
Access Control for Plugins in Cordova-based
Hybrid Applications

Naoki Kudo and Toshihiro Yamauchi
Graduate School of Natural Science and Technology,

Okayama University, Okayama, Japan
Email: yamauchi@cs.okayama-u.ac.jp

Thomas H. Austin
San Jose State University, San Jose, USA

Email: thomas.austin@sjsu.edu

Abstract—Hybrid application frameworks such as Cordova
allow mobile application (app) developers to create platform-
independent apps. The code is written in JavaScript, with special
APIs to access device resources in a platform-agnostic way. In this
paper, we present a novel app-repackaging attack that repackages
hybrid apps with malicious code; this code can exploit Cordova’s
plugin interface to tamper with device resources. We further
demonstrate a defense against this attack through the use of
a novel runtime access control mechanism that restricts access
based on the mobile user’s judgement. Our mechanism is easy
to introduce to existing Cordova apps, and allows developers to
produce apps that are resistant to app-repackaging attacks.

I. INTRODUCTION

Hybrid application (app) frameworks are more and more
popular in developing platform-independent apps. Unlike con-
ventional mobile apps, hybrid apps is largely implemented
using platform-independent languages such as HTML and
JavaScript, with minimal use of platform-dependent languages
such as Java on Android or Objective-C and Swift on iOS.

Thus, a major advantage of hybrid apps is that mobile
developers can share source code among different platforms.
In addition, hybrid apps execute within WebView for using
HTML and JavaScript.

Hybrid apps can access device resources through JavaScript
by using a bridge that communicates between JavaScript
code and platform-dependent language code. Hybrid apps are
typically developed using hybrid application frameworks such
as Cordova [1]. Cordova apps use plugins as interfaces to
access device resources.

In this paper, we present a novel app-repackaging attack
that repackages Cordova apps with malicious code. App-
repackaging attacks can tamper with device resources by
exploiting Cordova’s plugin interface. In addition to these
attacks, we address cross-site scripting attacks against hybrid
apps [2]. These attacks need to use plugins to access device
resources. To address these attacks, we propose an access
control mechanism that restricts access at runtime based on
the mobile user’s judgement.

Several works have introduced more fine-grained access
control mechanisms in hybrid apps such as NoFrak [3], Jin et
al. [4], and Mohamed et al. [5]. None of the previous research
considered access control based on a mobile user’s judge-
ment. In contrast, MobileIFC [6] proposes an access control
mechanism based on the mobile user’s judgement. However,

MobileIFC is difficult to introduce to existing Cordova apps.
On the other hand, our mechanism can control access to device
resources for plugins based on the mobile user’s judgement
at runtime, and can easily be applied to existing Cordova
apps. Using our technique, it is possible to use Cordova apps
more safely. Note: In this study, we focused on the Cordova
framework for Android. The contributions of this paper are as
follows:

• We present a novel app-repackaging attack that repack-
ages Cordova apps with malicious code. Malicious attack-
ers can inject JavaScript code into existing Cordova apps.
Moreover, app-repackaging attacks are more vulnerable
to this form of code injection than Android apps. There-
fore, this attack represents a significant threat because
attackers can inject any code more easily.

• We propose an access control mechanism that restricts
access to device resources based on the user’s judge-
ment for mitigating app-repackaging attacks and cross-
site scripting attacks. Our mechanism is easy for app
developers to introduce to existing Cordova apps since
they do not need to modify the app’s source code.

II. CORDOVA APPS

A. Structure of Cordova Apps

1) Structure: Fig. 1 shows the structure of Cordova apps
on Android. Cordova apps use WebView and a Cordova
framework. WebView shows web pages used by HTML and
JavaScript. The Cordova framework helps app developers to
develop Cordova apps by using HTML and JavaScript. As
shown in the Fig. 1, Cordova apps can access device resources
by using plugins. By using plugins, these apps can access
device resources across different platforms, such as iOS and
Windows Phone. Cordova apps access device resources as
follows:

(1) The Cordova app accesses the Java plugin from the
JavaScript plugin by using the bridge.

(2) The Cordova app accesses device resources from the
Java plugin.

