© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Attacker Investigation System Triggered by
Information Leakage

Yuta Ikegami, Toshihiro Yamauchi
Graduate School of Natural Science and Technology
Okayama University
Okayama, Japan 700-8530
Email: yamauchi@cs.okayama-u.ac.jp

Abstract—While a considerable amount of research has been
devoted to preventing leakage of classified information, little
attention has been paid to identifying attackers who steal informa-
tion. If attackers can be identified, more precise countermeasures
can be taken. In this paper, we propose an attacker investigation
system that focuses on information leakage. The system traces
classified information in a computer and substitutes it with
dummy data, which is then sent to the outside. Moreover, a
program embedded in the dummy data transmits information
back from the attacker’s computer to a pre-specified system for
investigation. Information about the attacker can be obtained by
an attacker executing the program.

Keywords—Attacker investigation, Information leakage, Oper-
ating system.

I. INTRODUCTION

Cyber attacks aiming to steal classified information have
emerged as a major challenge to online security in recent years
[1]. It is difficult to completely prevent attacks on a computer
because methods of cyber attacks are becoming increasingly
sophisticated. Thus, research has been conducted on preventing
the leakage of classified information [2]-[5]. However, few
studies have investigated the possibility of identifying the at-
tacker attempting to steal information. Identifying the attacker
allows for offensive control measures against a new attack and
punitive legal action against the attacker. CrowdStrike [6] and
Junos WebApp Secure [7] have been proposed as services that
can help identify attackers. However, both require malware
analysis or a large database a huge quantity of attackers. One
proposed method of attacker identification involves obtaining
an attacker’s information by transmitting spyware to his/her
computer [8]. However, spyware is not send into an attacker
because forbidden low.

In order to handle the above problems, we propose in this
paper a system that can identify an attacker attempting to
access classified information. We also implement and test this
system on a Linux operating system (OS). In our system, the
file containing classified information is registered as classified
information into the computer is traced. When the file is
transmitted to the outside of a computer, it is substituted with
dummy data, thereby preventing classified information from
leaking. Moreover, the file contains an embedded program
(exploration program) that collects and sends information
regarding the computer to which the attacker has transferred
the file. Using this information, our system can obtain the at-
tacker’s information. Because the proposed system can replace

classified information with what kind of dummy data, it can
obtain information of attacker in response to purpose.

The contributions of this paper are as follows:

e We propose a system that can procure the information
of attackers attempting to steal valuable classified
information.

e QOur system prevents leaking of confidential informa-
tion.

II. RELATED WORK
A. Identifying and investigating attackers

Among other security-related services, CrowdStrike [6] can
specify an attacker service which analysis of malware, and
explorer damaging computer. In analyzing malware, we can
investigate the programming language used, the server that
communicates with the malware, the malware ~ s communi-
cation information, etc.

Junos WebApp Secure [7] is a product that can detect
an attack on a website or a web application. It transmits a
token to the attacker when insertion of unjust code to input
form is detected. This token is permanently saved in the
attacker’s computer, and subsequent attempted attacks from the
computer can be detected by checking the token. Moreover, it
obtains approximately 200 items of information regarding the
attacker’s computer, such as the version of his/her browser,
add-ons, the attacker’s Internet Protocol (IP) address, time
zZone, etc.

By Honeyfiles [9], if dummy data (passwords.txt etc.)
which pulls an attacker’s interest is installed on a file server,
it will be detected as being attacked.

B. Problems with existing methods

One or more of the following problems exist in the research
described so far:

1) Leaks of classified information cannot be prevented.
2) The malware used for attacks is needed for analysis.
3) Identifying attackers takes time.

4) Attacker identification is impossible.

Because Cloudstrike [6] specifies an attacker following an
attack, it permits the theft of classified information. Moreover,
it is difficult to identify attackers when the malware used

yamauchi
タイプライターテキスト
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

cannot be obtained, and the identification is time consuming.
Similarly, Junos WebApp Secure [7] cannot specify an attacker
when attacked from a third-party computer.

