
m-kernel

service External Core

BSP

OSInternal Core

p-kernel

AP CPU

Evaluation of Load Balancing in Multicore Processor for AnT

Takeshi Sakoda, Toshihiro Yamauchi, Hideo Taniguchi

Graduate School of Natural Science and Technology

Okayama University

Okayama, Japan

sakoda@swlab.cs.okayama-u.ac.jp, {yamauchi, tani}@cs.okayama-u.ac.jp

Abstract—Operating systems (OSes) that is based on

microkernel architecture have high adaptability and toughness.

In addition, multicore processors have been developed along

with the progress of LSI technology. By running a microkernel

OS on a multicore processor and distributing the OS server to

multiple cores, it is possible to realize load balancing of the OS

processing. In this method, transaction processing, which

requires a large amount of OS processing, can be provided

effectively in a multicore environment. This paper presents

evaluations of distributed OS processing performances for

various scenarios for AnT operating system that is based on the

microkernel architecture in a multicore environment. In these

evaluations, we describe the differences in performance by

distribution forms when referring the data in a block.

Moreover, we use the PostMark and Bonnie benchmark tools

to evaluate the effects of load balancing for the distribution

forms.

Keywords-operating system; multicore processor;

microkernel; distributing process

I. INTRODUCTION

Microkernels[1, 2, 3] have an Operating System (OS)
architecture which implements basic OS functions that are
represented by the scheduler as a kernel. It also has an OS
architecture which implements the file management function
and many types of driver functions as some processes (OS
server). In addition, it is possible to construct a distributed
processing system that can distribute the OS processing by
distributing the OS server.

Further, multicore processors[4] that have multiple
instruction execution units on one processor have been
developed along with the progress of LSI technology. By
running a microkernel OS on a multicore processor and
distributing the OS server to multiple cores, it is possible to
realize the load balancing of OS processing. In this method,
the transaction processing, which places a heavy load on the
OS processing, can be provided effectively in a multicore
environment.

In this paper, we evaluate and report the result for
distributing of OS processing about AnT OS[5] that is based
on microkernel in a multicore environment.

II. ANT OS FOR MULTICORE ENVIRONMENT

A. Basic Architecture

Figure 1 shows the basic architecture of AnT OS for a

Figure 1. Basic architecture of multicore AnT.

Figure 2. Flow of ISPC for multicore AnT.

multicore environment (multicore AnT). The OS consists of
an internal core and an external core that run as a process.
The internal core has a m-kernel that is launched first and
runs on a Boot Strap Processor (BSP). It also has multiple p-
kernels that are launched by m-kernel and run on Application
Processors (AP). The m-kernel has all of the functions that
the kernel needs. However, to keep the kernel lightweight
design, the p-kernels have only three types of functions,
which are the trap and interrupt function, the inter-server
communication function, and the schedule function. The
external core consists of program that is required by the
adapted system. For example, the external core provides the
file management function and the disk driver function as the
OS server.

The virtual space in AnT consists of multiple virtual
storage. In addition, AnT has an Inter-core Communication
Area (ICA). This area is a space that is used by the internal
core, the external core, and the service for data
communication.

(1) request

(update register point

& detach)

kernel for request

(2) get request

(attach &

update get point)

(4) get return

(attach &

update get point)

Control

ICA

(3) return

(update register point

& detach)

OS server
Request

process

process ・・・Request

ring buffer

Control

ICA・・・Return

ring buffer

Control

ICA・・・Request

ring buffer

Control

ICA・・・Return

ring buffer

kernel for server

process

yamauchi
タイプライターテキスト
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

source core destination core

XY

Ready queue Ready queue

Wait queue

B

Y Y
shared area

(1)judging

process state

(2)deleting

process from

schedule

queue (3) registering

process

information

(4) notifying process migration

(5) getting

process

information

Wait queue

(6)enqueueing

process to

schedule

queue

after

processing

user space

kernel space

A B Y

previous

processing

Figure 3. Flow of process migration.

B. Inter Server Program Communication

AnT has fast Inter Server Program Communication
(ISPC). In addition, multicore AnT implements fast ISPC for
a multicore environment. Figure 2 shows the flow of fast
ISPC for multicore processors. Specifically, we limit the
number of communication partners between OS servers and
implement two exclusive controls in queue operation during
communication. Additionally, to use the ring buffer control
architecture, we implement detachment and attachment of
the ICA for control (control ICA) using non-exclusive
control. We improve the transfer method for ICA.
Specifically, the kernels on the each core detach and attach
the control ICA during ISPC.