2) Plugins: A plugin is an interface to access device
resources, and is divided into two parts: a JavaScript plugin
and a Java plugin. The JavaScript plugin defines JavaScript
APIs to access Java methods, while the Java plugin defines

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



������� ���

�	���
��

���
�	����������	�������
��	��

���
�

����
����	���
�	

��������������
�� 

����
����	���
�	�

����� 

!�
�����"���

���#����#�

����"	
���
�	

������� $������%

�������
�����"�
	 �������"�
	

�& 

�' 

Fig. 1. Structure of Cordova apps on Android.

���������	�	��	
���������	
���


���	���

����

�	��	
	�
���������	
������


���	���

�����	
	�
���������	
������


���	���

�	��	
	�
����
������
���	���

�����
	�
����
�������

�����	
	�
����
������


���	���

���


��
	��
�


�	���
����
���


�
������
�

���

 !

�"�#���


�"�#�$�

�"�


��
	�
%&'


(��	���	�
�

���

 !

�)�#���


�)�#�$�

�)�


�������
����(��*

�����	
���������	
���


���	���

Fig. 2. Flow of access to device resources for plugins in Cordova framework.

Java methods, which can access device resources. Cordova
apps can access device resources through JavaScript code by
using JavaScript APIs.

B. Flow of Access to Device Resources for Plugins

Fig. 2 shows a flow of access to device resources for plugins.
Cordova apps access device resources through JavaScript as
follows:

(1) Cordova determines whether JavaScript code calls a
JavaScript method for the plugin.
(A) When JavaScript code calls the JavaScript method

for the plugin, the Cordova app starts the JavaScript
plugin execution and calls the JavaScript API.

(B) When JavaScript code does not call the JavaScript
method for the plugin, the JavaScript code com-
pletes execution.

(2) Cordova determines whether the URL is whitelisted.
(A) When the URL is whitelisted, the Cordova app

starts the Java plugin execution and calls the Java
method corresponding to the JavaScript API.

(B) When the URL is not whitelisted, the JavaScript
plugin completes execution.

(3) The Cordova app accesses device resources through the
Java method and then the Java plugin and the JavaScript
plugin completes execution.

C. Problem of Cordova Apps

By using plugins, Cordova apps can access device resources
through JavaScript. Therefore, Cordova apps can easily use
device resources across different platforms such as iOS and
Windows Phone by using plugins. However, when malicious
attackers exploit plugins, they can tamper with device re-
sources through JavaScript.

III. CORDOVA PLUGIN ATTACKS

A. Threat Model

Although their ability to attack is limited to plugins read
by the Cordova app, when malicious attackers exploit Cor-
dova’s plugin interface, they can tamper with device resources
through JavaScript as mentioned in Section II-C. In addition,
Jin et al. [2], Mohamed et al. [5], and Brucker et al. [7] show
that malicious attackers can tamper with device resources by
exploiting plugins. Therefore, app developers need to address
this problem to protect device resources from attackers. We an-
alyze the structure of plugins and find a novel app-repackaging
attack that injects malicious code into Cordova apps. Two
forms of code injection attacks are focused on in this paper:

(1) App-repackaging attack
Malicious attackers can inject JavaScript code by
repackaging Cordova apps, which are more vulnerable
to this form of code injection than Android apps. App-
repackaging attacks are significant threats because at-
tackers can inject any code more easily.

(2) Cross-site scripting attack
Jin et al. [2] demonstrate that hybrid apps including
Cordova apps have broad attack surfaces such as Wi-Fi
access points and 2D barcode, and malicious attackers
can inject code by using cross-site scripting vulnerabil-
ities.

We refer to both of these attacks as Cordova plugin attacks,
since they leverage Cordova’s plugin interface. Note that in
Cordova plugin attacks we focus on the problem that malicious
attackers can inject the JavaScript code exploiting Cordova’s
plugins to access device resources.

B. App-Repackaging Attack

1) Structure of Apk Files for Android Cordova Apps:
Before explaining how to inject JavaScript code by repack-
aging Cordova apps, we show the architecture of apk files
on Android Cordova apps in Fig. 3. The app source code of
HTML and JavaScript are stored in /assets/www/*.