Honyefiles [9] only detects dummy data, and cannot pre-
vent leakage of classified information. Moreover, it remains
only in offensive detection and has not up to specified attacker.

III. SYSTEM DESIGN
A. System Requirement

In this section, we describe our proposed system to solve
the aforementioned problems. To address problem 1 mentioned
above, classified information in a computer is supervised. It is
effective not to leak and to detect transmission of the classified
information to the outside of a computer to supervise. To solve
problems 2, 3, and 4, we devise an exploration program for the
attacker’s computer. However, the exploration program cannot
legally be transmitted pre-emptively to the attacker’s computer.
For this reason, it is necessary to execute the attacker itself by
making an exploration program.

The requirements of our proposed system are as follows:

1) It keeps track of and prevents leakage of classified
information in a computer.

2) The attacker itself runs an exploration program on an
attacker’s computer.

B. Design Goals and Assumptions

The purpose of a proposed system is to prevent leakage of
the classified information and execute an exploration program
for the attacker’s computer to obtain the attacker’s information.
The process, which is a run state of a program, accesses
classified information, and leakage of information takes place
by transmitting classified information to the outside of a
computer. The flow that a process delivers information has
generation of a file operation, inter-process communication,
and a child process. In these processes, since the OS is always
involved, supervising the system calls of these processes can
prevent leakage of valuable information. In order to execute an
exploration program on an attacker’s computer, it is necessary
to install the program on his/her computer.

In order to increase the likelihood of such installation,
our system replaces classified information with the exploration
program prior to transmitting it. The exploration program can
thus be send to an unsuspecting attacker. The OS can replace
the classified information with the exploration program by
supervising the system calls of the process.

In order to obtain the attacker’s information, it is necessary
for him/her to execute the exploration program. However, if an
exploration program is installed on the attacker’s machine as is,
it will be easily detected. Hence, in order make it difficult for
the attacker to detect the exploration program, it is effective
to embed it into the dummy data that substitutes the actual
classified information when the attacker tries to access it. Thus,
the attacker misunderstands his/her theft of the dummy data as
having yielded classified information, opens the file containing
the dummy data, and hence enables the exploration program
to run on his/her machine.

Process

: monitored system call invoking User Mode

Kernel Mode

& Proposed System

Tracing Function |

Original system

call invoke Possibility of leaked
: information :

A

| Dummy Function |
7)

e o e e e e e e

P ——

Reading of
" dummy data

System call process |

-
original processing
course

—

Proposed system
course

Fig. 1. Overview of proposed system

Our proposed system is designed to prevent remote attacks
on systems through malware as well as illegal access to
sensitive information.

C. System Architecture

An overview of the proposed system is shown in Figure 1.
It implements the following functions and mechanisms:

e A function to trace classified information diffusion
(Tracing Function)

e A dummy data exchange function (Dummy Function)

The Tracing Function uses a system proposed elsewhere
[2]. Since the Tracing Function may tell the contents to other
processes, files, etc., when the system call which the process
published is hooked and a process reads classified information,
the relevant processes and files are registered as classified
information, and the system traces them.

The Dummy Function replaces classified information with
dummy data, and is called from the Tracing Function prior to
sending classified information from the computer.

D. Tracing Function

The Tracing Function tracks the diffusion of classified
information. When the relevant data is accessed and transferred
from the computer, the Tracing Function detects this. Classi-
fied information diffusion is carried out by reading classified
information and sharing its contents with other processes, files,
etc.

As a file operation which classified information diffuses,
there is reading about the contents of a file and writing about
contents of a file. In the case of a file containing classified

information, reading origin needs to make a process applicable
to surveillance. Moreover, since the classified information may
have been written out when the surveillance process wrote the
information to a file, it is necessary to consider the file of the
beginning point as the file for surveillance.

