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ABSTRACT 
Over the past few years, nonvolatile memory has actively been 
researched and developed. Therefore, studying operating system 
(OS) designs predicated on the main memory in the form of a 
nonvolatile memory and studying methods to manage persistent 
data in a virtual memory are crucial to encourage the widespread 
use of nonvolatile memory in the future. However, the main 
memory in most computers today is volatile, and replacing high-
capacity main memory with nonvolatile memory is extremely 
cost-prohibitive. 

This paper proposes an OS structure for nonvolatile main memory. 
The proposed OS structure consists of three functions to study and 
develop OSs for nonvolatile main memory computers. First, a 
structure, which is called plate, is proposed whereby persistent 
data are managed assuming that nonvolatile main memory is 
present in a computer. Second, we propose a persistent-data 
mechanism to make a volatile memory function as nonvolatile 
main memory, which serves as a basis for the development of OSs 
for computers with nonvolatile main memory. Third, we propose 
a continuous operation control using the persistent-data 
mechanism and plates. This paper describes the design and 
implementation of the OS structure based on the three functions 
on The ENduring operating system for Distributed EnviRonment 
and describes the evaluation results of the proposed functions. 

CCS Concepts 
• Software and its engineering ➝  Operating systems 
• Software and its engineering ➝ Virtual memory • Software 
and its engineering ➝ Main memory 

Keywords 
Operating system, Persistent mechanism, Nonvolatile main 
memory, Memory management 

1. INTRODUCTION 
A computer locates a program or data in the memory where the 
program is executed or the data are processed. However, the main 
memory in most current computers is volatile. Thus, the existing 
operating system (OS) or application programs (APs) store data in 
a volatile memory and make them persist in an external storage 
device (a nonvolatile storage medium). Ideally, accessing and 
processing of the persistent data and executing the program 
should be made within the memory. 

Over the past several years, nonvolatile memory has actively been 
researched and developed [1]. Efforts have been made to mass 
produce nonvolatile memory in different forms such as PCM, 
MRAM [2], and ReRAM with quick access similar to DRAM. 
The technology to overcome the drawbacks of these memory 
forms has been studied in [3]–[5]. If these memory forms have 
adequate access speed, capacity, and price that allow them to 
replace DRAMs, then future computers can be equipped with a 
nonvolatile memory, and piece-by-piece writing of updated data 
to an external storage device, as currently performed, is not 
necessary. In addition, persistent data traditionally stored in an 
external storage device can be effectively managed using only the 
nonvolatile memory. Therefore, file input and output processing 
need not be done, and the OS and APs can use the persistent data 
by accessing only the memory, which could substantially improve 
the efficiency of the OS and AP processing. 

Having a nonvolatile main memory in a computer would be 
preferable from the perspective of computer fault tolerance and 
process continuity. Therefore, studying OS designs predicated on 
the main memory in the form of nonvolatile memory that 
manages persistent data in a virtual memory are crucial to 
encourage widespread use of a nonvolatile main memory. 
However, replacing a high-capacity main memory with a 
nonvolatile memory is extremely cost-prohibitive. Thus, creating 
experimental conditions where a nonvolatile memory is used as 
the main memory is difficult. 

This paper proposes a new OS structure for a nonvolatile main 
memory. In particular, this paper proposes three functions to 
study and develop OSs for nonvolatile main-memory computers. 
First, a structure, which is called plate, is proposed whereby 
persistent data are managed assuming that nonvolatile memory is 
installed in a computer. The plates allow the OS and APs to use 
persistent data by simply accessing a virtual memory. Data 
traditionally stored in files are made persistent by file operations. 
In the proposed OS structure, the persistent data are all mapped to 
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a space in a virtual memory for the kernel. In addition, APs 
require that persistent data in the virtual memory for the kernel be 
mapped to a virtual memory for each AP to use these data. Thus, 
processing of the files is not necessary. We assume that a 64-bit 
address space is used for the virtual memory; thus, all persistent 
data can be mapped to virtual address spaces. 

