
Plate: Persistent Memory Management for Nonvolatile
Main Memory

Toshihiro Yamauchi,
Yuta Yamamoto, Kengo Nagai

Okayama University
3-1-1 Tsushima-naka, kita-ku,
Okayama, 700-8530 Japan

yamauchi@cs.okayama-u.ac.jp

Tsukasa Matono, Shinji Inamoto,
Masaya Ichikawa,

Masataka Goto
Kyushu University

6-10-1 Hakozaki Higashi-ku,
Fukuoka, 812-8581, Japan

Hideo Taniguchi
Okayama University

3-1-1 Tsushima-naka, kita-ku,
Okayama, 700-8530 Japan

tani@cs.okayama-u.ac.jp

ABSTRACT
Over the past few years, nonvolatile memory has actively been
researched and developed. Therefore, studying operating system
(OS) designs predicated on the main memory in the form of a
nonvolatile memory and studying methods to manage persistent
data in a virtual memory are crucial to encourage the widespread
use of nonvolatile memory in the future. However, the main
memory in most computers today is volatile, and replacing high-
capacity main memory with nonvolatile memory is extremely
cost-prohibitive.

This paper proposes an OS structure for nonvolatile main memory.
The proposed OS structure consists of three functions to study and
develop OSs for nonvolatile main memory computers. First, a
structure, which is called plate, is proposed whereby persistent
data are managed assuming that nonvolatile main memory is
present in a computer. Second, we propose a persistent-data
mechanism to make a volatile memory function as nonvolatile
main memory, which serves as a basis for the development of OSs
for computers with nonvolatile main memory. Third, we propose
a continuous operation control using the persistent-data
mechanism and plates. This paper describes the design and
implementation of the OS structure based on the three functions
on The ENduring operating system for Distributed EnviRonment
and describes the evaluation results of the proposed functions.

CCS Concepts
• Software and its engineering ➝ Operating systems
• Software and its engineering ➝ Virtual memory • Software
and its engineering ➝ Main memory

Keywords
Operating system, Persistent mechanism, Nonvolatile main
memory, Memory management

1. INTRODUCTION
A computer locates a program or data in the memory where the
program is executed or the data are processed. However, the main
memory in most current computers is volatile. Thus, the existing
operating system (OS) or application programs (APs) store data in
a volatile memory and make them persist in an external storage
device (a nonvolatile storage medium). Ideally, accessing and
processing of the persistent data and executing the program
should be made within the memory.

Over the past several years, nonvolatile memory has actively been
researched and developed [1]. Efforts have been made to mass
produce nonvolatile memory in different forms such as PCM,
MRAM [2], and ReRAM with quick access similar to DRAM.
The technology to overcome the drawbacks of these memory
forms has been studied in [3]–[5]. If these memory forms have
adequate access speed, capacity, and price that allow them to
replace DRAMs, then future computers can be equipped with a
nonvolatile memory, and piece-by-piece writing of updated data
to an external storage device, as currently performed, is not
necessary. In addition, persistent data traditionally stored in an
external storage device can be effectively managed using only the
nonvolatile memory. Therefore, file input and output processing
need not be done, and the OS and APs can use the persistent data
by accessing only the memory, which could substantially improve
the efficiency of the OS and AP processing.

Having a nonvolatile main memory in a computer would be
preferable from the perspective of computer fault tolerance and
process continuity. Therefore, studying OS designs predicated on
the main memory in the form of nonvolatile memory that
manages persistent data in a virtual memory are crucial to
encourage widespread use of a nonvolatile main memory.
However, replacing a high-capacity main memory with a
nonvolatile memory is extremely cost-prohibitive. Thus, creating
experimental conditions where a nonvolatile memory is used as
the main memory is difficult.

This paper proposes a new OS structure for a nonvolatile main
memory. In particular, this paper proposes three functions to
study and develop OSs for nonvolatile main-memory computers.
First, a structure, which is called plate, is proposed whereby
persistent data are managed assuming that nonvolatile memory is
installed in a computer. The plates allow the OS and APs to use
persistent data by simply accessing a virtual memory. Data
traditionally stored in files are made persistent by file operations.
In the proposed OS structure, the persistent data are all mapped to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’16, April 4-8, 2016, Pisa, Italy.
Copyright 2016 ACM 978-1-4503-3739-7/16/04…$15.00.
DOI: http://dx.doi.org/10.1145/2851613.2851744

yamauchi
テキストボックス
© ACM 2016. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in SAC’16, http://dx.doi.org/10.1145/2851613.2851744

a space in a virtual memory for the kernel. In addition, APs
require that persistent data in the virtual memory for the kernel be
mapped to a virtual memory for each AP to use these data. Thus,
processing of the files is not necessary. We assume that a 64-bit
address space is used for the virtual memory; thus, all persistent
data can be mapped to virtual address spaces.

