
Novel Control Method for Preventing Missed Deadlines in Periodic Scheduling

Yuuki Furukawa, Toshihiro Yamauchi and Hideo Taniguchi

Graduate School of Natural Science and Technology

Okayama University

Okayama, Japan

furukawa@swlab.cs.okayama-u.ac.jp, {yamauchi, tani}@cs.okayama-u.ac.jp

Abstract Processing that is executed periodically must be

completed before the next release time. If such processing is
not completed before the next release time, the processing that

had been scheduled is not executed. This is complicated by the

fact that the execution time from release to the end of

periodically executed processing is not constant, due to

changing I/O processing time and the influence of timer

interrupts. To solve this, we propose a system that records the

execution time of the processing, judges whether the processing

will be finished before the specified deadline, and can execute

appropriate processing that can be completed within the

remaining time. In this paper, we describe the design and
evaluation of our system.

Keywords-deadline-miss; periodic scheduling; control

overhead; real-time system

I. INTRODUCTION

Processings that control the motors and sensors of robots
are executed periodically. These periodically executed
processings must be completed before the next release time.
Many real-time scheduling algorithms have been proposed to
realize periodic scheduling [1] [4]. However, there is no
method that ensures that the processing does not miss its
completion deadline. If periodically executed processing is
not completed before its specified deadline; the processing
scheduled for execution in the next period is not executed,
causing a problem. For example, in existing methods, missed
deadline is ignored and processing continues, or processing
is forced termination. Obviously, if a processing that misses
a specified deadline is executed continually, then that
processing cannot be said to be executing exactly
periodically. Conversely, forcing a processing that misses a
specified deadline to terminate, adversely affects processings
related to that processing.

On the other hand, the execution time of periodically
executed processing from release to the end is not constant
due to changing I/O processing time and the influence of
timer interrupts. In embedded systems such as robots [5], the
processing periods are shortened so as to realize highly
precise control, and the influence of the dispersion for the
execution time is large. In addition, the processing tends to
be developed highly [6]. Therefore, there are many requests
for functional expansions. Hence, it is essential that a
developer knows precisely time when a processing will be
finished and the release time of the next period.

Existing systems uses a worst-case execution time to
confirm whether a periodic processing satisfy deadlines.
There are analysis methods to predict worst-case execution
time. The result values of worst-case execution time
prediction are pessimistic. Therefore, available execution
time for the periodic processing is shortened. In addition, the
existing methods need knowledge and experience for the
periodic processing, and the cost of the developer is high.

Therefore, the proposed system records the processing
execution time, judges whether the processing will be
completed before the specified deadline, and can execute
appropriate processing that will be completed within the
remaining time. The proposed system can prevent missed
deadlines in periodic scheduling. Hence, the proposed
method reduces the limitation of the periodic processing
execution time. Moreover, the proposed method can support
the creation of the periodic processing for the developer. In
this paper, we describe the design and evaluation of our
system.

II. PERIOD EXCESS PREVENTION METHOD

The proposed method (called the period excess
prevention method) judges whether processing will be
finished before the time when the processing must be
finished (the end time), and executes processing appropriate
for the remaining time (emergency processing) if it finds that
the originally scheduled processing will not be completed on
time. The period excess prevention method has the following
characteristics:
(1) Periodic processing is divided into multiple modules, and
the state of the execution for that processing is monitored.
(2) The execution time of the modules is saved.
(3) Emergency processing that will be completed within the
remaining time is executed if the system judges that the
originally scheduled processing will not be finished before
the end time.

The underlying basic mechanism of our period excess
prevention method is depicted in Fig. 1. We assume a user
mode process has a periodic processing. An operating system
(kernel) controls the periodic execution of the process. The
period excess prevention method divides periodic processing
into multiple modules, and monitors the state of execution
for that processing. A module is part of a divided periodic
processing and is executed only once per period. At the time

yamauchi
タイプライターテキスト
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Figure 1. Basic mechanism of proposed method

of program creation, the developer divides the periodic
processing to any modules with optional length. As each
module is completed and the next module executed (module
transition), periodic processing invokes a system call and
sends that information of the module transition to the
operating system. The operating system records the time of
module transition, computes the execution time for each
module based on this module transition time, and then saves
it in memory.

