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Abstract—Operating systems (OSes)    that is based on 

microkernel architecture have high adaptability and toughness. 

In addition, multicore processors have been developed along 

with the progress of LSI technology. By running a microkernel 

OS on a multicore processor and distributing the OS server to 

multiple cores, it is possible to realize load balancing of the OS 

processing. In this method, transaction processing, which 

requires a large amount of OS processing, can be provided 

effectively in a multicore environment. This paper presents 

evaluations of distributed OS processing performances for 

various scenarios for AnT operating system that is based on the 

microkernel architecture in a multicore environment. In these 

evaluations, we describe the differences in performance by 

distribution forms when referring the data in a block. 

Moreover, we use the PostMark and Bonnie benchmark tools 

to evaluate the effects of load balancing for the distribution 

forms. 

Keywords-operating system; multicore processor; 

microkernel; distributing process 

I.  INTRODUCTION 

Microkernels[1, 2, 3] have an Operating System (OS) 
architecture which implements basic OS functions that are 
represented by the scheduler as a kernel. It also has an OS 
architecture which implements the file management function 
and many types of driver functions as some processes (OS 
server). In addition, it is possible to construct a distributed 
processing system that can distribute the OS processing by 
distributing the OS server. 

Further, multicore processors[4] that have multiple 
instruction execution units on one processor have been 
developed along with the progress of LSI technology. By 
running a microkernel OS on a multicore processor and 
distributing the OS server to multiple cores, it is possible to 
realize the load balancing of OS processing. In this method, 
the transaction processing, which places a heavy load on the 
OS processing, can be provided effectively in a multicore 
environment. 

In this paper, we evaluate and report the result for 
distributing of OS processing about AnT OS[5] that is based 
on microkernel in a multicore environment.  

II. ANT  OS FOR MULTICORE ENVIRONMENT 

A. Basic Architecture 

Figure 1 shows the basic architecture of AnT OS for a 

Figure 1.  Basic architecture of multicore AnT. 

Figure 2.  Flow of ISPC for multicore AnT. 

multicore environment (multicore AnT). The OS consists of 
an internal core and an external core that run as a process. 
The internal core has a m-kernel that is launched first and 
runs on a Boot Strap Processor (BSP). It also has multiple p-
kernels that are launched by m-kernel and run on Application 
Processors (AP). The m-kernel has all of the functions that 
the kernel needs. However, to keep the kernel lightweight 
design, the p-kernels have only three types of functions, 
which are the trap and interrupt function, the inter-server 
communication function, and the schedule function. The 
external core consists of program that is required by the 
adapted system. For example, the external core provides the 
file management function and the disk driver function as the 
OS server. 

The virtual space in AnT consists of multiple virtual 
storage. In addition, AnT has an Inter-core Communication 
Area (ICA). This area is a space that is used by the internal 
core, the external core, and the service for data 
communication.  
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Figure 3.  Flow of process migration. 

B. Inter Server Program Communication 

AnT has fast Inter Server Program Communication 
(ISPC). In addition, multicore AnT implements fast ISPC for 
a multicore environment. Figure 2 shows the flow of fast 
ISPC for multicore processors. Specifically, we limit the 
number of communication partners between OS servers and 
implement two exclusive controls in queue operation during 
communication. Additionally, to use the ring buffer control 
architecture, we implement detachment and attachment of 
the ICA for control (control ICA) using non-exclusive 
control. We improve the transfer method for ICA. 
Specifically, the kernels on the each core detach and attach 
the control ICA during ISPC. 

C. Process Distribution Mechanism 

Multicore AnT has a process migration function that is 
adapted to multicore environments. The process migration 
mechanism is a function that migrates a process that is 
running on a core (source core) to another arbitrary core 
(destination core). Figure 3 shows the flow of process 
migration. The procedure is described below. 

(1) Based on the process state, a judgment is made about 

whether it is possible to perform a migration.  

(2) When the process that is migrated is a RUN state, the 

process state is updated to a READY state and the 

context of that process is stored. When the process 

that is migrated is a READY or WAIT state, the 

process is deleted from each schedule queue. 

(3) The process information of the process that is 

migrated is written to the shared area. 

(4) A notification about the process migration is sent to 

the destination core using an Inter-Processor 

Interrupt (IPI).  

(5) The process information for the process that is 

migrated is read from shared area.  

(6) The process is queued up to correspond to the 

schedule queue because the state of all processes was 

changed to a READY or WAIT state in step (2) 

above. 