Second, we propose a persistent-data mechanism to serve the
volatile main memory as a nonvolatile main memory. This
mechanism serves as a basis for the development of OSs for
computers with a nonvolatile memory. In this mechanism, all
memory areas in the virtual memory for the kernel and user are
made persistent. This mechanism is required to implement and
evaluate the plate.

Third, we propose a continuous operation control using the
persistent-data mechanism and plates, which can save and restore
the state of OS and AP processing before and after computer
reboots. This control assumes that OS- and AP-related data are
retained in the nonvolatile memory. Even if the processing stops,
e.g., when the computer power supply is disconnected during OS
or AP processing, the continuous operation control uses the data
in a nonvolatile format to resume the OS and AP processing. This
function is implemented based on the persistent-data mechanism
and plates mentioned earlier.

This paper describes the design and implementation of the plates
on The ENduring operating system for Distributed EnviRonment
(Tender OS) [6], which we have developed for 21 years. This
paper also describes the results of the evaluations of the proposed
functions.

2. PLATE: PERSISTENT-DATA
MANAGEMENT FOR NONVOLATILE
MEMORY
2.1 Design of Plate
A structure is proposed whereby persistent data are managed
assuming that nonvolatile main memory is installed in a computer.
In existing OSs, persistent data are managed using external
storage. On the other hand, the proposed structure allows the OS
and APs to use persistent data by simply accessing a virtual
memory. We call this persistent-data management plate.

The relationship between the plates and a virtual address space is
shown in Figure 1. The memory regions in the virtual address
space for the kernel and APs that can be accessed are created by a
request of the OS or APs. A plate function manages all the
memory regions in the virtual address space as plates. Thus, the
plate interface must be compatible with the existing memory
allocation and deallocation interfaces. For example, where a
memory region is required for data that are temporarily used for
the execution of a process, a plate is created and used in the
virtual address space of the process. The plate is then deleted after
it has been used. Figure 1 shows the text segment, data segment,
stack segment, and data2 as examples of the data in the virtual
address space of the upper left process.

The metadata of the plate are managed in the kernel virtual
address space. The metadata of the plates include the top address,
size, position of the persistent area in an external storage, plate
name, resource identifier, owner id, and access right where the
main memory is volatile. If a nonvolatile memory is used as the
main memory in a computer, the top address of the persistent data

is included, instead of the persistent area position in an external
storage. The metadata of the plate are similar to the inode of a file
system, but the inode does not include a top address. The plate
provides namespace for the kernel and APs as plate names. This
structure can provide hierarchical namespace of the plates such as
file name and directories of the file systems. In addition, the
metadata of the plates always exist in the kernel virtual address
space to access and manage the metadata and contents of the
plates by the kernel. In contrast, inode is basically stored in an
external storage.

When an AP uses the persistent data in a plate, it issues a system
call that attaches the requested plate in the kernel virtual address
space to the AP virtual address space, as shown in data1 in Figure
1. The function of this system call is similar to the open system
call of existing OSs. Moreover, when the process completes the
use of this plate, it issues a system call that detaches the plate
from its virtual address space. This system-call function is similar
to the close system call.

2.2 Interface for persistent data
In the plate structure, six interfaces (creation, deletion, attachment,
detachment, right-to-access change, and resizing) are present, and
all interfaces are comparable with that of the memory operation
interfaces provided in existing OSs. The purpose of the six
interfaces is described as follows: the functions equivalent to the
creation and deletion of a memory region are provided to make all
memory regions persist using a plate structure. The attachment
and detachment functions are used to utilize the plate in the
virtual address space of the APs. The right-to-access change
function protects the plate by changing its access right.

In addition to these interfaces where the main memory is volatile,
a write function is provided to write the contents on a plate to an
external storage for the plate to persist. The target of the write
function is a specific plate or all the plates.

2.3 Restoration process after rebooting where
the main memory is nonvolatile
The restoration process of a nonvolatile main memory and plates
are performed during the OS startup process. After the boot loader
loads the OS kernel, the OS start process is run. First, the OS start
process sets up the essential hardware and enables the virtual
memory. Next, it initializes the device drivers. Then, it restores all
the plates using the metadata information in the management data

virtual memory spaceplate

proc_table

page_table

data1

text
data
stack

text
data
stack

text
data
stack

data1data2

program1

kernel
space

user
space

plate_table

Figure 1 Relationship between plates and virtual
memory space.

for the plate in the nonvolatile main memory. Completion of the
restoration of all plates indicates that all OS and AP contents in
the virtual address space are also restored, as shown in Figure 1.
Finally, the continuous operation control (described in Section 4)
dispatches a process running during the preservation process. We
assume that the information on the registers is stored in the
nonvolatile main memory during the storing process, and the
register information can be used in the dispatch process. Then, all
the OS and AP processes can be resumed.