When timer interrupts occur, the system compares the
time remaining from the current time to the end time
(remaining time) and the remaining periodic processing
execution time (remaining execution time), and judges
whether the processing will be finished before the specified
end time. The remaining time is the difference in time
between the time t of the timer interrupt and the end time T.
The remaining execution time is the value obtained by
subtracting from the total execution time j=i

nT(mj) of the
module that has not finished to the time from the start time x
of the current module mi to time t. If the value of the
difference in time between the remaining time and the
remaining execution time is greater than or equal to
threshold, the system determines that the processing will be
completed before the end time. Otherwise, the system
determines that the processing will exceed the deadline and
calls the emergency processing. In addition, threshold E is
used to avoid missing the deadline due to dispersion of
module execution time and control overhead.

III. DESIGN

A. Design Policy

We will now explain the design policy of our period
excess prevention method.
(1) Function division between process and operating system.

In the proposed method, the part of the processing that
depends on the process is processed by the process in order
to minimize the interaction between processes and operating
system and to reduce control overhead.
(2) Separation of procedure division and management data
division.

Figure 2. Basic structure of the proposed system

Figure 3. Details for the periodic processing table and execution condition

table

By separating procedure division and management data
division, the functional expansion for the execution of
multiple processes is facilitated.

B. Basic structure

The basic structure of the proposed system is depicted in
Fig. 2, and explained below. In the process, periodic
processing and emergency processing comprise a procedure
division, while an execution information table comprises a
management data division. The operating system has a
transition detection unit, a module management unit, an
excess judgment unit, an emergency processing call unit, and
a periodic execution control unit all comprising the
procedure division. In addition, it has a periodic processing
table, an execution condition table, and a periodic execution
control management table that together constitute the
management data division. The details for the periodic
processing table and the execution condition table are shown
in Fig. 3.

Periodic processing is executed periodically by the
periodic execution control unit, and sends information of the
module transition to the operating system. In addition, when
processing in one period is finished, periodic processing
sends the requirement of a wait to the periodic execution
control unit.

Emergency processing is requested by the emergency
processing call unit when it is judged that the periodic
processing will not finish before the end time.

Figure 4. Processing flow

The execution information table has the module
execution time for each module in the periodic processing.

The transition detection unit updates the current module
identifier in the periodic processing table to the next module
identifier when it detects module transition. In addition, the
transition detection unit records the time of module transition
in the execution condition table.

The module management unit manages the registration
and unregistration of the periodic processing. In addition,
when the periodic processing for one period is finished, the
module management unit calculates the module execution
times and records those in the periodic processing table.

The excess judgment unit compares the remaining time
and the remaining execution time at the timer interrupt, and
judges whether the periodic processing will be finished
before the end time.

The emergency processing call unit calls the emergency
processing if the excess judgment unit determines that the
processing will not finish before the end time.

The periodic execution control unit periodically releases
the processes that have periodic processing.

The periodic processing table manages the information
necessary to determine if excess periodic processing will
occur; while the execution condition table manages the
execution condition of the periodic processing in the recent
period; and the periodic execution control management table
manages the information necessary to execute the processes
periodically.

If a process has a periodic processing table and an
execution condition table, the interaction between processes
and operating system decreases at the time of module
transition. However, the control overhead becomes large at
the timer interrupt because it is necessary for the operating
system to refer to a periodic processing table and an
execution condition table in a process. Therefore, an
operating system has the periodic processing table and the
execution condition table in Fig. 2. In addition, an operating
system has functional units in Fig. 2 to reduce the control
overheads.

TABLE I. INTERFACE

Function Interface

1
Registration of

periodic processing

register(modulenum, rfunc, infomt);

modulenum: the number of modules

rfunc: address of emergency processing

infomt: address of execution information

table

2
Start of periodic

execution control

enter(prio, usec);

prio: priority

usec: period

3 Module transition next();

4 Wait wait();

5
Exit from periodic

execution control
exit();

C. Processing flow

The processing flow of the process for the system is
outlined in Fig. 4, while the interface is shown in Tab. 1. As
outlined in Fig. 4, the processing of the process involves the
initialization and storing of the execution information table,
the registration of periodic processing, the sending of module
transition information, and the starting, waiting, and exiting
of periodic execution control. In addition, at the timer
interrupt, the operating system judges the excess periodic
processing. We will look at each stage of the process and the
processing of the timer interrupt below.

Initialization of the execution information table is
achieved by a process that records the ideal value or the past
execution value for module execution time in the execution
information table. Moreover, the execution information table
is stored in order to utilize the past module execution time
for proposed method. Before the process exits the run, the
module execution time of the execution information table is
saved to a file, where it becomes non-volatile.

