
Noname manuscript No.
(will be inserted by the editor)

A Mechanism for Achieving a Bound on Execution
Performance of Process Group to Limit CPU Abuse

Toshihiro Yamauchi · Takayuki Hara ·
Hideo Taniguchi

Received: date / Accepted: date

Abstract The secure OS has been the focus of several studies. However, CPU
resources, which are important resources for executing a program, are not the
object of access control in secure OS. For preventing the abuse of CPU re-
sources, we had earlier proposed a new type of execution resource that controls
the maximum CPU usage [8]. The previously proposed mechanism can control
only one process at a time. Because most services involve multiple processes,
the mechanism should control all the processes in each service. In this paper,
we propose an improved mechanism that helps to achieve a bound on the exe-
cution performance of a process group in order to limit unnecessary processor
usage. We report the results of an evaluation of our proposed mechanism.

Keywords Process scheduling, operating system, anti-DoS technique,
execution resource, security

1 Introduction

The number of computers connected to a network has increased with the
widespread use of the Internet. In addition, the number of reports of software
vulnerabilities has been increasing every year. This increase can be attributed
to the widespread use of automated attack tools and the increasing number
of attacks against systems connected to the Internet [1]. For example, viruses
and worms spread rapidly through the Internet, causing serious damage to
many computers. In addition, Denial of Service (DoS) attacks are one of the
serious problems encountered by computer systems. Therefore, various defense

Toshihiro Yamauchi · Takayuki Hara · Hideo Taniguchi
Graduate School of Natural Science and Technology, Okayama University,
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Tel.: +81-86-251-8188
Fax: +81-86-251-8256
E-mail: {yamauchi, tani}@cs.okayama-u.ac.jp



2 Toshihiro Yamauchi et al.

mechanisms against such attacks have been studied extensively, and these
studies have gained considerable attention.

Various defense mechanisms include firewalls, an Intrusion Detection Sys-
tem (IDS) [2–4], buffer overflow protection and access control mechanisms
such as Mandatory Access Control (MAC) and Role-Based Access Control
(RBAC) [5], and the secure OS. A firewall can block packets from incoming
connections, but it cannot evaluate the content of “legitimate” packets. Thus,
a firewall cannot prevent attacks from passing through legitimate ports. Be-
sides, IDSs observe program execution and detect malicious behavior of the
program. The incidence of false negatives and false positives on IDS is not zero.
Therefore, the combination of a firewall and IDS is not sufficient to prevent
attackers from attacking computers.

The secure OS [6] has been the focus of several studies. In particular,
Security-Enhanced Linux (SELinux) has attracted considerable attention. Even
if the authority is taken, the secure OS ensures minimal influence. However,
the CPU resource, which is an important resource for executing a program,
is not the object of the access control in secure OS. As a result, such OSes
cannot control the CPU usage ratio. For example, a secure OS cannot prevent
attackers from carrying out DoS attacks, which affect the CPU resources. In
general, the OSes can only limit the maximum CPU time for each process and
not the proportion of CPU time allocated to the processes.

Most OSes cannot control the usage ratio of CPU resources for users or
programs appropriately. If the ratio is controlled appropriately and easily, the
impact of DoS attacks can be mitigated. For example, if an administrator can
reserve an amount of CPU resource for administration, he/she can perform
maintenance activities on the computer, where it is being attacked. In addition,
an administrator can limit the usage ratio of CPU resource for each user and
stop the allocation of CPU to malicious users.

In an earlier study, we proposed the execution resource as a unit of program
execution, which has a degree of CPU usage[7]. In addition, we proposed a new
type of execution resource that controls the maximum CPU usage so that the
abuse of CPU resources can be prevented [8]. In order to prevent this abuse,
we propose an execution resource that can limit the upper bound of CPU
usage. The execution resource can specify the amount of CPU usage for each
process. In other words, execution can limit a proper amount of CPU usage
within a service that consists of two or more processes. That is, this execution
resource can be applied to mitigate DoS attacks.