We implement the method that the process that is 

distributed uses OS processing of other cores. This method 

is implemented as sending request to m-kernel and sharing 

unique functions of m-kernel. Additionally, we adapt these 
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Figure 4.  Basic method of the OMF. 

methods based on the processing time for the request. 
The sending request to m-kernel is to send request of the 

kernel call processing issued by a process that is running on 
a p-kernel to m-kernel. The sharing unique functions of m-
kernel is able to use unique functions of m-kernel from a 
process that is running on a p-kernel. We use the exclusive 
control for sharing unique function of m-kernel. 

D. On Memory File Mechanism 

The On Memory File (OMF) mechanism is based on the 
following approach. 

(1) The OMF shares a file cache with a process.  

(2) The OMF can extend or reduce a file size. 

(3) The OMF can update the referential date and the 

updated date of a file.  
Figure 4 shows the basic method of the OMF. The OMF 

shares a file cache with a process. The file data of the 
process is referred or updated after the physical memory that 
stores the file data has been mapped in the virtual memory 
space. Therefore, unlike general Input/Output (I/O) functions, 
the OMF does not copy the data between the file cache and 
the virtual memory space of the process. The OMF manages 
the file data using a block (4 KB). 

In contrast to the memory mapped file function[6], the 
OMF can extend or reduce the file size. Specifically, to 
extend or reduce the file size, the OMF updates the file size 
in the i-node which manages the file information and the 
storage location of the file data on the external storage unit. 
In addition, the OMF can update the referential date and the 
updated date of the file. To update the referential date and 
the updated date, the OMF updates them on the i-node. 
Updating them i-nodes is executed when writing file data to 
external storage unit. 

III. EVALUATION 

A. Point of View and Environment for Evaluation 

Load balancing of the I/O processing for the OS is 
effective for obtaining a higher throughput because most of 
the transaction processing consists of OS processing. In this 
paper, we elucidate the effect of load balancing on OS 
processing. We focus specifically on file I/O processing. 

In microkernel OSes, many OS servers run on the same 
core. Therefore, differences between the priorities for 
processes have effects on the performance. To clarify these 
differences, we evaluate the basic performance for the file 
I/O. 



TABLE I.  VIEW OF PROCESS DISTRIBUTION FORM 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

BSP A,F,B,D A,F,B A,F,D A,B,D A,F A,B A,D A A,F A,B A,D A A A A 

AP1  D B F B,D F,D F,B F,B,D B F F F,B F,D B,D F 

AP2         D D B D B F B 

AP3               D 

*A: benchmark process, F: file management server, B: block management server, D: disk driver server 

Figure 5.  Basic performance. 

Next, if the OS processing is distributed, the overhead 
for ISPC which includes IPI becomes a problem. To clarify 
this overhead, we evaluate it using the PostMark[7] 
benchmark. PostMark is a benchmark program that a single 
process executes the number of times specified opening files, 
referring the sequential data, and closing files on multiple 
files. In addition, in order to clarify the effectiveness of load 
balancing for OS processing, we perform an evaluation 
using a Bonnie[8] benchmark. Bonnie is a benchmark 
program that multiple processes refer random positions in an 
input file and perform updates based on any probability. 

Moreover, we clarify the effect of differences in OS 

structure by running the benchmark programs on AnT and 
FreeBSD 6.3-RELEASE and comparing the results. 

Table 1 shows the process distribution form that includes 
the OS server and the benchmark process. There are three 
types of OS servers that are related to the file I/O: the file 
management server, block management server, and disk 
driver server. The file management server manages the i-
nodes. The block management server manages the cache of 
file data (file cache) and reduces the number of I/O 
operations. The disk driver server controls the disk I/O 
devices and inputs and outputs the file data. In Table 1, #1 is 
the case where the process is not distributed. #2 to #8 are the 
cases where the process is distributed between two cores. #9 
to #14 are the cases where the process is distributed between 
three cores. #15 is the case where the process is distributed 
between four cores. 

We evaluated all cases in Table 1 on the AnT OS using a 
computer that has an Intel® Core™ i7-2600 Processor (3.4 
GHz). We set a high priority on the order of the disk driver 
server, the file management server, the block management 
server, and the benchmark process. The file management 
server and the block management server have the same 
priority.  
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Figure 6.  Situation of running process. 

B. Basic Performance 

Figure 5 shows processing times taken by a process to 
refer the file data of one block (4 KB).  In these cases, the 
file data exists on the file cache. An outline of the read 
processing from the file cache is given below. First, the 
benchmark process sends a request to the file management 
server. Next, the file management server sends a request to 
the block management server. The block management server 
gets the data from the file cache. Finally, the block 
management server returns the result to the benchmark 
process. None of the requests involves the disk driver server. 
Therefore, the disk driver server does not run. Therefore, we 
focus on the distribution form for the file management 
server and the block management server in Figure 5. From 
this figure, we confirmed the following conclusions. 