Registration of periodic processing requires that the
periodic processing information be registered in the periodic
processing table. When registration of periodic processing is
required, control is transferred to the module management
unit. The module management unit then registers the number
of modules used for the periodic processing, the address of
emergency processing, and the address of the execution
information table in the periodic processing table. In addition,
calculating the data size from the number of modules, the
module management unit allocates data area to store the
module execution times for the periodic processing table and
execution condition table, as well as the module transition
time; further, it copies the module execution time in the
execution information table to the periodic processing table.

The start of periodic execution control starts periodic
execution control of the process. When periodic execution
control is required to start, the periodic execution control unit
registers the priority and the period of the process to the
periodic execution control management table. Consequently,
this process is released periodically by the periodic execution
control unit.

In the module transition processing, transition
information is sent to the operating system. When this
information is sent, the transition detection unit gets the

Figure 5. Example for description of programs

current time, records it in the execution condition table, then
updates the current module identifier in the periodic
processing table to the next module identifier.

In the wait processing, information for the end of one
period processing is sent to the operating system. When wait
is required, control is transferred to the periodic execution
control unit. The periodic execution control unit changes the
process to the wait state until its next release time, and
control is transferred to the module management unit. The
module management unit gets the time of module transition
from the execution condition table, calculates module
execution times, and stores them in the execution condition
table. Following this, predicted values for module execute
times in the next period are calculated and stored in the
periodic processing table. In addition, these predicted values
are copied to the execution information table. Let us assume
that the predicted value of the x-times module execute time
is T0x while its actual value is Tx, the predicted values in the
next period is calculated using the following formula:

T0x+1 = T0x + y(Tx - T0x) (y: any value) (1)
In the exit processing, the periodic processing exits

periodic execution control of the process. When exit is
required, the periodic control unit deletes the priority and the
period of the periodic processing from the periodic control
table, and control is transferred to the module management
unit. The module management unit initializes periodic
processing table and the execution condition table, and frees
the data area that was allocated at the time of registration.

At the timer interrupt, the periodic execution control unit
refers to the periodic execution control table, and releases all
processes scheduled to be released at the same time if there
are processes scheduled to be released at the timer interrupt,
then control is transferred to the excess judgment unit.

The excess judgment unit gets the end time from the
periodic execution control table and calculates the time
remaining. In addition, the excess judgment unit gets the
predicted values of the module execution times from the
periodic processing table and calculates the remaining
execution time. Following this, the excess judgment unit

compares the remaining time with the remaining execution
time, and judges whether the periodic processing will exceed
the end time. If the excess judgment unit determines that the
processing will exceed the end time, control is transferred to
the emergency processing call unit. The emergency
processing call unit then gets the address of the emergency
processing from the periodic processing table, and then
requests emergency processing. The current module
identifier and the remaining time are then sent to the process.
The emergency processing executes the appropriate
processing based on the current module and the time
remaining. After emergency processing, the process is
terminated.

D. Description of programs

An example program description is shown in Fig. 5.
Before periodic processing begins, the process reads the file
and initializes the execution information table. In addition,
the process calls register() and sends the number of modules
in the periodic processing, modulenum, the address of
emergency processing, rfunc, and the address of the
execution information table, infomt. To call enter(), the
process is executed periodically with priority prio and period
usec. In Fig. 5, main1() and main2() are modules. The
periodic processing calls next() at the time of module
transition, and wait() at the end of one periodic processing.
When wait() is called, the execution information table is
updated. When the periodic processing exits the periodic
execution control, exit() is called to unregister the periodic
processing that was registered by register(). If it is
determined that the periodic processing will exceed the end
time, the operating system requests emergency processing. In
Fig. 5, moduleid represents the current module identifier, and
time represents the remaining time. For example, if the
current module identifier is 0 and the remaining time is 5, the
operating system calls rfunc(0, 5). When rfunc() is called, the
process chooses and executes the appropriate processing
suitable for the current module identifier and the remaining
time.

IV. EVALUATION

A. Point of view

Using the proposed method, the state of the periodic
processing can be known, and processing completed before
the deadline. However, in order for the state of the periodic
processing to be known, the periodic processing invokes a
system call and sends module transition information. In
addition, it is necessary for the operating system to calculate
module execution times and to judge the excess periodic
processing at the timer interrupt. Consequently, control
overheads occur in the following three areas of processing:
(1) Module transition

In the proposed method, the periodic processing calls the
system in order to send module transition information.
Therefore, the module transition processing time is from the
system call time to the time the system call returns.