The surveillance process can be transmitted to other pro-
cesses through inter-process communication. The Trace Func-
tion supervises inter-process communication using a socket,
shared memory, a pipe, and a message queue. When the
sending process is a surveillance process, it is necessary
to make the surveillance target for communication and the
receiving process of mediating transmission.

When there is a function where a child process inherits the
resources of a parent process at the time of its generation (e.g.,
fork processing in UNIX), information is shared with processes
by using this function. Therefore, when a parent process
is a surveillance process, it is necessary to turn the child
process into a surveillance process as well. These processes
are supervised, and the diffusion of classified information is
thus traced.

E. Dummy Function

The Dummy Function is called by the Trace Function when
classified information is being sent from the computer, and
replaces this information with dummy data, thereby preventing
a leak. The procedure of the Dummy Function is as follows:

1) The size of the file containing the classified informa-
tion is acquired.

2) The file size of the dummy data is acquired.

3) The file size in 1) is compared with that in 2).

4) If the size of the file containing classified information
is larger, fit the file size of the dummy data to the file
size of the classified information.

5) When the size of the file containing classified infor-
mation is smaller, fit the file size of the dummy data
to it.

When the sizes of the classified information and the dummy
data differ, attackers can detect the information switch. For
this reason, the Dummy Function fits the size of the dummy
data to that of the classified information. When size of the file
containing classified information is larger than that containing
the dummy data, the contents of the latter are written into
the buffer containing the classified information, which pads
the dummy data to the size of the classified information. The
buffer can be acquired by the supervise argument of the system
call to supervise.

Furthermore, when the size of the classified information is
smaller than that of the dummy data, the Dummy Function fits
the latter to the former. For this reason, the file size of dummy
data has a problem that it cannot fit in the file size of classified
information.

F. Exploration Program

The dummy data is embedded into an exploration program
that obtains the attacker’s information. Since any program can
be embedded, it can change into dummy data according to the
information desired by the user.

IV. IMPLEMENTATION AND EVALUATION
A. Contents of implementation

We implemented the Dummy Function prototype on Linux
3.4.9. The Dummy Function was realized as a Loadable Kernel
Module (LKM) and can cooperate with the Tracing Function
without the need to alter the OS. However, Dummy Function
is not realized cooperation with Tracing Function. We intend
to tackle this issue in future research. Hence, we implemented
file operation tracing function into Dummy Function. Dummy
Function is hooked system call, which read(), write(), and
sendto(). This evaluation used above mentioned Dummy Func-
tion.

B. Evaluation purpose

Within the computer imported proposed system, the pro-
gram that send classified information to the external of com-
puter for upload, and the following two points are checked.

1) Prevention of leakage classified information
2) Acquisition of the information on attacker’s computer

Our proposed system prevents information theft by re-
placing classified information with dummy data. Moreover,
it checks to see if the exploration program embedded into
the dummy data is functioning, and can obtain an attacker’s
information through his/her computer. We tested our system
on an Intel Core i7-3770 processor with 3.4 GHz and 4
GB of random-access memory (RAM) running Debian with
Kernel 3.4.9. Since we assumed that the attacker was using
a Windows OS, we designed the exploration program to
execute on Windows. However, the exploration program is not
recognized as an executable file, and the file name of dummy
data has been a file name of classified information, because
it is an executable file that operates on Windows (.exe file).
For this reason, the extension of the file containing the dummy
data was changed to .exe format on the attacker’s computer.
Handling the problem of file extensions is subject for our future
research.

An overview of the evaluation is shown in Figure 2, and
the experimental procedure was as follows:

1) On the computer equipped with the proposed system,
execute the program that sends classified information
to the computer to upload.

2) The computer is accessed from an attacker’s com-
puter and classified information is transferred to the
latter.

3) An attacker opens classified information.

In this experiment, the server receiving the attacker’s
information from the exploration program was implemented
in our proposed system. The size of the classified information
was 102,400 bytes and that of the exploration program was
53,003 bytes.