Second, we propose a persistent-data mechanism to serve the 
volatile main memory as a nonvolatile main memory. This 
mechanism serves as a basis for the development of OSs for 
computers with a nonvolatile memory. In this mechanism, all 
memory areas in the virtual memory for the kernel and user are 
made persistent. This mechanism is required to implement and 
evaluate the plate. 

Third, we propose a continuous operation control using the 
persistent-data mechanism and plates, which can save and restore 
the state of OS and AP processing before and after computer 
reboots. This control assumes that OS- and AP-related data are 
retained in the nonvolatile memory. Even if the processing stops, 
e.g., when the computer power supply is disconnected during OS 
or AP processing, the continuous operation control uses the data 
in a nonvolatile format to resume the OS and AP processing. This 
function is implemented based on the persistent-data mechanism 
and plates mentioned earlier. 

This paper describes the design and implementation of the plates 
on The ENduring operating system for Distributed EnviRonment 
(Tender OS) [6], which we have developed for 21 years. This 
paper also describes the results of the evaluations of the proposed 
functions. 

2. PLATE: PERSISTENT-DATA  
MANAGEMENT FOR NONVOLATILE 
MEMORY 
2.1 Design of Plate 
A structure is proposed whereby persistent data are managed 
assuming that nonvolatile main memory is installed in a computer. 
In existing OSs, persistent data are managed using external 
storage. On the other hand, the proposed structure allows the OS 
and APs to use persistent data by simply accessing a virtual 
memory. We call this persistent-data management plate. 

The relationship between the plates and a virtual address space is 
shown in Figure 1. The memory regions in the virtual address 
space for the kernel and APs that can be accessed are created by a 
request of the OS or APs. A plate function manages all the 
memory regions in the virtual address space as plates. Thus, the 
plate interface must be compatible with the existing memory 
allocation and deallocation interfaces. For example, where a 
memory region is required for data that are temporarily used for 
the execution of a process, a plate is created and used in the 
virtual address space of the process. The plate is then deleted after 
it has been used. Figure 1 shows the text segment, data segment, 
stack segment, and data2 as examples of the data in the virtual 
address space of the upper left process. 

The metadata of the plate are managed in the kernel virtual 
address space. The metadata of the plates include the top address, 
size, position of the persistent area in an external storage, plate 
name, resource identifier, owner id, and access right where the 
main memory is volatile. If a nonvolatile memory is used as the 
main memory in a computer, the top address of the persistent data 

is included, instead of the persistent area position in an external 
storage. The metadata of the plate are similar to the inode of a file 
system, but the inode does not include a top address. The plate 
provides namespace for the kernel and APs as plate names. This 
structure can provide hierarchical namespace of the plates such as 
file name and directories of the file systems. In addition, the 
metadata of the plates always exist in the kernel virtual address 
space to access and manage the metadata and contents of the 
plates by the kernel. In contrast, inode is basically stored in an 
external storage. 

When an AP uses the persistent data in a plate, it issues a system 
call that attaches the requested plate in the kernel virtual address 
space to the AP virtual address space, as shown in data1 in Figure 
1. The function of this system call is similar to the open system 
call of existing OSs. Moreover, when the process completes the 
use of this plate, it issues a system call that detaches the plate 
from its virtual address space. This system-call function is similar 
to the close system call. 

2.2 Interface for persistent data 
In the plate structure, six interfaces (creation, deletion, attachment, 
detachment, right-to-access change, and resizing) are present, and 
all interfaces are comparable with that of the memory operation 
interfaces provided in existing OSs. The purpose of the six 
interfaces is described as follows: the functions equivalent to the 
creation and deletion of a memory region are provided to make all 
memory regions persist using a plate structure. The attachment 
and detachment functions are used to utilize the plate in the 
virtual address space of the APs. The right-to-access change 
function protects the plate by changing its access right. 

In addition to these interfaces where the main memory is volatile, 
a write function is provided to write the contents on a plate to an 
external storage for the plate to persist. The target of the write 
function is a specific plate or all the plates. 