TABLE II. MEASUREMENT ENVIRONMENT

CPU Intel Pentium II 400MHz

Memory 96 MB

Timer interrupt period 1ms

Connection None

TABLE III. CONTROL OVERHEADS (NUMBER OF MODULES = 10)

Processing content Processing time (clocks)

Module transition

overall system call

transition detection unit

429 (1.07 s)

132 (0.33 s)

Wait

overall system call

module management unit

2011 (5.03 s)

1747 (4.37 s)

Timer interrupt

overall timer interrupt

excess judgement unit

1507 (3.77 s)

190 (0.48 s)

Emergency processing call 296 (0.74 s)

(2) Wait
When the periodic processing for one period is finished,

a wait is sent. Then, in the proposed method, n module
execution times are calculated, and the predicted value of
each module execution time is calculated. In addition, these
predicted values for the module execution times are copied
to the execution information table.
(3) Timer interrupt

For periodic execution control, at the timer interrupt, the
operating system judges whether there are processes
scheduled to be released, and releases those processes. In the
proposed method, after the above processing is finished, the
remaining time and the remaining execution time are
computed, and it is judged whether the periodic processing
will exceed the end time.

We measured the time taken by the above three
processings, and analyzed it in relation to control overhead.
The measurement environment is shown in Tab. 2. The rdtsc
instruction was used to record the time.

B. Control overheads

We measured the processing times of module transition,
wait, and timer interrupt for 10 modules in a periodic
processing. The measurement results are shown in Tab. 3.
The result for the transition detection unit for module
transition is the value obtained by subtracting call processing
and system call return time from the module transition
processing time. The result for the module management unit
is the processing time from confirmation for the registration
of periodic processing to initialization of the module
identifier. The processing time for the timer interrupt in Tab.
3 is the result for the case when emergency processing is not
called. The result for the excess judgment unit is the
processing time taken to judge whether the processing will
exceed the end time. In addition, the result for the emergency
processing is the value from the time just before emergency
call processing to the time immediately after call return. In

this measurement, the emergency processing executes no
operation.

For module transition, the processing time for the
transition detection unit was approximately 30% of the
processing time for the overall system call, and the control
overhead for the system call is large. Because the total time
for module transition in one period is dependent on the
number of modules, the control overhead is large if there are
a large number of modules.

The processing time for the wait is longer than the result
for the module transition unit and excess judgment unit. This
is because the processing of the wait includes the following:
calculation of the module execution time, storing of the data
in the periodic processing table and the execution condition
table, and copying of the module execution time from the
periodic processing table to the execution information table.
In addition, we varied the number of modules used in the
range from 1 to 10, and measured the processing time in
each case. From this result, we found that the processing
time for the module management unit can be given by the
following formula:

370 + 150(n - 1) (n: the number of modules) (2)
In addition, the processing time for system calls and
changing of the process to a wait state is approximately 300
clocks and is constant.

For the timer interrupt, the processing time for the excess
judgment unit was approximately 12% of the processing
time for the entire timer interrupt. The excess judgment unit
adds the execution time of the modules that did not finish at
the timer interrupt. Therefore, the processing time increases
if there are a large number of modules that are not finished.
However, the dispersion for the processing time for the
above calculation is small, and we confirmed that the
dispersion of the processing time for the excess judgment
unit was approximately 70 clocks for number of modules in
the range 1-10.

C. Discussions

1) Ratio of the processing time for one period
We discuss the processing times of module transition unit,

and the transition detection unit and excess judgment unit for
one period.

The number of times module transition is called is equal
to the number of modules for periodic processing in one
period. In Tab. 3, the processing time for one module
transition is 1.07 s. In other words, if the number of
modules is 1 and the period for the periodic processing is 1
ms, then the processing time for module transition would
account for approximately 0.1%. However, the ratio for the
processing time for module transition increases if the period
is short and there is a large number of modules. For example,
if the number of modules is 100 and the period for periodic
processing is 1 ms, then the processing time for module
transition will account for approximately 10%. Therefore, we
can decrease the time taken to process the modules if we
divide the periodic processing into a very small number of
modules at the time of periodic processing division. The
periodic processing division is discussed in section 4.C.2.