3. PERSISTENT-DATA MECHANISM
3.1 Challenges
We propose a persistent-data mechanism to make a volatile main
memory function as a nonvolatile main memory. This mechanism
provides the property of persistence in all volatile main memory
regions. Thus, the OS and APs can operate the main memory as a
nonvolatile memory by simply accessing the virtual memory.

3.2 Design
The persistent-data mechanism is designed as a function of the OS.
The persistent-data mechanism manages the volatile main
memory to save the contents of the volatile main memory to
external storage areas.

The persistence attribute is provided to the volatile main memory
by a persistent function (described later), and it is attached to an
external storage area. Therefore, the data exist in a volatile main
memory or an external storage, and each plate in the volatile main
memory is attached to an area in an external storage. Then, the
content of the volatile main memory can be written to the area in
the external storage for it to persist from a write-operation request.

An area of the volatile main memory is mapped in the volatile
main memory and in an external storage when the memory area is
created, as shown in Figure 2. The persistent function creates the
stored region in the external storage when the memory region is
created in the virtual address space. This storage region in the
external storage is called the persistent area. A file-system
partition can be used as a persistent area.

Even if neither the OS nor the APs perform write operations, the
contents of the volatile main memory are written to an external
storage from the request of the continuous operation control
(described later). In other words, the persistent operations are
transparent against the OS and APs. In addition, the persistent
function can write when a process is created or deleted and upon

the request from the OS or APs. During such process, only the
updated pages are written in the persistent area in an external
storage. The OS and APs can also designate a memory region
(plate) or all memory regions (plates) to be the target of the write
operation. As described earlier, other functional blocks of the OS
do not need to be aware of the data writing from the volatile
memory to an external storage.

Furthermore, the same interface can be provided as a memory
region operation for memory (plate) operations because the
persistent-data mechanism provides the persistent function
without modifying the OS and APs. Additionally, this structure
can be implemented if a computer supports a virtual memory.

3.3 Target of persistent memory
In many OSs, the temporary data stored in the main memory can
be transferred to an external storage if a page out is required.
Swap partition can be used for external storage, but in this work,
we use a file system. The persistent data in a plate are stored in an
external storage as a file.

The proposed structure aims to resume the processing of the OS
and the APs. For this reason, the targets of persistent operations
are all the plates, including all temporary and persistent data that
exist in all the virtual address spaces. These regions include the
region of a text segment, data segment, stack segment, and
management data for the OS, in addition to all segments of the
APs.

4. CONTINUOUS OPERATION CONTROL
FOR OS AND AP PROCESSING
In case the main memory is volatile, the continuous operation
control can restore the same contents of the volatile main memory
regions at the time of preservation after rebooting the computer
based on the data saved in the external storage before the OS
restarts. As a result, the OS and the APs can use the volatile
memory as a nonvolatile memory.

First, we explain the flow of the persistent process. The
continuous operation control can store all the contents of the
volatile main memory to an external storage using the persistent
function. Persistent processing of the volatile main memory can
be performed during the OS termination processing or cyclic
write processing or by a request for write operation from the OS
and APs. Specifically, the data in all the volatile main memory
mapped to the plates in the virtual address space are written to the
persistent area in an external storage. Next, the metadata that
manage the plates must be written to the designated position in an
external storage in the persistent processing to maintain coherence
between the metadata and the plate.

The restoration process of the nonvolatile main memory and
plates are performed during the OS startup process. After the boot
loader loads the kernel of the OS, the OS start process is run. First,
the OS start process sets up the essential hardware and enables the
virtual memory. Next, it initializes the device drivers and sets up
the file-system controllers. Then, in the OS start process, the
metadata of the plates are loaded into a memory region from the
designated position in an external storage. Instead of directly
restoring the saved contents of the volatile main memory from an
external storage, plates related to the memory management, such
as page table, are first restored. After all page directories and page
tables are restored, the virtual address space is also restored. Then,

Figure 2 Data mapping of volatile main memory and
persistent data on proposed scheme.

External storage

Volatile main
memory

Persistent data

Temporary
data

Virtual address space

kernel
space

user
space

Persistent area

Save and restore
contents of volatile
main memory

the other plates are restored in the virtual address spaces using the
information on the metadata in the management data for the plate.
Before restoration of the other plates, memory regions are created
on the same address and with the same size in the virtual address
space. Next, the contents of the plates are loaded into the memory
regions from the persistent data in the external storage. This
process means that the same contents in the volatile main memory
regions at the time of preservation are restored. Then, the OS
startup process executes the initial processing of resources whose
target includes the uninitialized resource manager and the OS
components. Finally, the continuous operation control dispatches
a process that is running during the preservation process. We
assume that the information on the registers is stored in an
external storage during the storing process, and the register
information can be used in the dispatch processing. Then, all the
OS and the AP processing can be resumed.