C. Process Distribution Mechanism

Multicore AnT has a process migration function that is
adapted to multicore environments. The process migration
mechanism is a function that migrates a process that is
running on a core (source core) to another arbitrary core
(destination core). Figure 3 shows the flow of process
migration. The procedure is described below.

(1) Based on the process state, a judgment is made about

whether it is possible to perform a migration.

(2) When the process that is migrated is a RUN state, the

process state is updated to a READY state and the

context of that process is stored. When the process

that is migrated is a READY or WAIT state, the

process is deleted from each schedule queue.

(3) The process information of the process that is

migrated is written to the shared area.

(4) A notification about the process migration is sent to

the destination core using an Inter-Processor

Interrupt (IPI).

(5) The process information for the process that is

migrated is read from shared area.

(6) The process is queued up to correspond to the

schedule queue because the state of all processes was

changed to a READY or WAIT state in step (2)

above.

We implement the method that the process that is

distributed uses OS processing of other cores. This method

is implemented as sending request to m-kernel and sharing

unique functions of m-kernel. Additionally, we adapt these

A

D

B

E

C

F
file cache：file data（block size）

file manager

D

D

AP1

AP2

share

share

Figure 4. Basic method of the OMF.

methods based on the processing time for the request.
The sending request to m-kernel is to send request of the

kernel call processing issued by a process that is running on
a p-kernel to m-kernel. The sharing unique functions of m-
kernel is able to use unique functions of m-kernel from a
process that is running on a p-kernel. We use the exclusive
control for sharing unique function of m-kernel.

D. On Memory File Mechanism

The On Memory File (OMF) mechanism is based on the
following approach.

(1) The OMF shares a file cache with a process.

(2) The OMF can extend or reduce a file size.

(3) The OMF can update the referential date and the

updated date of a file.
Figure 4 shows the basic method of the OMF. The OMF

shares a file cache with a process. The file data of the
process is referred or updated after the physical memory that
stores the file data has been mapped in the virtual memory
space. Therefore, unlike general Input/Output (I/O) functions,
the OMF does not copy the data between the file cache and
the virtual memory space of the process. The OMF manages
the file data using a block (4 KB).

In contrast to the memory mapped file function[6], the
OMF can extend or reduce the file size. Specifically, to
extend or reduce the file size, the OMF updates the file size
in the i-node which manages the file information and the
storage location of the file data on the external storage unit.
In addition, the OMF can update the referential date and the
updated date of the file. To update the referential date and
the updated date, the OMF updates them on the i-node.
Updating them i-nodes is executed when writing file data to
external storage unit.

III. EVALUATION

A. Point of View and Environment for Evaluation

Load balancing of the I/O processing for the OS is
effective for obtaining a higher throughput because most of
the transaction processing consists of OS processing. In this
paper, we elucidate the effect of load balancing on OS
processing. We focus specifically on file I/O processing.

In microkernel OSes, many OS servers run on the same
core. Therefore, differences between the priorities for
processes have effects on the performance. To clarify these
differences, we evaluate the basic performance for the file
I/O.

TABLE I. VIEW OF PROCESS DISTRIBUTION FORM

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BSP A,F,B,D A,F,B A,F,D A,B,D A,F A,B A,D A A,F A,B A,D A A A A

AP1 D B F B,D F,D F,B F,B,D B F F F,B F,D B,D F

AP2 D D B D B F B

AP3 D

*A: benchmark process, F: file management server, B: block management server, D: disk driver server

Figure 5. Basic performance.

Next, if the OS processing is distributed, the overhead
for ISPC which includes IPI becomes a problem. To clarify
this overhead, we evaluate it using the PostMark[7]
benchmark. PostMark is a benchmark program that a single
process executes the number of times specified opening files,
referring the sequential data, and closing files on multiple
files. In addition, in order to clarify the effectiveness of load
balancing for OS processing, we perform an evaluation
using a Bonnie[8] benchmark. Bonnie is a benchmark
program that multiple processes refer random positions in an
input file and perform updates based on any probability.

Moreover, we clarify the effect of differences in OS

structure by running the benchmark programs on AnT and
FreeBSD 6.3-RELEASE and comparing the results.

Table 1 shows the process distribution form that includes
the OS server and the benchmark process. There are three
types of OS servers that are related to the file I/O: the file
management server, block management server, and disk
driver server. The file management server manages the i-
nodes. The block management server manages the cache of
file data (file cache) and reduces the number of I/O
operations. The disk driver server controls the disk I/O
devices and inputs and outputs the file data. In Table 1, #1 is
the case where the process is not distributed. #2 to #8 are the
cases where the process is distributed between two cores. #9
to #14 are the cases where the process is distributed between
three cores. #15 is the case where the process is distributed
between four cores.