The previously proposed mechanism can control only one process at a time.
Because, most service involve multiple processes, the mechanism should con-
trol all the processes involved in each service. In this paper, we propose an
improved mechanism for achieving a bound on the execution performance of
a process group in order to limit unnecessary processor use. The main idea of
this proposed mechanism is that the proposed mechanism limits the assigned
CPU time of attack processes in order to guarantee the execution of impor-
tant services. Here, the proposed mechanism is based on a previously proposed
mechanism. The previous mechanism could be used only to control a process



A Mechanism for Achieving a Bound on Execution Performance 3

because the execution resource with an upper bound was a leaf execution. The
proposed mechanism introduces directory execution as an execution resource
with an upper bound for the nodes of the execution tree. Because the proposed
mechanism can control the upper bound of a directory execution resource at-
tached to a process group, the abuse of CPU time of malicious processes in
the process group can be efficiently restricted. We also describe the imple-
mentation of the proposed mechanism on The ENduring operating system for
Distributed EnviRonment (Tender operating system) [9]. In addition, this
paper presents the results for a case involving an attack and the evaluation
results obtained using the Apache web server.

2 Execution Resource

In this section, we explain the concept of execution resource on the basis of the
presentation and previously proposed concept of execution resource in other
papers[7,8].

2.1 Overview

A process may be described as a unit of program execution in an existing
OS, and it has a degree of CPU usage. For instance, a priority is associated
with each process in UNIX. We have separated the degree of CPU usage
from a process. The degree of CPU usage is termed as the execution resource.
Therefore, only the execution resource involves the degree of CPU usage, and
a process does not have a degree of CPU usage. Scheduling queues are shown
in Fig. 1. Prior to the introduction of the execution resources, processes are
listed on a linked list on the basis of their priority. After the introduction,
these execution resources are maintained on the linked list on the basis of their
priority. Processes are then linked to executions. A process can be executed
by linking it to an execution.

Fig. 2 shows the relation between executions and processes. The execution
manager points to an execution with the highest degree of CPU usage. All
processes need to be linked to executions in order to be assigned a CPU time.
The execution manager selects a process from the scheduling queues. When
the state of a process is READY, it is linked to the execution with the highest
priority. The amount of CPU time that is assigned to a process is proportional
to the total amount of CPU usage time required for the executions linked to
the process.

2.2 Types of Execution Resources

There are two types of execution resources. One is execution with performance
and the other is execution with priority.



4 Toshihiro Yamauchi et al. � AA BBCCZZ
Scheduling queues(in general OS) � AA BBCCZZ

Scheduling queues(in execution resource model)A ZC B
Fig. 1 Change of scheduling queues ProcessorExecution manager

LinkAA BB CCDCBA E
: Execution : Process

Fig. 2 Relation between executions and a process

2.2.1 Execution with performance

Execution with performance includes the degree of CPU usage that indicates
the proportion of bare processor performance. The bare processor performance
can be set as 100%. When a process is linked to an execution with n% per-
formance, the assigned CPU time is n% of the bare processor performance.
We termed a unit of CPU usage as a “time slot,” and we termed a group of
time slots as a “time block.” Fig. 3 shows the relation between time slots and
a time block. For an execution in which the degree of CPU usage is n%, n%
of the time slots are assigned in a time block.



A Mechanism for Achieving a Bound on Execution Performance 5time block
time slot

Fig. 3 Time slots and a time block 
A-1A-1 A-2A-2 A-3A-3 BB CCB3a(40%)A3a(60%) A-4A-4

A1a(50%) B1a(20%)A2a(40%) B2a(30%) C2a(20%) D2a(10%)
Service AService A’

A0 C1a(6)

Fig. 4 Relationships between executions and a process group

2.2.2 Execution with priority

Execution with priority includes the degree of performance that indicates the
priority. The execution manager assigns the execution with priority that has
the highest priority to the processor. However, execution with performance
takes precedence over execution with priority because the former is guaranteed
an assigned CPU time.

2.3 Hierarchical Execution Tree

The structure of a process group is represented as a tree structure of executions
because the relation between a process group and its processes is represented
as a parent and a child. Fig. 4 shows the relationships between a process group
and executions. The root of an execution tree is called “root execution” and
it represents the bare processor performance. The node of an execution tree is
called “directory execution” and it represents the degree of CPU usage for a
process group. A leaf is called “leaf execution”; every leaf execution is linked
to a process. The execution resource (C1a) is an execution with priority. The
priority of it is 6. The other execution resources shown in Fig. 4 are execution
with performance.