5. IMPLEMENTATION
5.1 Integration of plate structure
We implemented the plate structure in the Tender OS. The plate
structure provides memory management interface, instead of the
existing memory management interface of the OS. It provides
persistent memory regions to the OS and APs using the memory
management functions in the OS. In addition, because we
assumed a volatile main memory in this research, we
implemented the persistent-data mechanism and continuous
operation control in the Tender OS.

We now present a simple description of the Tender OS, an
operating system that implements the proposed structure. We also
provide a simple overview of the memory and process resources
of the Tender OS related to this work.

5.2 Tender OS
In the Tender OS [6], we encapsulate the objects manipulated by
the OS as resources and separate them so that they become
independent. We assign a resource name and resource identifier to
each resource and unify the interface to manipulate the resources.
The resource identifiers and resource names include location
information that indicates a particular machine. The resource
names are managed by a tree structure. An example of a resource
name is “/machine1/process/procA”.

The interface for the operation of resources is unified. Program
components that operate both the local and remote resources are
called through a unified interface. The unified interface is named
as resource interface controller (RIC). The RIC has a pointer table
that contains all pointers of the program components. The
program components consist of five programs, namely, open,
close, read, write, and control. Each program component must call
the RIC to call any program components. Bypassing the RIC is
prohibited in the Tender OS kernel.

Additionally, we also separate the management information for
individual resources on a per-resource level and forbid references
among management tables for each resource. The existence of an
individual resource does not depend on the other resources,
including the processes, because the management table for each
resource is separate, i.e., each resource can exist irrespective of
the existence of other resources. In this manner, by making the
resources separate from one another and independent, a fast

process creation and termination mechanism [7] using recycling
process and memory resources is proposed in the Tender OS.

5.3 Memory and process management
A process is composed of various process components. The
process components in the memory space of the Tender OS are
called process resources. A process is divided into six types of
resources, namely, process, virtual region, virtual space, virtual
user space, virtual kernel space, and physical memory, in the
Tender OS.

The virtual region is a resource that virtualizes the data storage
region, which is mapped to the physical memory or external
storage. It contains information about the storage area, which is in
the physical memory or in an external storage, in its management
table. The virtual space is a space for the virtual address and
corresponds to the page table where a virtual address is mapped to
a physical address. The virtual user space is a space accessible
from the processor by the virtual address. It is created by
attaching the virtual region to the virtual space and is deleted by
detaching. Here, attaching means storing the information in the
data storage region as an entry in the page table.

5.4 Plate resource
Given that a plate is the unit of an object controlled and managed
by the OS, the plate is implemented as a resource in the Tender
OS. One plate consists of a virtual kernel space, a virtual user
space, a virtual region, a physical memory, and a persistent area
in an external storage.

The persistent-data plate is created in the kernel virtual memory
by the plate-creation function. The OS can use the plate that exists
in the kernel virtual memory, and all processes can access this
persistent-data plate by attaching to the plate on the user virtual
memory.

 In addition, in the Tender OS and in order to enable data transfer
among different OSs, the data stored in the external storage of a
plate are a file format of the existing OS. However, the plate
management does not directly operate a file, but it can operate the
persistent unit resource.

5.5 Interface of the plate resource
The seven interfaces provided by the plate management to the
APs and to each functional block of the OS are listed in Table 1.
In the case of the plate resources, the open operation is
create_plate, the close operation is delete_plate, the read
operation is attach_plate, the write operation is detach_plate, and
the remaining three operations are control operations. A plate
name is included in the resource name and can be used similar to
a filename.

A plate is created in a virtual address space for kernel by the
create_plate function. The OS can use the plate. Before the APs
use the plate, they call the attach_plate function to attach the plate
to their virtual address space. Then, the APs can access the plate.
After the use of the plate is finished, the plate is detached by the
detach_plate function. In case a plate is unnecessary, it is deleted
by the delete_plate function.

In the change_prot_plate function, access permission to the data
in a plate is changed to read only or to read and write. The size of
the plate is changed by the change_size_plate function. Moreover,

in the persist_plate function, the updated memory regions are
written to the persistent area of an external storage.

Table 1 Plate management interface.

Interface Function

create_plate(

name, access,
etc.)