We evaluated all cases in Table 1 on the AnT OS using a
computer that has an Intel® Core™ i7-2600 Processor (3.4
GHz). We set a high priority on the order of the disk driver
server, the file management server, the block management
server, and the benchmark process. The file management
server and the block management server have the same
priority.

t

A（BSP）
F（BSP）
B（AP1）

t

A（BSP）
F（AP1）
B（BSP）

t

A（BSP）
F（AP1）
B（AP1）

#3

#4

#7

A: Benchmark process（priority：low）
WAIT processing

F: File management server（priority：high）
B: Block management server（priority：high）

dispatch

IPI

IPI

IPI

IPI

IPI

IPI

dispatch

dispatch

Figure 6. Situation of running process.

B. Basic Performance

Figure 5 shows processing times taken by a process to
refer the file data of one block (4 KB). In these cases, the
file data exists on the file cache. An outline of the read
processing from the file cache is given below. First, the
benchmark process sends a request to the file management
server. Next, the file management server sends a request to
the block management server. The block management server
gets the data from the file cache. Finally, the block
management server returns the result to the benchmark
process. None of the requests involves the disk driver server.
Therefore, the disk driver server does not run. Therefore, we
focus on the distribution form for the file management
server and the block management server in Figure 5. From
this figure, we confirmed the following conclusions.

1) Processing time increases as the number of cores

which the OS processing is distributed increases. As the

number of cores increases, the OS processing becomes

more distributed. This causes the number of inter-core

communications to increase.

2) Distribution forms that distribute the OS processing

to two cores (#3, #4, and #7) are same processing times

because the number of inter-core communications is the

same. However, the processing time for the distribution

form that distributes the block management server (#3) is a

little shorter than that of the others (#4 , #7). This result is

0

1

2

3

4

5

#1 #3 #4 #7 #11

P
ro

ce
ss

in
g

 t
im

e
(μ

se
co

n
d

s)

Process distribution form

0

100

200

300

400

500

600

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

1

core

2 cores 3 cores 4

cores

P
ro

ce
ss

in
g

 t
im

e
(μ

 s
e

co
n

d
s)

Process distribution form

Figure 7. Results of PostMark.

caused by the WAIT processing that is performed by ISPC.

Figure 6 shows the active statuses of processes in #3, #4,

and #7. Because the priority of a requesting process

(benchmark process) is lower than that of a requested

process (file management server) in #3, the WAIT

processing for a requesting process does not affect the

processing time if the WAIT processing time is shorter than

the inter-core communication time. On the other hand,

because the priority of a requesting process is equal to or

higher than that of a requested process in #4 and #7, the

WAIT processing for a requesting process is added onto the

processing time. Therefore, the processing time of #3 is

shorter only the WAIT processing time (0.1 microseconds)

than the processing times of #4 and #7.

C. PostMark

We used the following parameters for the PostMark

measurements. The number of files was 25, the number of

execution times was 25 times, and the file size was 500 to

10000 bytes. Figure 7 shows the results. From this figure,

we confirmed the following conclusions.

1) The processing times of scenarios where the disk

driver server was distributed is equal to those of the

scenarios where the disk driver server was not distributed.

This is because the block management server does not send

requests to the disk driver server. All of the file data exists

on the file cache when creating files because the number of

files is a few and the total of the file sizes are small.

Therefore, if the distribution forms of the file management

server and the block management server are the same, the

processing time is equal, regardless of the distribution form

of the disk driver server. For example, the processing time

when distributing to four cores (#15) is equal to distributing

to three cores (#11, #13, and #14).

2) If the benchmark process and the file management

server are distributed to the same core, then the processing

time is shorter than that when both processes are

distributed to different cores. This is because inter-core

communications are very limited when files open and close.

Specifically, inter-core communications occur twice when a

file opens and zero times when a file closes while

1

2

3

4

5

6

7

0

200

400

600

800

1000

1200

1400

#1
#3

#4

#7

#11

Number of

processes

P
ro

ce
ss

in
g

 t
im

e
(μ

so
co

n
d

s)

Process distribution form

Figure 8. Result of Bonnie.

distributing to the same core (#3, #5, and #9). Inter-core

communications occur four times when a file opens and

twice when a file closes while distributing to different cores

(#4, #6, and #10). Inter-core communications occur twice

when a file opens and twice when a file closes when

distributing to different cores (#7, #8, and #12).