1) Processing time increases as the number of cores 

which the OS processing is distributed increases. As the 

number of cores increases, the OS processing becomes 

more distributed. This causes the number of inter-core 

communications to increase. 

2) Distribution forms that distribute the OS processing 

to two cores (#3, #4, and #7) are same processing times 

because the number of inter-core communications is the 

same. However, the processing time for the distribution 

form that distributes the block management server (#3) is a 

little shorter than that of the others (#4 , #7). This result is 
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Figure 7.  Results of PostMark. 

caused by the WAIT processing that is performed by ISPC. 

Figure 6 shows the active statuses of processes in #3, #4, 

and #7. Because the priority of a requesting process 

(benchmark process) is lower than that of a requested 

process (file management server) in #3, the WAIT 

processing for a requesting process does not affect the 

processing time if the WAIT processing time is shorter than 

the inter-core communication time. On the other hand, 

because the priority of a requesting process is equal to or 

higher than that of a requested process in #4 and #7, the 

WAIT processing for a requesting process is added onto the 

processing time. Therefore, the processing time of #3 is 

shorter only the WAIT processing time (0.1 microseconds) 

than the processing times of #4 and #7. 

C. PostMark 

We used the following parameters for the PostMark 

measurements. The number of files was 25, the number of 

execution times was 25 times, and the file size was 500 to 

10000 bytes. Figure 7 shows the results. From this figure, 

we confirmed the following conclusions. 

1) The processing times of scenarios where the disk 

driver server was distributed is equal to those of the 

scenarios where the disk driver server was not distributed. 

This is because the block management server does not send 

requests to the disk driver server. All of the file data exists 

on the file cache when creating files because the number of 

files is a few and the total of the file sizes are small. 

Therefore, if the distribution forms of the file management 

server and the block management server are the same, the 

processing time is equal, regardless of the distribution form 

of the disk driver server. For example, the processing time 

when distributing to four cores (#15) is equal to distributing 

to three cores (#11, #13, and #14). 

2) If the benchmark process and the file management 

server are distributed to the same core, then the processing 

time is shorter than that when both processes are 

distributed to different cores. This is because inter-core 

communications are very limited when files open and close. 

Specifically, inter-core communications occur twice when a 

file opens and zero times when a file closes while 
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Figure 8.  Result of Bonnie. 

distributing to the same core (#3, #5, and #9). Inter-core 

communications occur four times when a file opens and 

twice when a file closes while distributing to different cores 

(#4, #6, and #10). Inter-core communications occur twice 

when a file opens and twice when a file closes when 

distributing to different cores (#7, #8, and #12).  

D. Bonnie 

We used the following parameters for the Bonnie 

measurement. The number of processes was one to seven, 

the file size was 128 KB, the number of references was 

4000, and the probability for an update to occur was 10%. 

Because the file sizes were small, as they also were in 

section III-C, all of the file data existed on the file cache. 

Therefore, requests to the disk driver server were limited to 

the beginning of the test. Accordingly, for these 

measurements, we ignored the distribution of the disk driver 

server. Specifically, we measured #1, #3, #4, #7, and #11 in 

Table 1. The results are shown in Figure 8. Figures 9 and 10 

provide additional analyses of the information in Figure 8. 

Figure 9 shows the relationships between the benchmark 

process and the processing time. From this figure, we 

confirmed the following conclusions. 

1) The effects of load balancing for the OS processings 

become larger when there are many benchmark processes. 

In each case, the processing time increases as the number of 

benchmark process increases. However, the rate of the 

increase declines as the number of cores increases. This 

result is clear when comparing #11 (three cores) with #1 

(one core). Specifically, for #1, the processing time 

increases about 155 microseconds as the benchmark process 

increases. On the other hand, for #11, the processing time 

increases only about 50 microseconds as the benchmark 

process increases. However, the rate of the increases is 

large when the number of benchmark processes is six or 

more. This is due to the increasing demands on the file 

management server. 

2) Distributing the file management server to other 

cores is effective. We focus on #3 and #4. Two cores are 
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Figure 9.  Relationship between number of processes and processing time. 

0

200

400

600

800

1000

1200

1400

#1 #3 #4 #7 #11

P
ro

ce
ss

in
g

 t
im

e
(μ

 s
e

co
n

d
s)

Process distribution form

Number of

processes:7

Number of

processes:6

Number of

processes:5

Number of

processes:4

Number of

processes:3

Number of

processes:2

Number of

process:1

 
Figure 10.  Relationship between process distribution form and processing 

time. 

used in each cases. The difference between #3 and #4 is due 

to the distributing the block management server or the file 

management server to another core. Distributing the file 

management server to another other core is effective 

because the processing time for #4 is shorter than for #3. 

This is because the file management server requires more 

processing time than the block management server. 