Creates the plate specified by parameters
name, access right, and so on, and returns
plateid, which is a resource identifier.

delete_plate(

plateid)

Deletes the plate plateid. It also releases all
memory areas and persistent areas from the
plate’s external storage.

attach_plate(

plateid, vmid,
addr, access)

Attaches the plate plateid to the virtual
address space vmid specified by the attached
address addr and the access right.

detach_plate(
plateid, vmid,
addr)

Detaches the plate plateid from the virtual
address space vmid. The address of the plate
is specified by addr.

change_prot_
plate(plateid,
access)

Changes the access right of plateid to access.

change_size_
plate(plateid,
addr, size)

If size > 0, an area with a size of size is
inserted into the addr of the plateid. If size <
0, an area with a size of size is released from
the addr of plateid.

persist_plate(
plateid)

Writes the updated data of plateid into an
external storage.

The write operation can be called from the OS or APs. A daemon
program can also periodically call the write operation using the
central processing unit (CPU) idle time. This method can be
deployed using a periodical timer resource in the Tender OS.
Moreover, by synchronizing the writing process with the deletion
of a process, the results of such processing can also certainly be
persisted by writing.

5.6 Persistent unit resource
Persistent unit is a resource abstracted from the persistent area of
the external storage, and it conceals the data stored form of a
persistent area to a plate manager. A persistent unit is mapped to a
persistent area of the external storage. One of the existing file
systems can be used as data stored in an external storage. For
example, the fast file system (FFS) of the Berkeley software
distribution, the new technology file system (NTFS) of Windows,
and the Ext2 file system (Ext2fs) of Linux can be used.

During the creation, the plate management creates a persistent
unit and attaches the plate to the persistent unit. The persistent
unit is also mapped to a persistent area in an external storage.
Thereby, the plate is continued using a persistent unit. In addition,
in the present Tender OS, FFS [8] is implemented as the file
system of an external storage.

5.7 Limitation
The persistent-data mechanism makes the plates persist using a
write request from the OS and APs. If a computer power supply is

disconnected during OS or AP processing, the updated data on the
volatile memory are lost. On the other hand, if a nonvolatile
memory is deployed, all data become persistent, and no data are
lost. However, the persistent-data mechanism can resume
processing of the OS and APs based on the stored data on the
external storage. Thus, the damage due to data loss can be
reduced.

6. EVALUATION
6.1 Purpose of evaluation
First, we evaluate whether the proposed three functions can save
and restore the contents of the plates and whether it can continue
the processing of the OS and APs or not. We also measure the
processing time of the write operations. We then evaluate the
influence on the other processes, and the effect of updating only
the pages are written during the write operations. Then, we
evaluate the processing time of the plate restoration. Finally, we
evaluate the influence of the cyclic write operations on the other
processes.

To demonstrate the feasibility of the proposed method, we
performed the following four evaluations of the proposed
mechanism on the Tender OS.

(Evaluation 1) Continued operations of the OS and AP processes

(Evaluation 2) Writing the plate operation

(Evaluation 3) Plate restoration process

(Evaluation 4) Cyclic writing method by considering the CPU idle
time

The evaluations were performed using a computer (CPU: Celeron
D 2.8 GHz, HDD: 7200 rpm Ultra ATA/100, OS: Tender OS).
The number and total size of the plates that existed when
Evaluations 1, 2, and 3 were performed are listed in Table 2.

Table 2 Number of plates and total size during the evaluation.

Number Number of plates Plate total size (KB)

Kernel User Total Kernel User Total

1 159 22 181 6,504 632 7,136

2 143 12 155 6,428 224 6,652

3 143 12 155 6,428 224 6,652

6.2 Continued operations of the OS and AP
processes
We evaluated whether the Tender OS and APs processes can be
continued when running an imprecise computational program [9]
that calculates an approximate solution for natural logarithms.
The program consists of two processes. One process calculates an
approximate solution. The other process receives the approximate
solution from the calculation process.

Simultaneous with the running of the AP mentioned in the
previous section, another program issues a write operation that
writes all the plates. Then, the contents of all the plates that
persisted are written to an external storage. To evaluate whether
the OS and AP processing would continue after rebooting the test

computer, the power supply was suddenly disconnected, and the
computer was rebooted after reconnecting the power supply.

The persistent function can write all the contents in the volatile
main memory to a persistent area when the write operation is
called as a result of the evaluation indicated in the previous
paragraph. Moreover, during the restoration process at the OS
startup, each plate was restored in all the virtual address spaces,
and all resources that the OS manages could be restored. All the
processes could continue working after the reboot. Furthermore,
the imprecise computational program previously described also
normally resumed its processing from the reboot. The OS and its
resources continued their normal processing after the computer
rebooted.