/.app.apk

AndroidManifest.xml

/assets

/www

index.html

cordova.js

*.js

/res

/xml

config.xml

classes.dex

Fig. 3. Structure of apk files for Android Cordova apps.

2) How to Inject JavaScript by Repackaging Cordova Apps:
The process of injecting JavaScript code by repackaging
Cordova apps takes place as follows:

(1) Extracting apk files.
(2) Injecting malicious JavaScript code into index.html or js

files of /assets/www/.
(3) Repackaging apk files.

When malicious attackers exploit Cordova plugins to inject
JavaScript code, they can tamper with device resources.

3) Comparison with Repackaging Android Apps: Android
malware using repackaging has increased in Android markets.
Attackers repackage popular original Android apps in Google
Play and spread repackaged Android apps in third party
markets.

When attackers inject malicious code by repackaging An-
droid apps, they exploit Java bytecode in class files extracted
from classes.dex by using reverse engineering tools such
as dex2jar [8] and Java Decompiler [9]. Moreover, they
disassemble classes.dex into readable text files to know the
application’s operation. Therefore, repackaging Android apps
takes time and effort to exploit Java bytecode and know the
application’s operation. In addition, when mobile developers
use tools such as ProGuard [10] to obfuscate Java code on
Android apps, repackaging Android apps becomes difficult
for attackers because attackers cannot know the application’s
operation exactly.

In contrast, when attackers inject malicious code by repack-
aging Cordova apps, they exploit JavaScript code in /as-
sets/www/ such as index.html and js files. Unlike repackaging
Android apps, attackers can read the raw source code of these
files directly. Moreover, since Cordova apps are typically writ-
ten in HTML and JavaScript, the standard code obfuscation
tools on Android apps are useless. In addition, even if mobile
developers use JavaScript obfuscation tools on Cordova apps,
attackers can inject JavaScript code easily because these tools
cannot obfuscate the source code written in HTML such as
HTML tags. Therefore, Cordova apps are more vulnerable

to repackaging attacks than Android apps. In consequence,
Cordova apps need a strong defense to mitigate the app-
repackaging attack.

C. Cross-Site Scripting Attack on Cordova Apps

In this section, we explain cross-site scripting attacks
demonstrated in Jin et al. [2]. In a typical cross-site scripting
attack, attackers inject JavaScript code into the data field
(such as in a form). Since we applications only interact with
web servers, attackers use the site for their code to reach
the victim’s browser. On the other hand, hybrid apps have a
much broader attack surface than web applications because
they interact with many forms of entities, such as other
apps, 2D barcode, Wi-Fi access points, other mobile devices,
data sent by others or downloaded from external resources,
etc. Therefore, attackers can use many forms of entities to
inject JavaScript code compared to web applications. In one
example, Jin et al. inject HTML tags and JavaScript code into
an existing hybrid app by using QR code and steal a device’s
geolocation.

D. Discussion

In this section, we consider whether conventional An-
droid system permission can protect device resources against
Cordova plugin attacks. When Cordova apps access device
resources by using plugins, they request Android permissions.
Prior to Android 6.0, Android apps requested permissions
at install-time. Since Android 6.0, Android apps request any
permissions belonging to the “Dangerous Permissions” group
at runtime. Requesting permissions at install-time cannot pro-
tect device resources against Cordova plugin attacks because
it cannot detect access to device resources at runtime. On
the other hand, requesting permissions at runtime can protect
device resources against Cordova plugin attacks because it can
detect access to device resources before plugins access them.
Therefore, since Android 6.0, Cordova apps can prevent ma-
licious JavaScript from accessing device resources for plugins
belonging to the “Dangerous Permissions” group.

However, from Android 6.0 upwards, Android apps must
set the targetSdkVersion to 23 or over for requesting permis-
sions at runtime in the AndroidManifest.xml. According to
Mutchler et al. [11], 93% of 60,086 Android apps had set the
targetSdkVersion to under 23. Moreover, the attacker could
change the targetSdkVersion’s value to under 23 in order to
facilitate Cordova plugin attacks. Therefore, it is assumed that
many Cordova apps request permissions at install-time but not
at runtime because they set the targetSdkVersion to under 23.