2.3 Restoration process after rebooting where 
the main memory is nonvolatile  
The restoration process of a nonvolatile main memory and plates 
are performed during the OS startup process. After the boot loader 
loads the OS kernel, the OS start process is run. First, the OS start 
process sets up the essential hardware and enables the virtual 
memory. Next, it initializes the device drivers. Then, it restores all 
the plates using the metadata information in the management data 
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for the plate in the nonvolatile main memory. Completion of the 
restoration of all plates indicates that all OS and AP contents in 
the virtual address space are also restored, as shown in Figure 1. 
Finally, the continuous operation control (described in Section 4) 
dispatches a process running during the preservation process. We 
assume that the information on the registers is stored in the 
nonvolatile main memory during the storing process, and the 
register information can be used in the dispatch process. Then, all 
the OS and AP processes can be resumed. 

3. PERSISTENT-DATA  MECHANISM 
3.1 Challenges 
We propose a persistent-data mechanism to make a volatile main 
memory function as a nonvolatile main memory. This mechanism 
provides the property of persistence in all volatile main memory 
regions. Thus, the OS and APs can operate the main memory as a 
nonvolatile memory by simply accessing the virtual memory. 

3.2 Design 
The persistent-data mechanism is designed as a function of the OS. 
The persistent-data mechanism manages the volatile main 
memory to save the contents of the volatile main memory to 
external storage areas. 

The persistence attribute is provided to the volatile main memory 
by a persistent function (described later), and it is attached to an 
external storage area. Therefore, the data exist in a volatile main 
memory or an external storage, and each plate in the volatile main 
memory is attached to an area in an external storage. Then, the 
content of the volatile main memory can be written to the area in 
the external storage for it to persist from a write-operation request. 

An area of the volatile main memory is mapped in the volatile 
main memory and in an external storage when the memory area is 
created, as shown in Figure 2. The persistent function creates the 
stored region in the external storage when the memory region is 
created in the virtual address space. This storage region in the 
external storage is called the persistent area. A file-system 
partition can be used as a persistent area. 

Even if neither the OS nor the APs perform write operations, the 
contents of the volatile main memory are written to an external 
storage from the request of the continuous operation control 
(described later). In other words, the persistent operations are 
transparent against the OS and APs. In addition, the persistent 
function can write when a process is created or deleted and upon 

the request from the OS or APs. During such process, only the 
updated pages are written in the persistent area in an external 
storage. The OS and APs can also designate a memory region 
(plate) or all memory regions (plates) to be the target of the write 
operation. As described earlier, other functional blocks of the OS 
do not need to be aware of the data writing from the volatile 
memory to an external storage. 

Furthermore, the same interface can be provided as a memory 
region operation for memory (plate) operations because the 
persistent-data mechanism provides the persistent function 
without modifying the OS and APs. Additionally, this structure 
can be implemented if a computer supports a virtual memory. 

3.3 Target of persistent memory 
In many OSs, the temporary data stored in the main memory can 
be transferred to an external storage if a page out is required. 
Swap partition can be used for external storage, but in this work, 
we use a file system. The persistent data in a plate are stored in an 
external storage as a file. 

The proposed structure aims to resume the processing of the OS 
and the APs. For this reason, the targets of persistent operations 
are all the plates, including all temporary and persistent data that 
exist in all the virtual address spaces. These regions include the 
region of a text segment, data segment, stack segment, and 
management data for the OS, in addition to all segments of the 
APs. 

4. CONTINUOUS OPERATION CONTROL 
FOR OS AND AP PROCESSING 
In case the main memory is volatile, the continuous operation 
control can restore the same contents of the volatile main memory 
regions at the time of preservation after rebooting the computer 
based on the data saved in the external storage before the OS 
restarts. As a result, the OS and the APs can use the volatile 
memory as a nonvolatile memory. 

First, we explain the flow of the persistent process. The 
continuous operation control can store all the contents of the 
volatile main memory to an external storage using the persistent 
function. Persistent processing of the volatile main memory can 
be performed during the OS termination processing or cyclic 
write processing or by a request for write operation from the OS 
and APs. Specifically, the data in all the volatile main memory 
mapped to the plates in the virtual address space are written to the 
persistent area in an external storage. Next, the metadata that 
manage the plates must be written to the designated position in an 
external storage in the persistent processing to maintain coherence 
between the metadata and the plate. 