6 Toshihiro Yamauchi et al. 

A-1A-1 A-2A-2 A-3A-3Service A
A1a(50%) B1a(20%)A2a(40%) B2a(30%) D2b(50%) BB

A0
C2a(6) F2b(6)E2b(4) C1a(6)

Fig. 5 Two process group executions

The total assigned CPU time for leaf executions equals the assigned CPU
time for the parent directory execution. The degree of CPU usage for leaf
executions indicates the priority or the ratio (%) to the assigned CPU time
of the parent directory execution. In the leaf execution, the ratio corresponds
to the point where the parent directory execution is set as 100%. The depth
of an execution tree is greater than one. As a result, it is possible to create a
process group within another process group.

Fig. 5 shows a case where more than one execution is linked to a process
group. When the second execution (B1a) is linked to a process group, leaf
executions (D2b, E2b, and F2b) have to be created and linked to each process
(A, B, and C, respectively) in the process group. As a result, each process
within the process group is linked to two leaf executions.

2.4 Operation Interface of Execution Resource

We designed eight operation interfaces for the execution resource to construct
an execution tree and control a program execution. Table 1 shows the inter-
faces.

3 Execution Resource with an Upper Bound

3.1 Rate-Limiting Mechanism Based on the Use of Execution Resources

In the existing OSes, whose operation is based on the time-sharing technique,
the CPU time used by a process according to its priority does not have an up-
per bound. Therefore, the allocation of CPU time to other services is affected
when two or more programs that demand infinite CPU time run simultane-
ously. In this case, service performance deteriorates significantly.



A Mechanism for Achieving a Bound on Execution Performance 7

Table 1 Operation interfaces of the execution resource

Form Contents of operation
creat execution
(mips)

Create the execution specified by mips and return the execution
identifier execid. When mips is between 1 and 100 it signifies the
performance regulation execution degree (as a percentage with
the performance of the processor itself taken to be 100 percent),
when it is 0 or negative is signifies the priority of the execution
degree (the absolute value is the process priority).

delete execution
(execid)

Delete the execution execid.

attach execution
(execid, rid)

If rid means pid, this interface associates the execution execid
and the process rid. If rid means execid, this interface associates
the execution execid and the execution rid.

detach execution
(execid, rid)

If rid means pid, this interface remove the association between ex-
ecution execid and process rid. If rid means execid, this interface
remove the association between execution execid and execution
rid.

wait execution
(pid, chan)

Forbid the assignment of processor [time] to process pid and its
associated execution[s]; this puts the process in the WAIT state.

wakeup execution
(pid, chan)

Make it possible to assign CPU time to the process pid and its
associated executions; this puts the process in the READY state.

dispatch(pid) Run process pid.
control execution
(execid, mips)

Change the execution degree of execid to mips. mips is inter-
preted as in creat execution.

To prevent the abuse of the CPU resources, we proposed an execution
resource that helps to achieve an upper bound for the CPU usage ratio[8]. The
main idea of this proposed mechanism is that the proposed mechanism limits
the assigned CPU time of attack processes in order to guarantee the execution
of important services. Important services and legitimate services are attached
to execution resource without an upper bound. Because the assignment of CPU
time for these services is not limited by the proposed mechanism, these services
can run according to their priority. On the other hand, suspicious services are
attached to execution resource with an upper bound. If the suspicious services
attack a computer, the proposed mechanism can limit the upper bound of the
assigned CPU time of the services. Thus, the damage of such attacks can be
mitigated. In addition, the upper bound of suspicious services can be changed
to lower value by an administrator after the attacks are detected.

Next, the process flow of limiting assigned CPU time is explained. In this
execution resource with an upper bound, the CPU time is allocated according
to the priority until the usage reaches a specified ratio in a time slice. The time
slice is the period of time for which a process is allowed to run. When it reaches
the specified ratio, the state of the currently running process is changed to a
WAIT state until the current time slice expires. Even if a process that is linked
to an execution for which the CPU usage is limited by an upper bound suffers
a malicious attack, the execution system can prevent the program from using
excessive CPU time. Moreover, the execution resource can be grouped with a
user or a service. Therefore, the CPU usage ratio of a user or a service can be
specified. As a result, the impact of a DoS attack can be controlled within the



8 Toshihiro Yamauchi et al.

process group even if a new child execution is created because the execution
belongs to the same group.

As described in a previous paper [7], the previously proposed mechaism
can guarantee that the important processes will be effectively carried out by
using the execution resources with high performance.