Consequently, many Cordova apps are vulnerable to Cor-
dova plugin attacks because they request Android permissions
at install-time. Therefore, Cordova apps need a strong defense
to protect device resources from Cordova plugin attacks.

IV. ACCESS CONTROL FOR PLUGINS

A. Concept of Proposed Technique

To mitigate Cordova plugin attacks as described in Section
III-A, we propose an access control mechanism that restricts



���������	
�����

����
�����

���
������	


�������	���

���
�������
�
�����

�������


������
���	�����

� �
�������
���	�������!

����
��
"����
��

� �
�������� 	�� ��#��$�


���	�������!

�����%�


������
������


�&�
'��
������


����������
(���
���	��
	�


	 ��
�����)

�&���%�

*+�

�&�����

,-

Fig. 4. Overview of the proposed technique.

access to plugins before accessing device resources at runtime.
The purpose of the proposed technique is to prevent malicious
JavaScript code from exploiting Cordova’s plugins to access
device resources. By introducing the proposed technique, when
mobile users use a vulnerable Cordova app, they can control
access to device resources for plugins before accessing device
resources against Cordova plugin attacks.

Our access control mechanism can address Cordova plugin
attacks. Moreover, app developers can easily integrate the
technique into existing Cordova apps since they do not need
to modify the app’s source code.

B. Design

Fig. 4 shows an overview of the proposed technique, which
controls access to device resources from JavaScript code as
follows:

(1) A Java method that accesses the Java plugin is hooked.
(2) Our mechanism collects the necessary information from

the method.
(3) Our mechanism determines whether access to this plugin

has been granted previously.
(A) When access to this plugin has not been granted, a

dialog to decide the plugin permission is displayed.
(B) When access to this plugin has been granted, the

Cordova app starts the Java plugin execution and
accesses device resources.

(4) Our mechanism controls this plugin according to the
mobile user’s judgement.
(A) When the mobile user grants access to device

resources, the Cordova app starts the Java plugin
execution and accesses device resources.

(B) When the mobile user denies access to device re-
sources, the JavaScript plugin completes execution.

C. Challenges

To implement the proposed technique, we need to consider
the following challenges.

C1 Controlling access to device resources for plugins
based on the mobile user’s judgement.
In vulnerable Cordova apps, the proposed technique
needs to prevent JavaScript code from accessing de-
vice resources through the Cordova plugin interface.

C2 Considering information that the dialog displays to
the mobile user.
The proposed technique displays a dialog for access
control based on the mobile user’s judgement. The
mobile user decides whether the Cordova app ac-
cesses device resources for the plugin based on the
information of the dialog.

C3 Avoiding repeated dialogs.
Once the user has granted access to a resource for
a plugin, the plugin is assumed to retain that per-
mission going forward. This design avoids excessive
dialog messages that are inconvenient the mobile
user.

D. Our Solution

1) Controlling Access to Device Resources for Plugins
Based on the Mobile User’s Judgement: The proposed tech-
nique displays a dialog based on the plugin name extracted
from the hooked Java method. The mobile user decides
whether the Cordova app accesses device resources based on
the information in the dialog. When the mobile user denies
access to device resources for the plugin, Cordova apps cannot
start the Java plugin execution.

2) Considering Information that the Dialog Displays to
the Mobile User: Since the mobile user decides whether
the Cordova app accesses device resources for the plugin,
it is necessary for the mobile user to understand the plugin
operation. Therefore, the proposed technique displays the
plugin name and the device resources requested.

3) Avoiding Repeated Dialogs: In order to avoid repeatedly
asking the mobile user for the same access, we use a plugin
permission list. The plugin name is added to the permission list
when the mobile user grants access to device resources for the
plugin. In addition, the proposed technique confirms whether
the detected plugin name is in the plugin permission list before
displaying a dialog. When the detected plugin name is in
the plugin permission list, the permission is granted without
prompting the mobile user.

E. Flow of Access to Device Resources for Plugins

Fig. 5 shows the flow of access to device resources for plu-
gins using the proposed technique. The flow of the proposed
technique’s access control is as follows:

(1) First, the access control mechanism determines whether
a detected plugin is in the plugin permission list.
(A) When the plugin name is not in the plugin permis-

sion list, a dialog is shown to the mobile user.
(B) When the plugin name is in the plugin permission

list, the control is moved to (3) and the Cordova
app starts the Java plugin execution.



