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Abstract—Attacks on computer systems have become more
frequent in recent years. Attacks using kernel rootkits pose a
particularly serious threat. When a computer system is infected
with a kernel rootkit, attack detection is difficult. Because of
this, handling the attack will be delayed causing an increase in
the amount of damage done to the computer system. This paper
proposes a new method to detect kernel rootkits by monitoring
the branch records in kernel space using hardware features
of commodity processors. Our method utilizes the fact that
many kernel rootkits make branches that differ from the usual
branches. By introducing our method, it is possible to detect
kernel rootkits immediately and, thereby, reduce damages to a
minimum.
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I. INTRODUCTION

Rootkits are malicious programs that hide malicious
behavior from the user of the computer where they are
installed. There are two types of rootkits: user rootkits that
run at the user level and kernel rootkits that run at the
kernel level. Kernel rootkits modify operating system (OS)
kernels and rewrite the data output by the OS. Therefore,
detecting methods based on the output data of the OS are
ineffective. For example, anti-virus software running at the
user level cannot detect kernel rootkits. Thus, detecting
kernel rootkits is difficult and various methods to detect
them have been proposed. Ikegami et al. [1] mentioned that
the existing methods do not resolve all of the following
problems simultaneously: (1) cannot detect kernel rootkits
immediately, (2) cannot keep the scalability of the OS kernel,
and (3) cannot extend to different OS and OS versions.
To resolve those problems, Ikegami et al. [1] proposed a
method to detect kernel rootkits by checking the kernel
stack. However, this method (4) cannot detect kernel rootkits
that use instructions that do not push data into the kernel
stack (e.g., the jmp instruction).

This paper proposes a new method to detect kernel
rootkits. Our method detects kernel rootkits by monitoring
the branch records in kernel space recorded by hardware
features of commodity processors. Our method utilizes the
fact that many kernel rootkits make branches that differ from
the usual branches.

The contributions made in this paper are as follows: This
paper proposed the efficient way to detect kernel rootkits
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Figure 1. Changes in the control-flow when system call control-flow is
modified

using hardware features. Our method resolves all problems
(1)-(4) simultaneously.

II. KERNEL ROOTKITS DETECTION METHOD BY
MONITORING BRANCHES USING HARDWARE FEATURES

A. Concept of proposed method

Our method utilizes the fact that many kernel rootkits
make branches that differ from the usual branch path.
Previous research [2] indicates that 96% of all kernel rootkits
employ control-flow modification, making branches different
from usual. For example, Figure 1 shows the change in the
control-flow when the system call control-flow is modified
by kernel rootkits. Usually, after invoking a system call, the
control moves from the system call handler to the each
system call service routine. On the other hand, when a
computer system is infected with kernel rootkits, the control
moves from the system call handler to the malicious code
prepared by the attacker before moving to each system
call service routine. In the malicious code, the processing
that hides attacks is executed. Our method detects kernel
rootkits by monitoring branch records in kernel space and
by detecting control-flow modification. Our method uses
Last Branch Record, a recent feature of Intel processors for
monitoring the branch record in kernel space.

B. Last Branch Record

Last Branch Record (LBR) is a recent feature of Intel
processors that was introduced in the Nehalem architecture.
When LBR is enabled, the CPU records the address of a
branch instruction and its target instruction (branching data)
on LBR stack registers. The LBR stack can store 16 entries.
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Figure 2. Processing flow of our method

When more than 16 branching data entries are recorded, the
oldest stack data is overwritten. Monitoring branch records
using LBR has the following advantages:

(1) It can record all branching data in the kernel. There-
fore, it can monitor branch records recorded by in-
structions that do not push data into the kernel stack.

(2) It is transparent to the OS structure.
(3) It generates minimal overhead [3].

C. Overview of our kernel rootkits detection method

Our method detects kernel rootkits that modify control-
flow of the system call by monitoring the branch records
using LBR in Linux. Figure 2 shows a processing flow of
our method. Our method detects kernel rootkits that modify
the control-flow of the system call as follows:

(1) A user program invokes a system call.
(2) Our method hooks the transition to the system call

handler.
(3) Our method judges whether the invoked system call

is a watched system call and the following processing
is executed.
(A) If the invoked system call is a watched system

call, then control is given to Step (4).
(B) Otherwise, our method does nothing and control

is given to the system call handler.
(4) LBR is enabled (to start monitoring branches) and

control is given to system call handler.
(5) The following processing is executed.

(A) If the invoked system call is a watched system
call, our method hooks the transition to each
system call service routine and control is given
to Step (6).

(B) Otherwise, control is given to each system call
service routine.

(6) LBR is disabled (to stop monitoring branches).
(7) Our method checks branching data in the LBR stack.

If branching data in the LBR stack is abnormal (see
Case (2) described in II-D), our method alerts the user.

(8) Branching data in the LBR stack is cleared and control
is given to each system call service routine.

Using these steps, our method monitors the branch records
between the invoking system call and the transition to each
system call service routine.

D. Checking branching data in LBR stack
Our method detects kernel rootkits based on the quantity

of branching data in the LBR stack.
In our method, branching data recorded by LBR is clas-

sified in the following four ways:
(1) When the computer system is not infected with kernel

rootkits, LBR records two pieces of branching data.
(2) When the computer system is infected with kernel

rootkits, LBR records more than two pieces of branch-
ing data by processing the kernel rootkits.

(3) When the process is traced, LBR records more than
two pieces of branching data by processing the trace.

(4) When an interrupt occurs, LBR records more than two
pieces of branching data by processing the interrupt.

When quantity of branching data contained in the LBR stack
is equal to two, our method determines that the computer
system is not infected with kernel rootkits. When quantity
is greater than two, our method verifies whether or not the
process is traced intentionally by the user. When the process
is not intentionally traced, our method determines that the
computer system is infected with kernel rootkits. Handling
the case in which an interruption occurs is an issue that we
will consider in the future.

III. CONCLUSION
This paper proposed a method to detect kernel rootkits by

monitoring branches in kernel space using LBR. Our method
enables the detection of kernel rootkits that previous kernel
stack comparison methods could not detect. In future work,
we will handle the case in which interrupts occur and also
evaluate the performance of our method.
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