowchart of the method of
updation of the IJT, and Figure 5 shows the IJT.

In Figure 4, Fn denotes the number of stored entries
in the IJT, and Fmax denotes the size of the IJT. For
updating the IJT, (1) the influence of old information is
reduced by using the decrease function, (2) an entry is
searched, and (3) it is judged whether or not the open
frequency of an entry is less than the threshold Ud and
whether or not the reference counter is 0. If the third
condition is not satisfied, the next entry is searched. If
the third condition is satisfied, (4) the entry is removed
from the IJT and blocks transferred from the protected
space to the normal space are removed. This prevents
reduction in the cache hit rate by protecting the blocks
related to entries deleted by the IJT. When all entries
have been searched, the cache mechanism judges
whether or not the number of entries not used in the
IJT exceeds the threshold Nd. If the number of entries
not used in the IJT exceeds the Nd, the cache
mechanism terminates the updation of the IJT.
Otherwise, the mechanism executes the processes
(1)-(4) repeatedly until the number of entries not used
in the IJT exceeds the Nd.

In Figure 5, the entry in the IJT requires FMI and
the file importance in order to manage the buffer cache.
Therefore, we define that an entry in the IJT possesses
the FMI and file importance.

3.2.4 Method to Decide Importance

The cache mechanism employed for deciding file
importance calculates the importance for all the entries

in the IJT on the basis of the calculation policy for file
importance, as described in section 2.4.1.

3.2.5 Method of Freeing the Buffer

Figure 6 shows a flowchart of the method of freeing
the buffer. According to this mechanism, a block is
freed from the buffer cache in order to read a new
block. Further, if there exists a block in the normal
space, it is freed from the normal space. Otherwise, the
least important file is selected from the IJT. If there
exist some blocks that constitute a file in the protected
space, all the blocks are transferred to the normal space,
and one of the blocks is freed. If there exists no block
constituting the file, the subsequent least important file
is selected from the IJT, and the abovementioned
processes are repeated.

3.2.6 Method of Buffer Allocation

In the buffer allocation method, the cache
mechanism decides whether or not the read block must
be allocated in the protected space or in the normal
space on the basis of the file importance. If the file that
constitutes the read block is important, the block is
allocated to the protected space. Otherwise, the block
is allocated to the normal space. The cache mechanism
requires a criterion to judge whether or not the file that
constitutes the read block is important.

The file importance calculated by using the FMI
changes significantly during AP processing because
the FMI changes significantly. Therefore, if we define
the least number to file importance, the cache
mechanism cannot sufficiently adapt to changes in file
importance. Therefore, in the proposed mechanism, we
create files Fv according to the order of importance in
the IJT.

4. Evaluation

4.1 Environment

We implement the proposed mechanism to FreeBSD
4.3-RELEASE. We measured the time required to
execute “make” of kernel and compared it with that
required for the LRU algorithm. The components used
for the evaluation are mentioned below.
(1) CPU: Pentium4 (1.95 GHz）
(2) Memory: 512 MB
(3) Buffer cache size: 3.0 MB

To highlight the effect of the proposed mechanism,
when a block was not found in the buffer cache, we
invalidated a function to search for the block in the
VMIO cache.

start

Are there any Blocks
in normal space?

Choose a block from normal
space and free the block

Choose the least important file from IJT

Are there any blocks
constituting the file?

Move all the blocks to
normal space

end

Yes

No

Yes

No

Choose the next
least important file

Fig. 6 Flowchart of the method of freeing the buffer

 5

4.2 Formula and Threshold

Equation (1) shows a formula for calculating the
importance based on the calculation policy for file
importance described in section 2.4.1.

In equation (1), I denotes the importance; Nopen, the
open frequency; Fnum, the reference counter; k, a fixed
number; Fsize, the file size; and Bsize, the size of a single
block.

1+







×+

=

size

size

numopen

B
F

kFN
I

 Equation (1)

In equation (1), considering a difference in the
influence of open frequency and reference counter, we
use a fixed number k. In our evaluation, we define k =
10.

openopen NDecNw ×=)(Equation (2)
Equation (2) shows a decrease function w that we

described in section 2.4.3. In equation (2), Nopen
denotes the open frequency, and Dec denotes the
weight.

The threshold values are mentioned below.
(1) Rc: Opportunity of recalculating the importance
(2) Fv: Maximum number of important files
(3) Fmax: Maximum number of files in IJT
(4) Nd: When the number of the files in IJT is Fmax, the
mechanism deletes Nd files from IJT
(5) Ud: In the method of updation of the IJT, the FMI
whose open frequency is less than Nd are deleted

4.3 Results

4.3.1 Effects of the opportunity of recalculating the
importance

Figure 7 shows the effect of recalculating the file
importance with respect to the processing time. For
this measurement, we define Fv = 128, Fmax = 512, Nd =
1, and Ud = 0. From Figure 7, we assume the following
points:
(1) For any weight, Rc, if the value of Rc is too small,

the cache mechanism can collect little FMI in a
single opportunity, and the precision of
importance deteriorates. If Rc is too big, the
mechanism cannot adapt well to the file opening
or closing because the file importance is not
frequently updated.