The restoration process of the nonvolatile main memory and 
plates are performed during the OS startup process. After the boot 
loader loads the kernel of the OS, the OS start process is run. First, 
the OS start process sets up the essential hardware and enables the 
virtual memory. Next, it initializes the device drivers and sets up 
the file-system controllers. Then, in the OS start process, the 
metadata of the plates are loaded into a memory region from the 
designated position in an external storage. Instead of directly 
restoring the saved contents of the volatile main memory from an 
external storage, plates related to the memory management, such 
as page table, are first restored. After all page directories and page 
tables are restored, the virtual address space is also restored. Then, 

Figure 2  Data mapping of volatile main memory and 
persistent data on proposed scheme. 
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the other plates are restored in the virtual address spaces using the 
information on the metadata in the management data for the plate. 
Before restoration of the other plates, memory regions are created 
on the same address and with the same size in the virtual address 
space. Next, the contents of the plates are loaded into the memory 
regions from the persistent data in the external storage. This 
process means that the same contents in the volatile main memory 
regions at the time of preservation are restored. Then, the OS 
startup process executes the initial processing of resources whose 
target includes the uninitialized resource manager and the OS 
components. Finally, the continuous operation control dispatches 
a process that is running during the preservation process. We 
assume that the information on the registers is stored in an 
external storage during the storing process, and the register 
information can be used in the dispatch processing. Then, all the 
OS and the AP processing can be resumed. 

5. IMPLEMENTATION 
5.1 Integration of plate structure 
We implemented the plate structure in the Tender OS. The plate 
structure provides memory management interface, instead of the 
existing memory management interface of the OS. It provides 
persistent memory regions to the OS and APs using the memory 
management functions in the OS. In addition, because we 
assumed a volatile main memory in this research, we 
implemented the persistent-data mechanism and continuous 
operation control in the Tender OS. 

We now present a simple description of the Tender OS, an 
operating system that implements the proposed structure. We also 
provide a simple overview of the memory and process resources 
of the Tender OS related to this work. 

5.2 Tender OS 
In the Tender OS [6], we encapsulate the objects manipulated by 
the OS as resources and separate them so that they become 
independent. We assign a resource name and resource identifier to 
each resource and unify the interface to manipulate the resources. 
The resource identifiers and resource names include location 
information that indicates a particular machine. The resource 
names are managed by a tree structure. An example of a resource 
name is “/machine1/process/procA”.  

The interface for the operation of resources is unified. Program 
components that operate both the local and remote resources are 
called through a unified interface. The unified interface is named 
as resource interface controller (RIC). The RIC has a pointer table 
that contains all pointers of the program components. The 
program components consist of five programs, namely, open, 
close, read, write, and control. Each program component must call 
the RIC to call any program components. Bypassing the RIC is 
prohibited in the Tender OS kernel. 

Additionally, we also separate the management information for 
individual resources on a per-resource level and forbid references 
among management tables for each resource. The existence of an 
individual resource does not depend on the other resources, 
including the processes, because the management table for each 
resource is separate, i.e., each resource can exist irrespective of 
the existence of other resources. In this manner, by making the 
resources separate from one another and independent, a fast 

process creation and termination mechanism [7] using recycling 
process and memory resources is proposed in the Tender OS. 

5.3 Memory and process management 
A process is composed of various process components. The 
process components in the memory space of the Tender OS are 
called process resources. A process is divided into six types of 
resources, namely, process, virtual region, virtual space, virtual 
user space, virtual kernel space, and physical memory, in the 
Tender OS. 

The virtual region is a resource that virtualizes the data storage 
region, which is mapped to the physical memory or external 
storage. It contains information about the storage area, which is in 
the physical memory or in an external storage, in its management 
table. The virtual space is a space for the virtual address and 
corresponds to the page table where a virtual address is mapped to 
a physical address. The virtual user space is a space accessible 
from the processor by the virtual address. It is created by 
attaching the virtual region to the virtual space and is deleted by 
detaching. Here, attaching means storing the information in the 
data storage region as an entry in the page table. 