3.2 Execution Resource with an Upper Bound for Process Group

In the previous mechanism, the execution resource with an upper bound was
a leaf execution. The previous mechanism could be used only to control a
process. Therefore, in order to control the upper bound of a process group, a
user must change the upper bound of each process. If a process group consists
of 100 processes, the operation should be performed 100 times. It increases the
load on the user side. In addition, the previous proposed mechanism cannot
limit sufficiently the upper bound of a process group because it cannot limit
the upper bound of the process group as a whole. Therefore, we introduce
directory execution as an execution resource with an upper bound. Directory
execution represents the degree of CPU usage for a process group. Thus, the
proposed mechanism can control the upper bound of a process group as a
whole by introduction of upper bound for directory execution. As a result,
directory execution with an upper bound can efficiently limit the influence of
the attack processes.

In order to do so, the process scheduler was changed for the control of an
execution resource with an upper bound of directory execution. The proposed
mechanism introduces SUSPEND state which is a state of execution resource.
When the state of a process is SUSPEND, no CPU time is assigned to the
process. Each execution resource has a counter of assigned CPU time. If the
counter is equal to the usage limit number of the execution resource, the state
of the execution resource is changed to SUSPEND state to limit the upper
bound until the current time slice expires.

The process flows of the new process scheduler are depicted in Fig. 6 and
Fig. 7. Fig. 6 shows the process flow of the process scheduler. The search
performed by the process scheduler for the execution resource has the highest
priority. If directory execution is selected in step (4) of the process (Fig. 6),
the process scheduler searches the leaf executions of the directory execution
in step (5).

Fig. 7 shows the process flow of the process scheduler for the case in which
the directory execution is the execution resource with an upper bound. First,
this algorithm selects a leaf execution resource should be executed in next time
slot in step (1). Next, the counter assigned CPU time is incremented in step (2).
If the counter is equal to usage-limit number, the state of the selected process
changed to a SUSPEND state. If the counter is equal to time-slice number
in step (5) or the execution state of the selected execution is SUSPEND, the
algorithm searches an execution again. Otherwise, the process shown in Fig. 7
is completed successfully, then the execid of the selected execution is returned.



A Mechanism for Achieving a Bound on Execution Performance 9Timer interrupt(1) Next time-slotassigned to execution?
(4) Directoryexecution?
(5) Searchexecution

(2) Search executionby priority

(6) RUN
not foundfoundno

yesno yes
success failure

(3) Idle state, orreturn as a failure
Fig. 6 Process flow of the process scheduler

3.3 Advantages

The proposed mechanism can prevent the occupation of a CPU resource for
attacks such as DoS attacks by using an execution with an upper bound of
CPU time. Because the proposed mechanism can control the upper bound of
a directory execution resource, the abuse of CPU time of malicious processes
can be efficiently restricted.

It is possible that the authority of a process is deprived by the attack from
the outside. Assume that an execution with an upper bound is attached to
all processes that connect to the network. In this case, even if the process is
taken over by attackers, the influence of the DoS attack on the CPU resource
can be controlled.

The specification of recent computers has been improved, and little soft-
ware occupies the CPU at a high rate. Therefore, it is feasible to use execution
with an upper bound for each process without degrading the service perfor-
mance.

4 Implementation

4.1 Tender Operating System

The design of the proposed mechanism is based on the execution resource. The
execution resource requires the separation of execution resource and process
resource in an OS. However, existing OSes except for Tender, do not sepa-
rate the degree of CPU usage (execution resource) from a process. In contrast,
because each resource can exist independently in Tender, execution resource



10 Toshihiro Yamauchi et al.

(2) Increment counter(3) counter ==usage-limited number ?
(5) counter ==time-slice number ?

(4) Change to a SUSPEND state
(6) Change to a READY stateand reset the counterand remove at priority queueand insert at the back of priority queue

yes
yes

no
no

(7) execution state ? SUSPENDRUN or READY

(1) Search executionby prioritynot found found

Fig. 7 Process flow when the directory execution with an upper bound is found

has been separated from process resource. For this reason, the proposed mech-
anism is implemented on the Tender operating system by using the execution
resource.

In Tender, OS resources can exist independently. The objects to be con-
trolled and managed by Tender are known as “resources.” Resources have
identifiers and names for operations. The resource identifiers and resource
names include location information that indicates the particular machine on
which the OS is installed. Fig. 8 shows the structure of a resource identifier
and resource name. Resource names have a tree structure. An example of a
resource name is “/machine1/process/procA.”