Moreover, in the other experiments, all the resources managed by
the OS were restored during the OS startup. We verify that the
state of all the resources was completely restored and that all the
processes in the Tender OS continued after the reboot in the
experiments. For example, the execution resource possesses a
degree that can be assigned to a processor [10]. The amount of
time assigned to an execution is determined by the execution
degree. In the experiments, all the processes were normally
restored as well as the scheduling queue in the execution
management table. Then, all the scheduled processes were
resumed.

6.3 Plate write operation
To evaluate the write performance of a plate, the data size of the
write process, the number of plates, and the processing time were
measured when the system call that wrote on all the plates
immediately after the OS startup process was finished. Moreover,
the system call that performed the write operation of all the plates
was issued once again immediately after the previous system call
was issued. The evaluation results are listed in Table 3.

The first write data size evaluated was 641 KB, and the total size
of its existing plate was 6,652 KB, which means that the plate-
write process searched the page updated in the memory and then
wrote to an external storage. Given that only approximately 10%
of the plates in the memory were updated among all the plates in
this evaluation, only few of the plates were written in this
experiment. Moreover, considering that few of the memory
regions were updated by the second write process, the number of
pages written in the second write process was small compared
with the first write process, which shows the validity of the
function that only writes the updated pages.

Table 3 Processing time of the second evaluation.

 Write-data
size (KB)

Number
of plates

Processing
time

First 641 53 359.4 ms

Second 159 22 96.3 ms

6.4 Plate restoration processing
After the write process from Evaluation 2, the processing time
was measured when the computer was rebooted and the plate was
restored in the Tender OS startup process. The processing time of
the plate restoration was measured.

During the OS startup process, the plate-restoration processing
time was measured after the end of the initialization process of the
device. The processing time was 3,883.8 ms. During the plate-
restoration process, after all the plates have been restored in the
virtual address space of a kernel, a plate was also restored in the
virtual address space for each user. In this case, all plates (a total
of 6,652 KB) were loaded from the external storage, and all were
restored in the virtual address spaces. In addition, during the
restoration process of the current implementation, demand paging
was not adopted, but the OS allocated a physical memory for all
the plate areas in the virtual address spaces. The plate-restoration
process repeatedly issued read requests to the persistent unit
manager. Therefore, the read processing time from an external
storage occupied a greater portion of the plate-restoration process.
The read processing time in the restoration can be reduced by
deploying demand paging.

6.5 Cyclic write method by considering the
CPU idle time
The overhead during the write process was periodically evaluated.
In this measurement, two programs were run. The first program
was AP 1, which periodically issued the write system call; AP 1
was run by a kernel mode. The second program was AP 2, which
repeatedly wrote a value to a plate. The write cycle of AP 1 was
changed from 1 to 16 min, and the write-data size was also
changed. The write processing time and the total size of the
written data were measured for 32 min. The size of the memory
area created by AP 2 was 2 MB. The following results are listed
in Table 4.

1. The size of the written data was approximately 2 MB per
time, and the updated data of AP 2 occupied most of the
written data.

2. The total write processing time increased according to the
write cycle.

3. The write processing time where the cycle was 16 min was
approximately 0.09% of the write cycles. Thus, the time was
small.

The overhead of the proposed method was less than 10% when
the write cycle was longer than several minutes.

Table 4 Evaluation results of the cyclic write function.

Cycle of write
(min)

1 2 4 8 16

Number of write 32 16 8 4 2

Total size of
write data (KB)

69,862 34,931 17,466 8,733 4,366

Total processing
time (s)

26.23 13.51 7.66 3.40 1.70

Processing time
per second (s)

0.82 0.84 0.96 0.85 0.85

7. RELATED WORKS
Many computers have main memory in the form of volatile
memory. Thus, if the power supply to a computer with an existing
OS is stopped, then the computer shuts down abnormally.

Individual APs may fail to make data persistent. In addition,
existing OSs only make some of the data used by APs persistent.
Thus, APs processing that is underway cannot be restored even if
the computer is rebooted.

The hibernation mode in Windows and the hibernation mode via
swsusp or TuxOnIce [11] in Linux allow computer processing to
be interrupted and resumed. The hibernation mode writes all of
the data in main memory to an external storage device and it loads
saved data into the main memory once the computer is rebooted.
This allows processing to be resumed after computer processing
has been interrupted. However, a computer has to be put into
hibernation by a user. This is effective when a halt is foreseeable
but fails to address an unforeseeable emergency shutdown.

Some OSs also have a checkpoint restart capability [12], [13].
This capability saves and restores the state of processing of
individual APs. Thus, this capability can only be used to restore
processes that are part of an AP. This capability is unable to save
or restore the state of an OS of the state of APs. Membrane [14]
allows restoration from a checkpoint in the event of a file system
error. Thus, APs need not account for the occurrence of file
system errors, and operations can continue. However, this
capability cannot deal with a computer shutting down as a result
of termination of the power supply.