���������	�	��	
���������	
���


���	���

�����	
���������	
���


���	���

����

��
	��
�


�	���
����
���


�
������
�

���

��

��
	�
�� 


!��	���	�
�

���

��

�	��	
	�
���������	
������


���	���

�����	
	�
���������	
������


���	���

�	��	
	�
����
������
���	���

"����
	�
����
�������

�����	
	�
����
������


���	���

#������


	����$�

%��
	�
���


����	
�����
���


	�
������
�

���

��

&'()&*(


&'()&"(


&'(


%�����+
�
������

"��
	�
������
���
	�


	�
������
���������
���	

&,(


�������
����!��-

���

��

&.()&"(


&.()&*(

&.(


��
	�
������
��


	�
������
���������


���	
�

Fig. 5. Flow of access to device resources for plugins using the proposed technique in Cordova framework.

(2) The mobile user decides whether the Cordova app
may access device resources based on the information
presented in the dialog.
(A) When the mobile user grants access to device

resources, the plugin name is added to the plugin
permission list.

(B) When the mobile user denies access to device re-
sources, the JavaScript plugin completes execution.

(3) The Cordova app starts the Java plugin execution and
calls the Java method corresponding to the JavaScript
API.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implemented the proposed technique in the Cordova
framework so that app developers can integrate it into existing
Cordova apps more easily. The proposed technique changes
the control-flow for the JavaScript plugin to access the Java
plugin, restricting access to device resources.

Therefore, to implement our access control mechanism, we
modified the Java implementation of the Cordova framework
related to the original control-flow. In particular, we modified
one Java class (PluginManager) and added five Java classes in
the Cordova framework.

When app developers integrate our access control mech-
anism into existing Cordova apps, it is only necessary for
developers to modify the above-mentioned six Java classes
in the original Cordova framework. Moreover, developers do

TABLE I
SMARTPHONE SPECIFICATIONS.

OS Android 6.0.1
CPU Snapdragon 810 2.0 GHz (octa-core)
Memory 3 GB

not need to modify their app source code for introducing the
proposed technique access to the Java plugin. Therefore, our
access control mechanism is easy for developers to introduce
to existing Cordova apps.

B. Experimental Setup

We evaluate the proposed technique on two aspects: ef-
fectiveness in detecting against Cordova plugin attacks and
performance of the proposed technique. First, we show that
the proposed technique can prevent malicious JavaScript code
from exploiting the plugin API to access device resources
using a sample app that we developed. Then, we consider the
possibility of an app-repackaging attack and test applying for
the proposed technique against existing Cordova apps. Finally,
we evaluate the processing time of the Cordova framework
using the proposed technique and the original Cordova frame-
work, using several existing Cordova apps for our tests. We
refer to the Cordova framework introduced using the proposed
technique as the modified Cordova framework. Table I shows
the evaluation environment. We used a smartphone (Nexus 6p)
for the evaluation.



TABLE II
PROCESSING TIMES AGAINST EXISTING CORDOVA APPS.

Method Application Name
Aprender ingles
con Wlingua

Kite Fighting Period Calendar,
Cycle Tracker

Pirate Treasures Translator
Women’s Voice

(1) Original Cordova framework 1.740 ms 1.534 ms 3.426 ms 3.592 ms 3.214 ms
(2) Modified Cordova framework
(first access attempt)

5.012 ms 2.812 ms 4.726 ms 4.468 ms 5.059 ms

(3) Modified Cordova framework
(subsequent access attempts)

2.161 ms 2.381 ms 3.614 ms 4.130 ms 4.218 ms

Fig. 6. Dialog of the injected test app
in uninstrumented Cordova.

Fig. 7. Dialog of the test app with
our defense.

C. Experiment to Prevent JavaScript Code from Exploiting
Plugins

We tested whether the proposed technique can prevent
JavaScript code from exploiting the plugin API to access
device resources in a test app that we developed. This app
displays Apache Cordova’s webpage and accesses the InApp-
Browser plugin and the Contacts plugin. We injected malicious
JavaScript code into the test app. This code attempts to access
the Contacts plugin and display the user’s contacts.