5.4 Plate resource 
Given that a plate is the unit of an object controlled and managed 
by the OS, the plate is implemented as a resource in the Tender 
OS. One plate consists of a virtual kernel space, a virtual user 
space, a virtual region, a physical memory, and a persistent area 
in an external storage. 

The persistent-data plate is created in the kernel virtual memory 
by the plate-creation function. The OS can use the plate that exists 
in the kernel virtual memory, and all processes can access this 
persistent-data plate by attaching to the plate on the user virtual 
memory. 

 In addition, in the Tender OS and in order to enable data transfer 
among different OSs, the data stored in the external storage of a 
plate are a file format of the existing OS. However, the plate 
management does not directly operate a file, but it can operate the 
persistent unit resource. 

5.5 Interface of the plate resource 
The seven interfaces provided by the plate management to the 
APs and to each functional block of the OS are listed in Table 1. 
In the case of the plate resources, the open operation is 
create_plate, the close operation is delete_plate, the read 
operation is attach_plate, the write operation is detach_plate, and 
the remaining three operations are control operations. A plate 
name is included in the resource name and can be used similar to 
a filename. 

A plate is created in a virtual address space for kernel by the 
create_plate function. The OS can use the plate. Before the APs 
use the plate, they call the attach_plate function to attach the plate 
to their virtual address space. Then, the APs can access the plate. 
After the use of the plate is finished, the plate is detached by the 
detach_plate function. In case a plate is unnecessary, it is deleted 
by the delete_plate function. 

In the change_prot_plate function, access permission to the data 
in a plate is changed to read only or to read and write. The size of 
the plate is changed by the change_size_plate function. Moreover, 



in the persist_plate function, the updated memory regions are 
written to the persistent area of an external storage. 

 

Table 1  Plate management interface. 

Interface Function 

create_plate( 

name, access, 
etc.) 

Creates the plate specified by parameters 
name, access right, and so on, and returns 
plateid, which is a resource identifier. 

delete_plate( 

plateid) 

Deletes the plate plateid. It also releases all 
memory areas and persistent areas from the 
plate’s external storage. 

attach_plate( 

plateid, vmid, 
addr, access) 

Attaches the plate plateid to the virtual 
address space vmid specified by the attached 
address addr and the access right. 

detach_plate(
plateid, vmid, 
addr) 

Detaches the plate plateid from the virtual 
address space vmid. The address of the plate 
is specified by addr. 

change_prot_
plate(plateid, 
access) 

Changes the access right of plateid to access.

change_size_
plate(plateid, 
addr, size) 

If size > 0, an area with a size of size is 
inserted into the addr of the plateid. If size < 
0, an area with a size of size is released from 
the addr of plateid. 

persist_plate(
plateid) 

Writes the updated data of plateid into an 
external storage. 

 

The write operation can be called from the OS or APs. A daemon 
program can also periodically call the write operation using the 
central processing unit (CPU) idle time. This method can be 
deployed using a periodical timer resource in the Tender OS. 
Moreover, by synchronizing the writing process with the deletion 
of a process, the results of such processing can also certainly be 
persisted by writing. 

5.6 Persistent unit resource 
Persistent unit is a resource abstracted from the persistent area of 
the external storage, and it conceals the data stored form of a 
persistent area to a plate manager. A persistent unit is mapped to a 
persistent area of the external storage. One of the existing file 
systems can be used as data stored in an external storage. For 
example, the fast file system (FFS) of the Berkeley software 
distribution, the new technology file system (NTFS) of Windows, 
and the Ext2 file system (Ext2fs) of Linux can be used. 

During the creation, the plate management creates a persistent 
unit and attaches the plate to the persistent unit. The persistent 
unit is also mapped to a persistent area in an external storage. 
Thereby, the plate is continued using a persistent unit. In addition, 
in the present Tender OS, FFS [8] is implemented as the file 
system of an external storage. 