KeyKOS [15], [16] and EROS [17] have a checkpoint and a
restart mechanism. All the data and processes are checkpointed.
These OSs are microkernels, and the data used for the checkpoint
is stored in the disk regions called the checkpoint area. These OSs
and Tender OS differ from each other. Tender OS is a monolithic
kernel. In addition, in order for a persistent-data mechanism
provides the property of persistence in all volatile main memory
regions, all the data on the virtual address space are stored in an
external storage.

Grasshopper [18], [19], [20] supports persistent processes.
Containers are the only storage abstraction provided by
Grasshopper; they are persistent entities that replace both the
address spaces and the file systems. However, although
Grasshopper provides persistence of processes, it cannot provide
persistent processing of the OS.

Guerra et al. [21] proposed software persistent memory (SoftPM).
The SoftPM persists a persistent memory abstraction called
container. Volos et al. [22] also proposed Mnemosyne:
lightweight persistent memory. Our proposed structure can persist
all memory area in virtual memory and serve the volatile main
memory as a non-volatile main memory.

Li et al. [23] proposed NV-process, a fault-tolerance process
model based on NVRAM. NV-process instances run in a self-
contained way in NVRAM, thus to survive across OS reboot.
However, only NV-process can continue running when OS
reboots. By contrast, the proposed structure can save and restore
the state of OS and AP processing.

Condit et al [24] presented a file system and a hardware
architecture that are designed around the properties of persistent,
byteaddressable memory. One of the design principle of this work
is to allow OSs and APs to easily exploit the benefits of fast, byte-
addressable, nonvolatile memory for file system. Lee et al. [25]
proposed a buffer cache architecture that subsumes the function of
caching and journaling in a unified nonvolatile memory space.
Moraru et al. [26] proposed a new memory allocator for NVRAM

can ease the task of creating safe, high-performance persistent
data structures for emerging nonvolatile memories.

Bailey et al. [27] discussed the OS implications of new NVRAM
in future systems. They discussed four system architecture options
for NVRAM such as hybrid main memory and all-NVRAM.
Mogul et al. [27] have investigated OS support for hybrid main
memory. Our target is all-NVRAM option. This option will affect
significantly design of OS in future. Therefore, we pursue new
OS designs for all-NVRAM main memory.

8. CONCLUSIONS
This paper has proposed three functions to study and develop OSs
for nonvolatile main memory computers. First, we proposed a
new OS structure plate whereby persistent data are managed
assuming that nonvolatile memory is present. The proposed
structure allows the OS and APs to use the persistent data by
simply accessing the memory. Second, we proposed a persistent-
data mechanism to make the volatile main memory function as a
nonvolatile main memory. We showed that the development of an
OS and APs in this environment allows the development of an OS
and APs predicated on the main memory in the form of a
nonvolatile memory.

Third, we proposed the continuous operation control using the
persistent-data mechanism and a plate. This control can save and
restore the state of OS and AP processing. The continuous
operation control assumes that the OS- and all AP-related data are
retained in the nonvolatile memory. Even if the processing stops,
such as when the computer power supply is disconnected during
the OS or APs processing, the continuous operation control uses
the data in a nonvolatile format to resume the OS and AP
processing.

Moreover, the evaluation results showed that each memory region
was restored on all the virtual address spaces during the
restoration process at the OS startup, and all the resources
managed by the OS could be restored. All processes could
continue working after the reboot. The evaluation results showed
that the write process time of the plate is proportional to the size
of the updated pages that will be written, and the read processing
time from an external storage occupies a larger portion of the
plate restoration process.

These results show that the proposed mechanism can be a basis
for the development of OSs for computers with a nonvolatile
memory. In addition, the results show that the plate and the
continuous operation control can be used for computers with a
nonvolatile main memory.

9. REFERENCES
[1] B. C. Lee, et al. Phase-change technology and the future of

main memory. IEEE Micro, Vol.30, Issue 1, pp.131-141,
2010.

[2] J. Heidecker. MRAM Technology Status. JPL Publication.
13-3, 2013.

[3] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable dram alternative. In
Proceedings of the 36th annual international symposium on
Computer architecture (ISCA '09), pp.2-13, 2009.

[4] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and
energy efficient main memory using phase change memory

technology. In Proceedings of the 36th annual international
symposium on Computer architecture (ISCA '09), pp.14-23,
2009.

[5] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change
memory technology. In Proceedings of the 36th annual
international symposium on Computer architecture (ISCA
'09), pp.24-33, 2009.