C. Results

The size and name of the file acquired from the attacker’s
computer were the same as the classified information in Sec-
tion IV-B. When the extension of the file obtained was changed
to .exe and run, the attacker’s information was received by the

__\ o
classified)) "
s - information
K

“
6%

Attacker's computer Computer for upload

S

explorer program
course

(1)

Program

A

v
classified
information

Proposed system

N

Fig. 2. Evaluation Overview

server. Thus, our system successfully prevented the leakage of
classified information by replacing it with dummy data, and
obtained the attacker’s information.

V. DISCUSSION

Proposed system left-behind subject is shown below. (1)
Efficient execution method of exploration program. Our pro-
posed system cannot currently execute the exploration program
absolutely. Therefore, it is necessary to propose efficient exe-
cute method of exploration program. Similarity, exploration
program is not executed absolutely when attacker use a
character user interface (CUI). (2) Execution platform of the
exploration program. Our system cannot currently execute the
exploration program on multiple platforms. Then, proposed
system can correspond to multiplatform by proposed system
cooperate with pOf [10]. pOf is a tool that analyzes the
Transmission Control Protocol (TCP) headers to specify the
OS.

VI. CONCLUSION

We proposed an attacker investigation system focusing on
classified information leakage. It is hooking the system call
related to operation of classified information in a computer.
Our proposed system tracks classified information as it is sent
from the computer and replaces this information with dummy
data. Thus, it can prevent classified information leakage. The
dummy data contains an embedded exploration program that
collects and transmits the attacker’s information from his/her
computer.

In experiments, our system successfully prevented leakage
of classified information and obtained the attacker’s informa-
tion. The subject described with Section V is solved from now
on, and the overhead of the evaluation or evaluation using
actually operated malware.

(1]

(2]

(3]

(4]

[5]

(6]

(71

(8]

[9]

[10]

REFERENCES

(2013, Apr.) 2013 DATA BREACH INVESTIGATION SREPORT. [On-
line]. Available: http://www.verizonenterprise.com/resources/reports/rp_
data-breach-investigations-report-2013_en_xg.pdf

Tabata, T., Hakomori, S., Ohashi, K., Uemura, S., Yokoyama, K.,
Taniguchi, H, “ Tracing Classified Information Diffusion for Protecting
Information Leakage,” IPSJ Journal (in Japanese), vol.50, no.9, pp.2088—
2012, 20009.

N. Otsubo, S. Uemura, T. Yamauchi, H. Taniguchi, “ Design and Evalu-
ation of a Diffusion Tracing Function for Classified Information Among
Multiple Computers, ” in Proc. 7th FTRA International Conference on
Multimedia and Ubiquitous Engineering (MUE 2013), Lecture Notes in
Electrical Engineering (LNEE), vol.240, pp.235-242, 2013.

D. Y. Zhu, J. Jung, D. Song, T. Kohno, D. Wetherall, “ TaintEraser: Pro-
tecting Sensitive Data Leaks Using Application-Level Taint Tracking, ”
ACM SIGOPS Operating Systems Review, vol.45, no.1, pp.142-154,
2011.

S. Liu, R. Kuhn, “ Data Loss Prevention,” IT Professional, vol.12, no.2,
pp.10-13, 2010.
[Online].

Crowdstrike. Available:

html

(2013, Nov.) Junos WebApp Secure. [Online]. Available: http:/www.
juniper.net/us/en/local/pdf/datasheets/1000401-en.pdf

(2012, Oct.) CYBER ESPIONAGE Against Georgian Government
(Georbot Botnet). [Online]. Available: http://dea.gov.ge/uploads/CERT%
20DOCS/Cyber%?20Espionage.pdf

J. Yuill, J. Zappe, D. Denning, F. Feer, ” Honeyfiles: deceptive files for
intrusion detection, ” in Proc. 15th Annual IEEE Information Assurance
Workshop, pp.116-122, 2004.

pOf. [Online]. Available: http://lcamtuf.coredump.cx/p0f3/

http://www.crowdstrike.com/index.