5.7 Limitation 
The persistent-data mechanism makes the plates persist using a 
write request from the OS and APs. If a computer power supply is 

disconnected during OS or AP processing, the updated data on the 
volatile memory are lost. On the other hand, if a nonvolatile 
memory is deployed, all data become persistent, and no data are 
lost. However, the persistent-data mechanism can resume 
processing of the OS and APs based on the stored data on the 
external storage. Thus, the damage due to data loss can be 
reduced. 

6. EVALUATION 
6.1 Purpose of evaluation 
First, we evaluate whether the proposed three functions can save 
and restore the contents of the plates and whether it can continue 
the processing of the OS and APs or not. We also measure the 
processing time of the write operations. We then evaluate the 
influence on the other processes, and the effect of updating only 
the pages are written during the write operations. Then, we 
evaluate the processing time of the plate restoration. Finally, we 
evaluate the influence of the cyclic write operations on the other 
processes. 

To demonstrate the feasibility of the proposed method, we 
performed the following four evaluations of the proposed 
mechanism on the Tender OS. 

(Evaluation 1) Continued operations of the OS and AP processes 

(Evaluation 2) Writing the plate operation  

(Evaluation 3) Plate restoration process 

(Evaluation 4) Cyclic writing method by considering the CPU idle 
time 

The evaluations were performed using a computer (CPU: Celeron 
D 2.8 GHz, HDD: 7200 rpm Ultra ATA/100, OS: Tender OS). 
The number and total size of the plates that existed when 
Evaluations 1, 2, and 3 were performed are listed in Table 2. 

 

Table 2  Number of plates and total size during the evaluation. 

Number Number of plates Plate total size (KB) 

Kernel User Total Kernel User Total

1 159 22 181 6,504 632 7,136

2 143 12 155 6,428 224 6,652

3 143 12 155 6,428 224 6,652

 

6.2 Continued operations of the OS and AP 
processes 
We evaluated whether the Tender OS and APs processes can be 
continued when running an imprecise computational program [9] 
that calculates an approximate solution for natural logarithms. 
The program consists of two processes. One process calculates an 
approximate solution. The other process receives the approximate 
solution from the calculation process. 

Simultaneous with the running of the AP mentioned in the 
previous section, another program issues a write operation that 
writes all the plates. Then, the contents of all the plates that 
persisted are written to an external storage. To evaluate whether 
the OS and AP processing would continue after rebooting the test 



computer, the power supply was suddenly disconnected, and the 
computer was rebooted after reconnecting the power supply.  

The persistent function can write all the contents in the volatile 
main memory to a persistent area when the write operation is 
called as a result of the evaluation indicated in the previous 
paragraph. Moreover, during the restoration process at the OS 
startup, each plate was restored in all the virtual address spaces, 
and all resources that the OS manages could be restored. All the 
processes could continue working after the reboot. Furthermore, 
the imprecise computational program previously described also 
normally resumed its processing from the reboot. The OS and its 
resources continued their normal processing after the computer 
rebooted. 

Moreover, in the other experiments, all the resources managed by 
the OS were restored during the OS startup. We verify that the 
state of all the resources was completely restored and that all the 
processes in the Tender OS continued after the reboot in the 
experiments. For example, the execution resource possesses a 
degree that can be assigned to a processor [10]. The amount of 
time assigned to an execution is determined by the execution 
degree. In the experiments, all the processes were normally 
restored as well as the scheduling queue in the execution 
management table. Then, all the scheduled processes were 
resumed. 

6.3 Plate write operation 
To evaluate the write performance of a plate, the data size of the 
write process, the number of plates, and the processing time were 
measured when the system call that wrote on all the plates 
immediately after the OS startup process was finished. Moreover, 
the system call that performed the write operation of all the plates 
was issued once again immediately after the previous system call 
was issued. The evaluation results are listed in Table 3. 