D. Bonnie

We used the following parameters for the Bonnie

measurement. The number of processes was one to seven,

the file size was 128 KB, the number of references was

4000, and the probability for an update to occur was 10%.

Because the file sizes were small, as they also were in

section III-C, all of the file data existed on the file cache.

Therefore, requests to the disk driver server were limited to

the beginning of the test. Accordingly, for these

measurements, we ignored the distribution of the disk driver

server. Specifically, we measured #1, #3, #4, #7, and #11 in

Table 1. The results are shown in Figure 8. Figures 9 and 10

provide additional analyses of the information in Figure 8.

Figure 9 shows the relationships between the benchmark

process and the processing time. From this figure, we

confirmed the following conclusions.

1) The effects of load balancing for the OS processings

become larger when there are many benchmark processes.

In each case, the processing time increases as the number of

benchmark process increases. However, the rate of the

increase declines as the number of cores increases. This

result is clear when comparing #11 (three cores) with #1

(one core). Specifically, for #1, the processing time

increases about 155 microseconds as the benchmark process

increases. On the other hand, for #11, the processing time

increases only about 50 microseconds as the benchmark

process increases. However, the rate of the increases is

large when the number of benchmark processes is six or

more. This is due to the increasing demands on the file

management server.

2) Distributing the file management server to other

cores is effective. We focus on #3 and #4. Two cores are

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7

P
ro

ce
ss

in
g

 t
im

e
(μ

 s
e

co
n

d
s)

Number of process

#1

#3

#4

#7

#11

Figure 9. Relationship between number of processes and processing time.

0

200

400

600

800

1000

1200

1400

#1 #3 #4 #7 #11

P
ro

ce
ss

in
g

 t
im

e
(μ

 s
e

co
n

d
s)

Process distribution form

Number of

processes:7

Number of

processes:6

Number of

processes:5

Number of

processes:4

Number of

processes:3

Number of

processes:2

Number of

process:1

Figure 10. Relationship between process distribution form and processing

time.

used in each cases. The difference between #3 and #4 is due

to the distributing the block management server or the file

management server to another core. Distributing the file

management server to another other core is effective

because the processing time for #4 is shorter than for #3.

This is because the file management server requires more

processing time than the block management server.

Specifically, for #3, the processing time increases about 127

microseconds for the benchmark process increases. On the

other hand, for #4, the processing time increases about 86

microseconds as the benchmark process increases.

3) Distributing the OS processing to the other core is

effective. We focus on #4 and #7. Two cores are used in

each cases. In scenario #7, the file management server and

the block management server are both distributed to other

cores. This seems to be effective when the number of

benchmark processes increases. Therefore, environments

which execute many benchmark processes are efficient.
Figure 10 shows the relationship between the process

distribution form and the processing time. From this figure,
we confirmed the following conclusion.

0.9

1

1.1

1.2

1.3

1.4

＃1 ＃3 ＃4 ＃7 ＃11

1 core 2 cores 3 cores

P
ro

ce
ss

 t
im

e
 r

a
te

Distribution form

(a) AnT

0.9

1

1.1

read() fread() read() fread() read() fread()

1 core 2 cores 3 cores

P
ro

ce
ss

in
g

 t
im

e
 r

a
te

Running cores

(b) FreeBSD

Figure 11. Rate to processing time in using 1 core for PostMark.

4) The number of cores causes significant differences in

the process distribution form (one core (#1), two cores (#3,

#4, and #7), and three cores (#11)). The overhead from

inter-core communications causes the processing times to

increase because the effect of load balancing is nothing if

the number of benchmark processes is only one. On the

other hand, distributing the OS processing is much more

effective when there are many benchmark processes

running. The effectiveness causes difference by processing

of server that implement OS processing so that someone

can understand comparing #4 with #7.

E. Comparing AnT with FreeBSD

We compared AnT with FreeBSD. The distribution
forms for AnT are #1, #3, #4, #7, and #11. For FreeBSD the
number of cores varied from one to three. Figure 11 and 12

show the rate of processing time when using one core. AnT
was different from FreeBSD when using one core, two cores,
and three cores. Specifically, because of differences in the
distribution of the OS server there are three different
scenarios for AnT for distributing the OS server to two cores.
In FreeBSD, there are two types of file reading interfaces:
read() and fread(). From these figures, we confirmed the
following conclusions.