Specifically, for #3, the processing time increases about 127 

microseconds for the benchmark process increases. On the 

other hand, for #4, the processing time increases about 86 

microseconds as the benchmark process increases. 

3) Distributing the OS processing to the other core is 

effective. We focus on #4 and #7. Two cores are used in 

each cases. In scenario #7, the file management server and 

the block management server are both distributed to other 

cores. This seems to be effective when the number of 

benchmark processes increases. Therefore, environments 

which execute many benchmark processes are efficient. 
Figure 10 shows the relationship between the process 

distribution form and the processing time. From this figure, 
we confirmed the following conclusion. 
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Figure 11.  Rate to processing time in using 1 core for PostMark. 

4) The number of cores causes significant differences in 

the process distribution form (one core (#1), two cores (#3, 

#4, and #7), and three cores (#11)). The overhead from 

inter-core communications causes the processing times to 

increase because the effect of load balancing is nothing if 

the number of benchmark processes is only one. On the 

other hand, distributing the OS processing is much more 

effective when there are many benchmark processes 

running. The effectiveness causes difference by processing 

of server that implement OS processing so that someone 

can understand comparing #4 with #7. 

E. Comparing AnT with FreeBSD 

We compared AnT with FreeBSD. The distribution 
forms for AnT are #1, #3, #4, #7, and #11. For FreeBSD the 
number of cores varied from one to three. Figure 11 and 12 

show the rate of processing time when using one core. AnT 
was different from FreeBSD when using one core, two cores, 
and three cores. Specifically, because of differences in the 
distribution of the OS server there are three different 
scenarios for AnT for distributing the OS server to two cores. 
In FreeBSD, there are two types of file reading interfaces: 
read() and fread(). From these figures, we confirmed the 
following conclusions. 

1) In PostMark, the effect of load balancing of OS 

processing for AnT is nothing. Inter-core communications 

overhead causes increases in the processing time for AnT 

due to the distribution of the OS processing and the fact that 

the number of benchmark processes is one in PostMark. On 

the other hand, the inter-core communications do not 

increase when using FreeBSD because FreeBSD has a  
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Figure 12.  Rate to processing time in useing 1 core for Bonnie. 

monolithic kernel and as a result there is no need to 

distribute the OS processing, regardless of the number of 

cores. Specifically, in AnT, the processing time increases 

about 1.2 to 1.35 times when distributing to two cores, and 

1.35 times when distributing to three cores. On the other 

hand, in FreeBSD, the processing time increases only about 

1 to 1.01 times when running on two cores and 1.01 to 1.03 

times when running on three cores. 

2) In Bonnie, the effect of load balancing for the OS 

processing for AnT is high. When the number of 

benchmark processes is many for Bonnie, the processing 

time decreases in AnT due to the distribution of the OS 

processing. On the other hand, the processing time does not 

decrease in FreeBSD even when the number of cores 

increases. This is because the OS processing is a bottleneck 

in FreeBSD when there are numerous requests from 

benchmark processes. For example, if the number of 

benchmark processes is five, AnT, which distributes to 

three cores, is possible to reduce processing time to 60%. 

On the other hand, FreeBSD, which also runs on three cores, 

is only able to reduce the processing time to 87%. 

IV. CONCLUSION 

We evaluated the effect of load balancing for file I/O 

process in the OS for AnT OS that runs on multicore 

processors.  
In the evaluation of basic performances, we showed that 

the processing times increase as the inter-core 
communications increase. This is due to the distribution of 
the OS processing. Differences in the priorities of processes 
running on the same core also affect the processing times.  

In the evaluation of the PostMark benchmark program, 
where the number of benchmark processes is one, we 
showed that there is no effect from load balancing for the 
disk driver server if all of the file data exists on the file 
cache. In addition, we showed that the processing time 
decreases when the benchmark process and the file 
management server are run on the same core.  

In the evaluation of the Bonnie benchmark program, 
where the number of benchmark processes is one to seven, 
we showed the effect of load balancing is high in 
environments where several benchmark processes are 
running and numerous requests for benchmark processes are 
executed.  

Finally, we measured PostMark and Bonnie on FreeBSD, 
and compared AnT with FreeBSD. For PostMark, we 
showed that processing time increases in AnT because the 
inter-core communication overhead increases due to the 
distribution of the OS processing. On the other hand, the 
processing time in FreeBSD increases very little because 
there is no need to distribute the OS processing. For Bonnie, 
we showed that it is possible to reduce processing time to 
60% in AnT, because it is possible to distribute the OS 
processing. On the other hand, With the FreeBSD, it is only 
possible to reduce the processing time to 87%, because OS 
processing is a CPU bottleneck. 

I/O operations over networks are a remaining topic for 
further study. 
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