The first write data size evaluated was 641 KB, and the total size 
of its existing plate was 6,652 KB, which means that the plate-
write process searched the page updated in the memory and then 
wrote to an external storage. Given that only approximately 10% 
of the plates in the memory were updated among all the plates in 
this evaluation, only few of the plates were written in this 
experiment. Moreover, considering that few of the memory 
regions were updated by the second write process, the number of 
pages written in the second write process was small compared 
with the first write process, which shows the validity of the 
function that only writes the updated pages. 

 

Table 3  Processing time of the second evaluation. 

 Write-data 
size (KB) 

Number 
of plates 

Processing 
time 

First 641 53 359.4 ms

Second 159 22 96.3 ms

 

6.4 Plate restoration processing 
After the write process from Evaluation 2, the processing time 
was measured when the computer was rebooted and the plate was 
restored in the Tender OS startup process. The processing time of 
the plate restoration was measured. 

During the OS startup process, the plate-restoration processing 
time was measured after the end of the initialization process of the 
device. The processing time was 3,883.8 ms. During the plate-
restoration process, after all the plates have been restored in the 
virtual address space of a kernel, a plate was also restored in the 
virtual address space for each user. In this case, all plates (a total 
of 6,652 KB) were loaded from the external storage, and all were 
restored in the virtual address spaces. In addition, during the 
restoration process of the current implementation, demand paging 
was not adopted, but the OS allocated a physical memory for all 
the plate areas in the virtual address spaces. The plate-restoration 
process repeatedly issued read requests to the persistent unit 
manager. Therefore, the read processing time from an external 
storage occupied a greater portion of the plate-restoration process. 
The read processing time in the restoration can be reduced by 
deploying demand paging. 

6.5 Cyclic write method by considering the 
CPU idle time 
The overhead during the write process was periodically evaluated. 
In this measurement, two programs were run. The first program 
was AP 1, which periodically issued the write system call; AP 1 
was run by a kernel mode. The second program was AP 2, which 
repeatedly wrote a value to a plate. The write cycle of AP 1 was 
changed from 1 to 16 min, and the write-data size was also 
changed. The write processing time and the total size of the 
written data were measured for 32 min. The size of the memory 
area created by AP 2 was 2 MB. The following results are listed 
in Table 4. 

1. The size of the written data was approximately 2 MB per 
time, and the updated data of AP 2 occupied most of the 
written data. 

2. The total write processing time increased according to the 
write cycle.  

3. The write processing time where the cycle was 16 min was 
approximately 0.09% of the write cycles. Thus, the time was 
small.  

The overhead of the proposed method was less than 10% when 
the write cycle was longer than several minutes.  

 

Table 4  Evaluation results of the cyclic write function. 

Cycle of write 
(min) 

1 2 4 8 16

Number of write 32 16 8 4 2

Total size of 
write data (KB)

69,862 34,931 17,466 8,733 4,366

Total processing 
time (s) 

26.23 13.51 7.66 3.40 1.70

Processing time 
per second (s) 

0.82 0.84 0.96 0.85 0.85

 

7. RELATED WORKS 
Many computers have main memory in the form of volatile 
memory. Thus, if the power supply to a computer with an existing 
OS is stopped, then the computer shuts down abnormally. 



Individual APs may fail to make data persistent. In addition, 
existing OSs only make some of the data used by APs persistent. 
Thus, APs processing that is underway cannot be restored even if 
the computer is rebooted.  

The hibernation mode in Windows and the hibernation mode via 
swsusp or TuxOnIce [11] in Linux allow computer processing to 
be interrupted and resumed. The hibernation mode writes all of 
the data in main memory to an external storage device and it loads 
saved data into the main memory once the computer is rebooted. 
This allows processing to be resumed after computer processing 
has been interrupted. However, a computer has to be put into 
hibernation by a user. This is effective when a halt is foreseeable 
but fails to address an unforeseeable emergency shutdown. 

Some OSs also have a checkpoint restart capability [12], [13]. 
This capability saves and restores the state of processing of 
individual APs. Thus, this capability can only be used to restore 
processes that are part of an AP. This capability is unable to save 
or restore the state of an OS of the state of APs. Membrane [14] 
allows restoration from a checkpoint in the event of a file system 
error. Thus, APs need not account for the occurrence of file 
system errors, and operations can continue. However, this 
capability cannot deal with a computer shutting down as a result 
of termination of the power supply.  