1) In PostMark, the effect of load balancing of OS

processing for AnT is nothing. Inter-core communications

overhead causes increases in the processing time for AnT

due to the distribution of the OS processing and the fact that

the number of benchmark processes is one in PostMark. On

the other hand, the inter-core communications do not

increase when using FreeBSD because FreeBSD has a

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 3 4 5 6 7

P
ro

ce
ss

in
g

 t
im

e
 r

a
te

Number of benchmark processes

#1

#3

#4

#7

#11

(a) AnT

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 3 4 5 6 7

P
ro

ce
ss

in
g

 t
im

e
 r

a
te

Number of benchmark processes

Running core:1

Running cores:2

Running cores:3

(b) FreeBSD

Figure 12. Rate to processing time in useing 1 core for Bonnie.

monolithic kernel and as a result there is no need to

distribute the OS processing, regardless of the number of

cores. Specifically, in AnT, the processing time increases

about 1.2 to 1.35 times when distributing to two cores, and

1.35 times when distributing to three cores. On the other

hand, in FreeBSD, the processing time increases only about

1 to 1.01 times when running on two cores and 1.01 to 1.03

times when running on three cores.

2) In Bonnie, the effect of load balancing for the OS

processing for AnT is high. When the number of

benchmark processes is many for Bonnie, the processing

time decreases in AnT due to the distribution of the OS

processing. On the other hand, the processing time does not

decrease in FreeBSD even when the number of cores

increases. This is because the OS processing is a bottleneck

in FreeBSD when there are numerous requests from

benchmark processes. For example, if the number of

benchmark processes is five, AnT, which distributes to

three cores, is possible to reduce processing time to 60%.

On the other hand, FreeBSD, which also runs on three cores,

is only able to reduce the processing time to 87%.

IV. CONCLUSION

We evaluated the effect of load balancing for file I/O

process in the OS for AnT OS that runs on multicore

processors.
In the evaluation of basic performances, we showed that

the processing times increase as the inter-core
communications increase. This is due to the distribution of
the OS processing. Differences in the priorities of processes
running on the same core also affect the processing times.

In the evaluation of the PostMark benchmark program,
where the number of benchmark processes is one, we
showed that there is no effect from load balancing for the
disk driver server if all of the file data exists on the file
cache. In addition, we showed that the processing time
decreases when the benchmark process and the file
management server are run on the same core.

In the evaluation of the Bonnie benchmark program,
where the number of benchmark processes is one to seven,
we showed the effect of load balancing is high in
environments where several benchmark processes are
running and numerous requests for benchmark processes are
executed.

Finally, we measured PostMark and Bonnie on FreeBSD,
and compared AnT with FreeBSD. For PostMark, we
showed that processing time increases in AnT because the
inter-core communication overhead increases due to the
distribution of the OS processing. On the other hand, the
processing time in FreeBSD increases very little because
there is no need to distribute the OS processing. For Bonnie,
we showed that it is possible to reduce processing time to
60% in AnT, because it is possible to distribute the OS
processing. On the other hand, With the FreeBSD, it is only
possible to reduce the processing time to 87%, because OS
processing is a CPU bottleneck.

I/O operations over networks are a remaining topic for
further study.

ACKNOWLEDGMENT

This work was supported by JSPS Grant-in-Aid for
Scientific Research (B) Number 24300008.

REFERENCES

[1] J. Liedtke, “Toward real microkernels,” Communications of the
ACM, Vol.39, No.9, pp.70-77, 1996.

[2] A.S. Tanenbaum, J.N. Herder, and H. Bos, “Can we make operating
systems reliable and secure?,” IEEE Computer Magazine, Vol.39,
No.5, pp.44-51, 2006.

[3] D.L. Black, D.B. Golub, D.P. Julin, R.F. Rashid, R.P. Draves, R.W.
Dean, A. Forin, J. Barrera, H. Tokuda, G. Malan, and D. Bohman,
“Microkernel operating system architecture and mach,” Journal of
Information Processing, Vol.14, No.4, pp.442-453, 1992.

[4] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E.
Weissmann, “Power-Management Architecture of the Intel
Microarchitecture Code-Named Sandy Bridge,” IEEE Micro, Vol.32,
No.2. pp.20-27, 2012.

[5] AnT Group, “AnT project,” 2005; http://www.swlab.cs.okayama-
u.ac.jp/lab/tani/research/AnT/index.html.

[6] B.O. Gallmeister, “POSIX.4,” O’Reilly, pp. 128-129 and 389-391,
1995.

[7] J. Katcher, “PostMark: A New File System Benchmark, ” Technical
Report TR3022, Network Appliance, 1997.

[8] T. Bray, “The Bonnie home page,” 1996;
http://www.textuality.com/bonnie/