Fig. 6 shows a dialog displayed by the test app with injected
JavaScript code that exploits the Contacts plugin. The dialog
informs the mobile user of contacts leakage before displaying
Apache Cordova’s webpage. Next, Fig. 7 shows a dialog
displayed by the test app built with our framework; when
access to the Contacts plugin is requested, the user is asked
whether to authorize the access. Therefore, Fig. 7 shows that
the proposed technique can detect plugins before accessing
device resources. In addition, we tested that the proposed
technique can prevent plugins from accessing device resources
when the mobile user denies access to the plugin.

Consequently, we demonstrated that the proposed technique
can detect and prevent attacks that attempt to exploit Cordova’s
plugin interface.

D. Application for Existing Cordova Apps

We apply the proposed technique for existing Cordova apps.
First, we chose five free Cordova apps that each have over
a million downloads from Google Play. The list of Cordova
apps is in Table II. Next, we inject JavaScript code into
five Cordova apps by using an app-repackaging attack. In
consequence, we could inject JavaScript code into all Cordova
apps. Therefore, it is assumed that app-repackaging attacks
can occur realistically.

Then, we developed modified Cordova apps using the
modified Cordova framework against their apps and test these
apps and tested whether the proposed technique can detect
access to device resources for plugins. The result of applying
the modified Cordova framework shows that the proposed
technique did not find false positives against five Cordova
apps and can for the five Cordova apps and did detect all
access to device resources for plugins. Therefore, the proposed
technique can apply for existing Cordova apps.

E. Evaluation of Performance Overhead

To compare the performance of the original Cordova frame-
work and the modified Cordova framework, we evaluated them
against existing Cordova apps.

First, we developed modified Cordova apps using each Cor-
dova framework against the Cordova apps shown in Section
V-D. Next, we executed the Cordova apps three times and
measured the average processing time of access to device
resources for plugins in the following cases.

(1) Original Cordova framework
(2) Modified Cordova framework on the first access attempt
(3) Modified Cordova framework on subsequent access at-

tempts
Note that case (2) measures only the time of showing a dialog
and accessing device resources after the user’s response. Thus,
this case does not consider the time taken by the mobile user
to decide whether to allow access to device resources for the
plugin.

Table II shows the evaluation result. Table II shows that the
overhead on the first access is within about 1.2–3.3 ms and the
overhead on subsequent access attempts is within about 0.2–
1.1 ms. The maximum overhead on the first access is about 3.3
ms, which have little effect on the usability of Cordova apps.
Moreover, when mobile users grant access to device resources
for plugins, the overhead is reduced within about 0.2–1.1 ms



on future access attempts. Therefore, existing Cordova apps
using our framework remain usable.

VI. RELATED WORK

Jin et al. [2] and Georgiev et al. [3] discussed a new form
of attack targeting hybrid apps. In addition, to address these
attacks and improve security of hybrid apps, NoFrak [3], Jin
et al. [4], and Mohamed et al. [5] proposed fine-grained access
control mechanisms for hybrid apps. Previous research does
not consider access control based on the mobile user’s judge-
ment. In contrast, MobileIFC [6] is a novel framework where
the mobile user and the developer can set access permissions
by specifying a resource’s URL. However, mobile developers
need to integrate the MobileIFC code into existing Cordova
apps. Therefore, they must heavily modify their source code to
introduce MobileIFC. Our proposed technique only modifies
the Cordova framework. Therefore, mobile developers do not
need to modify their source code to introduce the proposed
technique.

On the other hand, to improve security of Android, Backes
et al. [12], Nauman et al. [13], Wang et al. [14], Conti
et al. [15], Bugiel et al. [16], and Yu et al. [17] proposed
fine-grained access control mechanisms on Android. Previous
research modifies the Android OS and the Android framework,
requiring mobile users to replace them with these defenses.
Therefore, when mobile users do not replace them with these
defenses, they cannot address Cordova plugin attacks. The
proposed technique is easier to introduce for mitigating against
these attacks than previous research because mobile users
install Cordova apps using our defense.