[6] Tender project, http://www.swlab.cs.okayama-
u.ac.jp/lab/tani/research/tender-e.html

[7] T. Tabata, H. Taniguchi. An improved recyclable resource
management method for fast process creation and reduced
memory consumption. International Journal of Hybrid
Information Technology, Vol. 1, No. 1, pp.31-44, 2008.

[8] M. K. McKusick, W. N. Joy, S. J. Leffler, R. S. Fabry. A
Fast File System for UNIX. ACM Trans. Computer Systems,
vol.2, no.3, pp.181-197, 1984.

[9] D. R. Cheriton. The V Distributed System. Communications
of the ACM, vol.31, pp.314-333, 1998.

[10] T. Yamauchi, T. Hara, H. Taniguchi. A mechanism for
achieving a bound on execution performance of process
group to limit CPU abuse. The Journal of Supercomputing,
Vol.65, Issue 1, pp.38-60, 2013.

[11] N. Cunningham. TuxOnIce.
http://tuxonice.nigelcunningham.com.au/ .

[12] O. Laadan, J. Nieh. Transparent Checkpoint-Restart of
Multiple Processes on Commodity Operating Systems. In
Proceedings of 2007 USENIX Annual Technical Conf.,
pp.323-336, 2007.

[13] S. Yi, J. Heo, Y. Cho, J. Hong. Adaptive Page-level
Incremental Checkpointing based on Expected Recovery
Time. In Proceedings the 2006 ACM Symposium on Applied
Computing, pp.1472-1476, 2006.

[14] S. Sundararaman and S. Subramanian and A. Rajimwale and
A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseauand and M.
M. Swift. Membrane: Operating System Support for
Restartable File Systems. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies. 281-294,
2010.

[15] N. Hardy. The KeyKOS Architecture. Operating Systems
Review, vol.19, No.4, pp.8-25, 1985.

[16] A.C. Bomberger, A.P. Frantz, W.S. Frantz, A.C. Hardy, N.
Hardy, C.R. Landau, J.S. Shapiro. The KeyKOS Nanokernel
Architecture. In Proceedings the USENIX Workshop on
Micro-Kernels and Other Kernel Architectures, pp.95-112,
1992.

[17] J. S. Shapiro, J. M. Smith, D. J. Farber. EROS: a fast
capability system. In Proceedings 17th ACM Symposium on
Operating Systems Principles (SOSP'99), pp.170-185, 1999.

[18] A. Lindstrom, R. di Bona, A. Dearle, J. Rosenberg, F.
Vaughan. Persistence in the Grasshopper Kernel. In
Proceedings of the Eighteenth Australasian Computer
Science Conference, ACSC-18, pp 329-338, 1995.

[19] A. Dearle, R. di Bona, J. Farrow, F. Henskens, A. Lindstrom,
J. Rosenberg, and F. Vaughan. Grasshopper: An
Orthogonally Persistent Operating System. Computing
Systems, Vol.7, No.3, pp. 289-312, 1994.

[20] J. Rosenberg, A. Dearle, D. Hulse, A. Lindström, and S.
Norris. Operating system support for persistent and
recoverable computations. Communications of the ACM, Vol.
39, Issues 9, 62-69, 1996.

[21] J. Guerra, L. Mármol, D. Campello, C. Crespo, R.
Rangaswami, and J. Wei. Software persistent memory. In
Proceedings of the 2012 USENIX conference on Annual
Technical Conference (USENIX ATC'12), 2012.

[22] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In Proceedings of the
sixteenth international conference on Architectural support
for programming languages and operating systems (ASPLOS
XVI), 2011.

[23] X. Li, K. Lu, X. Wang, X. Zhou. NV-process: A Fault-
Tolerance Process Model Based on Non-Volatile Memory.
In Proceedings of the Third ACM SIGOPS Asia-Pacific
conference on Systems (APSys'12), 2012.

[24] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D.
Burger, and D. Coetzee. Better I/O through byte-addressable,
persistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (SOSP '09),
pp.133-146, 2009.

[25] E. Lee and H. Bahn, S. H. Noh. Unioning of the buffer cache
and journaling layers with non-volatile memory. In
Proceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST '13), 2013.

[26] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, N.
Binkert, P. Ranganathan. Consistent, Durable, and Safe
Memory Management for Byte-addressable Non Volatile
Main Memory. In Proceedings of ACM Conference on
Timely Results in Operating Systems (TRIOS), 2013.

[27] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy.
Operating system implications of fast, cheap, non-volatile
memory. In Proceedings of the 13th USENIX conference on
Hot topics in operating systems (HotOS'13), 2011.

[28] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi.
Operating system support for NVM+DRAM hybrid main
memory. In Proceedings of the 12th conference on Hot
topics in operating systems (HotOS'09), 2009.