(2) The weight corresponds to the shortest processing
time. If weight is too large, the IJT contains
mainly old information, and it is difficult to judge
whether or not new information is important. If the
weight is too small, the IJT contains only new

information, and the mechanism cannot predict the
opening and closing of file in the long term.

4.3.2 Effects of the maximum number of important
files

Figure 8 shows the effects of the maximum number

of important files with respect to the processing time.
In this measurement, we define Fmax = 512, Nd = 1 and
Ud = 0. Further, Rc = 2500 because the processing time
is the shortest when the weight is 0.3 in the
measurement shown in Figure 7. From Figure 8, we
assume the following points:
(1) If Fv is greater than 128, the processing time

changes slightly. All the blocks stored in the
buffer cache are protected, if Fv is greater than
128.

(2) If the weight is 0.3 and Fv is 256, the cache
mechanism shortens the processing time by 18 s
(5.7%). From this result, the proposed mechanism

290

300

310

320

330

340

350

360

370

32 64 128 256 384 512

F v（the number of important file）

Pr
oc

es
si

ng
 ti

m
e(

s)

Weight 0.1

Weight 0.3

Weight 0.6

Weight 0.9

LRU

Fig. 8 Effects of the maximum number of
important files with respect to the processing
time

290

300

310

320

330

340

350

360

370

500 1500 2500 5000

R c（times）

P
ro

ce
ss

in
g

ti
m

e(
s)

Waight 0.1

Weight 0.3

Weight 0.6

Weight 0.9

LRU

Fig. 7 Effect of the opportunity of recalculating
the importance with respect to the processing
time

 6

improves the processing performance as compared
to the LRU algorithm.

5. Conclusion

This paper proposed a buffer cache mechanism that
is based on the frequency of file usage. In the proposed
mechanism, the buffer cache is divided into a protected
space and normal space. The proposed mechanism
collects File Management Information from open and
close system calls, calculates the importance from the
File Management Information, and updates the IJT.
The importance is calculated from the reference
counter, open frequency, and file size. During the
process of reading a block, the buffer cache is managed
on the basis of importance.

We implemented the proposed mechanism to
FreeBSD 4.3-RELEASE and evaluated the processing
of the kernel. The results indicate that the proposed
mechanism improves the processing time by 18 s
(5.7%) as compared to the LRU algorithm.

In future studies, we plan to evaluate several APs
by using the proposed mechanism.

References

[1] J.T. Robinson and M.V. Devarakonda, “Data

Cache Management Using Frequency-Based
Replacement,” Proc. the 1990 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp.134-142,
1990.

[2] E.J. O’Neil, P.E. O’Neil, and G. Weikum, “The
LRU-k Page Replacement Algorithm for
Database Disk Buffering,” Proc. the 1993 ACM
SIGMOD Conference, pp.297-306, 1993.

[3] V. Phalke and B. Gopinath, “An Inter-Reference
Gap Model for Temporal Locality in Program
Behavior,” Proc. the USENIX Summer 1994
Technical Conference, pp.291-300, 1995.

[4] P. Cao, E.W. Falten and K. Li,
“Application-Controlled File Caching Policies,”
Proc. the USENIX Summer 1994 Technical
Conference, pp.171-182, 1994.

[5] J.M. Kim, J. Choi, J. Kim and S.H. Noh, “A
Low-Overhead High-Performance Unified Buffer
Management Scheme that Exploits Sequential and
Looping References,” Proc. 4th Symposium on
Operating System Design and Implementation
(OSDI 2000), pp.119-134, 2000.

[6] T. Johnson and D. Shasha, “2Q: A Low Overhead
High Performance Buffer Management
Replacement Algorithm,” Proc. the 20th

International Conference on Very Large
Databases, pp.297-306, 1993.

[7] G. Glass and P. Cao, “Adaptive Page
Replacement Based on Memory Reference
Behavior,” Proc. the 1997 ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, pp.115-126, 1997.

[8] Y. Smaragdakis, S. Kaplan, and P. Wilson,
“EELRU: Simple and Effective Adaptive Page
Replacement,” Proc. the 1999 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp.122-133,
1999.

[9] J.K. Ousterhout, H.D. Costa, D. Harrison, J.A.
Kunze, M. Kupfer and J.G. Thompson, “A
Trace-Driven Analysis of the UNIX 4.2 BSD File
System,” Proc. the 10th Symposium on Operating
System Principles, pp.15-24, 1985.

 7