VII. CONCLUSION

In this paper, we presented a novel app-repackaging attack
against Android Cordova apps. This attack can tamper with
device resources from JavaScript by exploiting Cordova’s plu-
gin interface. In addition, to mitigate against app-repackaging
attacks and cross-site scripting attacks [2], we proposed an
access control mechanism that restricts access to plugins
before accessing device resources at runtime.

The proposed technique can detect access to device re-
sources for plugins and control access based on the user’s
judgement. Moreover, the proposed technique only needs to
modify the Cordova framework. Therefore, in comparison with
related work, it is easier to introduce our defense to existing
Cordova apps. With our modified framework, mobile users can
restrict access to device resources when using a compromised
app. Thus, mobile users can use Cordova apps more safely.
Moreover, we evaluated the effectiveness and performance of
the proposed technique. The result of our testing shows that the
proposed technique can prevent JavaScript by exploiting Cor-
dova’s plugin interface from accessing device resources and
Cordova apps are still usable with our modified framework.

In future work, we will consider access control targets of
plugins and reconsider the information that a dialog shows
to the mobile user for improving the proposed technique’s
convenience.

REFERENCES

[1] Apache Cordova. [Online]. Available: https://cordova.apache.org/
[2] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code Injection

Attacks on HTML5-based Mobile Apps: Characterization, Detection and
Mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’14), 2014, pp. 66–77.

[3] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and Fixing Origin-
Based Access Control in Hybrid Web/Mobile Application Frameworks,”
in Proceedings of the 2014 Network and Distributed System Security
(NDSS ’14), 2014, pp. 1–15.

[4] X. Jin, L. Wang, T. Luo, and W. Du, “Fine-Grained Access Control for
HTML5-Based Mobile Applications in Android,” in Proceedings of the
16th Information Security Conference (ISC 2013), 2013, pp. 309–318.

[5] S. Mohamed and A. Abeer, “Reducing Attack Surface on Cordova-based
Hybrid Mobile Apps,” in Proceedings of the 2nd International Workshop
on Mobile Development Lifecycle (MobileDeLi ’14), 2014, pp. 1–8.

[6] S. Kapil, “Practical Context-Aware Permission Control for Hybrid Mo-
bile Applications,” in Proceedings of the 16th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2013), 2013,
pp. 307–327.

[7] A. D. Brucker and M. Herzberg, “On the Static Analysis of Hybrid
Mobile Apps,” in Proceedings of the 8th International Symposium on
Engineering Secure Software and Systems (ESSoS 2016), 2016, pp. 72–
88.

[8] dex2jar. [Online]. Available: https://github.com/pxb1988/dex2jar
[9] Java Decompiler. [Online]. Available: http://jd.benow.ca/

[10] ProGuard. [Online]. Available: http://proguard.sourceforge.net/
[11] P. Mutchler, Y. Safaei, A. Doupe, and J. Mitchell, “Target Fragmentation

in Android Apps,” in Proceedings of the IEEE Security Privacy Mobile
Security Technologies Workshop (MoST), 2016.

[12] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky, “An-
droid Security Framework: Extensible Multi-Layered Access Control
on Android,” in Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC ’14), 2014, pp. 46–55.

[13] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android Permis-
sion Model and Enforcement with User-defined Runtime Constraints,”
in Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security (ASIACCS ’10), 2010, pp. 328–332.

[14] Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du, “Compac: Enforce
Component-Level Access Control in Android,” in Proceedings of the
4th ACM conference on Data and application security and privacy
(CODASPY ’14), 2014, pp. 25–36.

[15] M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE: Context-Related
Policy Enforcement for Android,” in Proceedings of the 13th interna-
tional conference on Information security, 2010, pp. 331–345.

[16] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and Fine-grained
Mandatory Access Control on Android for Diverse Security and Privacy
Policies,” in Proceedings of the 22nd USENIX conference on Security,
2013, pp. 131–146.

[17] J. Yu and T. Yamauchi, “Access Control to Prevent Malicious JavaScript
Code Exploiting Vulnerabilities of WebView in Android OS,” IEICE
Transactions on Information and Systems, vol. E98-D, no. 4, pp. 807–
811, 2015.