KeyKOS [15], [16] and EROS [17] have a checkpoint and a 
restart mechanism. All the data and processes are checkpointed. 
These OSs are microkernels, and the data used for the checkpoint 
is stored in the disk regions called the checkpoint area. These OSs 
and Tender OS differ from each other. Tender OS is a monolithic 
kernel. In addition, in order for a persistent-data mechanism 
provides the property of persistence in all volatile main memory 
regions, all the data on the virtual address space are stored in an 
external storage. 

Grasshopper [18], [19], [20] supports persistent processes. 
Containers are the only storage abstraction provided by 
Grasshopper; they are persistent entities that replace both the 
address spaces and the file systems. However, although 
Grasshopper provides persistence of processes, it cannot provide 
persistent processing of the OS.  

Guerra et al. [21] proposed software persistent memory (SoftPM). 
The SoftPM persists a persistent memory abstraction called 
container. Volos et al. [22] also proposed Mnemosyne: 
lightweight persistent memory. Our proposed structure can persist 
all memory area in virtual memory and serve the volatile main 
memory as a non-volatile main memory. 

Li et al. [23] proposed NV-process, a fault-tolerance process 
model based on NVRAM. NV-process instances run in a self-
contained way in NVRAM, thus to survive across OS reboot. 
However, only NV-process can continue running when OS 
reboots. By contrast, the proposed structure can save and restore 
the state of OS and AP processing. 

Condit et al [24] presented a file system and a hardware 
architecture that are designed around the properties of persistent, 
byteaddressable memory. One of the design principle of this work 
is to allow OSs and APs to easily exploit the benefits of fast, byte-
addressable, nonvolatile memory for file system. Lee et al. [25] 
proposed a buffer cache architecture that subsumes the function of 
caching and journaling in a unified nonvolatile memory space. 
Moraru et al. [26] proposed a new memory allocator for NVRAM 

can ease the task of creating safe, high-performance persistent 
data structures for emerging nonvolatile memories. 

Bailey et al. [27] discussed the OS implications of new NVRAM 
in future systems. They discussed four system architecture options 
for NVRAM such as hybrid main memory and all-NVRAM. 
Mogul et al. [27] have investigated OS support for hybrid main 
memory. Our target is all-NVRAM option. This option will affect 
significantly design of OS in future. Therefore, we pursue new 
OS designs for all-NVRAM main memory. 

8. CONCLUSIONS 
This paper has proposed three functions to study and develop OSs 
for nonvolatile main memory computers. First, we proposed a 
new OS structure plate whereby persistent data are managed 
assuming that nonvolatile memory is present. The proposed 
structure allows the OS and APs to use the persistent data by 
simply accessing the memory. Second, we proposed a persistent-
data mechanism to make the volatile main memory function as a 
nonvolatile main memory. We showed that the development of an 
OS and APs in this environment allows the development of an OS 
and APs predicated on the main memory in the form of a 
nonvolatile memory. 

Third, we proposed the continuous operation control using the 
persistent-data mechanism and a plate. This control can save and 
restore the state of OS and AP processing. The continuous 
operation control assumes that the OS- and all AP-related data are 
retained in the nonvolatile memory. Even if the processing stops, 
such as when the computer power supply is disconnected during 
the OS or APs processing, the continuous operation control uses 
the data in a nonvolatile format to resume the OS and AP 
processing. 

Moreover, the evaluation results showed that each memory region 
was restored on all the virtual address spaces during the 
restoration process at the OS startup, and all the resources 
managed by the OS could be restored. All processes could 
continue working after the reboot. The evaluation results showed 
that the write process time of the plate is proportional to the size 
of the updated pages that will be written, and the read processing 
time from an external storage occupies a larger portion of the 
plate restoration process. 

These results show that the proposed mechanism can be a basis 
for the development of OSs for computers with a nonvolatile 
memory. In addition, the results show that the plate and the 
continuous operation control can be used for computers with a 
nonvolatile main memory. 
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