The module management unit calculates all module
execution times when wait is required. Therefore, the
periodic processing of the module management unit is
proportional to the number of modules. In Tab. 3, the
processing time of the module management unit is 4.37 s if
the number of modules is 10, and it is approximately 0.5% of
the total if the periodic processing period is 1 ms. As in the
module transition, the ratio for the module management unit
processing time increases if the period is short and there is a
large number of modules. For example, if the number of
modules is 100 and the periodic processing period is 1 ms,
then the module management unit processing time will
account for approximately 3.8% of the total. Therefore, as in
the module transition, it is necessary to take the number of
modules into consideration when dividing the periodic
processing.

The excess judgment unit is executed at every timer
interrupt. In periodic execution control, one period of
periodic processing is an integral (N) multiple of the period
of timer interrupt. Therefore, the processing time ratio of one
excess judgment for the period of a timer interrupt is equal to
that of N times the excess judgment for the period of
periodic processing. In Tab. 3, the periodic processing of the
excess judgment unit is 0.48 s, and accounts for
approximately 0.05% of the 1 ms period for the timer
interrupt. Because the period for motor control of a robot is
in the range 10 ms to 100 s, if the periodic processing
period is 100 s, it is approximately 0.5% even if the
processing time ratio for the excess judgment unit is large,
and it is small.

2) Division of periodic processing
We discuss the division of the periodic processing in this

section.
The number of modules influences the total processing

time for module transition and the processing time for the
wait. In addition, the control overhead is proportional to the
number of modules. Furthermore, module execution time
influences the error value of the remaining execution time
(the error value of the remaining execution time easily
increases if the dispersion of the module execution time is
large). The error in the remaining execution time is the value
of the difference between the computed value for the
remaining execution time and the actual remaining execution
time. This is because the remaining execution time is
computed by subtracting the time from the start time of the
current module to the current time from the total execution
time of the module that has not yet finished. Therefore, if the
dispersion of the execution time for the periodic processing
is large, the precision of the excess judgment becomes high
due to an increase in the number of modules. By increasing
the number of modules to shorten the execution time per
module, the error in the execution time remaining becomes
small. In addition, the dispersion of the execution time is
small and the execution time for periodic processing is
constant; by reducing the number of modules, the control

overhead becomes small. In other words, by combining the
modules in which the dispersion of the execution time is
small and dividing the periodic processing in which the
dispersion of the execution time is large into small modules
with short execution times, the control overhead becomes
small and the excess judgment becomes more precise.

3) Change factors for the execution time
If the dispersion of the execution time for the periodic

processing is large and these change factors accumulate, the
processing is more likely to exceed the deadline. The
following are considered change factors:
(1) I/O processing time
(2) Interrupt processing (timer, end of I/O processing, etc.)

V. CONCLUSION

In this paper, we explained the basic underlying
mechanism of our period excess prevention method and
presented the design policy. In addition, we described its
basic structure and interface. We also explained the flow of
each process.

In the proposed method, the periodic processing invokes
the system call at the time of every module transition. In
addition, the operating system records module execution
times, and judges whether the periodic processing will
exceed the deadline at each timer interrupt. We evaluated the
control overhead for one period and showed that the
processing time of the excess judgment unit is small.

In addition, we discussed the division of periodic
processing and change factors for the execution time.

Our future work will involve the clarification of the
change factors.

ACKNOWLEDGMENT

This research was partially supported by Grant-in-Aid for
Scientific Research 24300008.

REFERENCES

[1] C. Liu, J, Layland, "Scheduling algorithms for multiprogramming in a

hard real-time environment," Journal of the ACM, Vol.20, pp.46-61,
1973.

[2] G. C. Buttazzo, "Rate monotonic vs. EDF: judgment day," Real-Time

Systems, The International Journal of Time-Critical Computing,
Vol.29, Issue 1, pp.5-26, 2005.

[3] S. Cho, S. Lee, A. Han, K. Lin, "Efficient Real-Time Scheduling

Algorithms for Multiprocessor Systems," IEICE Transactions on
Communications, Vol.E85-B, No.12, pp.2859-2867, 2002.

[4] H. Cho, B. Ravindran, E. D. Jensen, "An Optimal Real-Time
Scheduling Algorithm for Multiprocessors," Proceedings of the 27th

IEEE International Real-Time Systems Symposium, pp.101-110,
2006.

[5] K. Yokoi, F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, H.

Hirukawa, "Experimental Study of Humanoid Robot HRP-1S,"
International Journal Robotics Research, Vol.23, No.4-5, pp.351-362,

2004.

[6] G. Buttazzo, "Research trends in real-time computing for embedded
systems," ACM SIGBED Review, Vol.3, Issue 3 pp.1-10, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