The interface for the operation of resources is a unified interface named the
Resource Interface Controller (RIC). Programs that use resources are called
through the RIC. The programs that use each resource are separated from each
other. In addition, the sharing of a program component by multiple programs
that use resources is not allowed. The program modules consist of five program
components, namely, “open,” “close,” “read,” “write,” and “control.” The RIC
has a pointer table that includes all the pointers of the program components.
Each program that manages resources has to call any program component
through the RIC. Bypassing the RIC is prohibited in the Tender kernel.

There is a separate management table for each resource. In addition, point-
ers referring to values within the other resource management table are prohib-



A Mechanism for Achieving a Bound on Execution Performance 11 place kind id in a resource／machine 1 machine 2process program plateprocA procB programA programB plateA plateB
(A) resource identifier

(B) resource name

01516232431

Fig. 8 Resource identifier and resource name

ited. The existence of an individual resource does not depend on the existence
of other resources or processes because the management table for each resource
is separate. In other words, the resources are independent of each other.

Since the individual resources are independent of each other, Tender is
able to recycle them. Thus, Tender can preserve process resources instead of
deleting them at process termination, and it can recycle the preserved process
resources during process creation. Therefore, by preserving and recycling pro-
cess resources, users can realize a reduction in the cost of process creation and
termination [10]. In addition, an instant synchronous interprocess communi-
cation (ISIPC) mechanism is implemented in Tender. The ISIPC mechanism
can realize both instantaneous communication and synchronization of data[11].

4.2 Execution Resource

The proposed mechanism was implemented in the program component of ex-
ecution resource and a process scheduler on Tender. In order to manage the
upper bound of directory execution, the information of assigned CPU time
and upper bound of each directory execution resource were added to the man-
agement table of the execution resource. In addition, in order to designate
the upper bound of a directory execution resource, the interfaces and function
of creat execution(mips) and control execution(execid, mips) were modified.
Table 2 shows the interfaces of these functions.

The process scheduler is invoked in every timer interrupt. The interval of
the timer interrupt is 1 ms on Tender. The process flow of process scheduler
is shown in Fig. 6 before the leaf execution resource with upper bound and the
directory execution resource with upper bound are introduced. The algorithm
of the process scheduler for directory execution resource with an upper bound
was implemented as follows. When the selected directory execution resource



12 Toshihiro Yamauchi et al.

Table 2 Modified operation interfaces of the execution resource

Form Contents of operation
creat execution (mips,
upper bound)

Create the execution specified by mips with upper bound,
and return the execution identifier execid. When mips is
between 1 and 100 it signifies the performance regulation
execution degree, when it is 0 or negative is signifies the
priority of the execution degree.

control execution
(execid, mips, upper
bound)

Change the execution degree of execid to mips with upper
bound. mips is interpreted as in creat execution.

in step (4) of Fig. 6 has an upper bound, the implemented algorithm shown
in Fig. 7 is invoked in step (5) in Fig. 6. In this case, the algorithm checks
whether the assigned CPU time of the directory execution resource is equal
to the upper bound of it or not. If the assigned CPU time is equal the upper
bound, the state of the directory execution resource is changed to SUSPEND
state. The process scheduler searches directory execution resource and leaf
execution resource in the execution tree recursively until it finds an execution
resource should be assigned to next time slot.

The length of time slot, time block, and time slice on Tender are 1 ms,
100 ms, and 100 ms, respectively. Thus, one time block has 100 time slots.
Next, the max number of process resource and execution resource are 79, and
255 respectively. In this case, the maximum number of child execution resource
in a directory execution resource is less than 255.

5 Evaluation

5.1 Purpose of Evaluation

To show the feasibility of the proposed method, we evaluated the proposed
mechanism on Tender. We investigated whether the proposed method can
control the upper bound of the CPU resources for the services.

Four evaluations were performed.

1. Evaluation for a general OS without the proposed mechanism shows how
attack processes influence a program which is executed on a genral OS.

2. Basic evaluation shows how the proposed mechanism can control the per-
formance of each process and limit the upper bound for process groups.

3. Evaluation for a case involving an attack shows how the proposed mecha-
nism limits the influence of an attack service.

4. Evaluation using the Apache web server shows the feasibility of the pro-
posed mechanism when a real application program is attacked.



A Mechanism for Achieving a Bound on Execution Performance 13

0102030405060708090100

020406080100120140

0 1 2 3 4 5 CPU usage r
atio(%)

Processing t
ime (s)

Number of loop processes

Processing time (s)CPU usage ratio (%)

Fig. 9 Results of an imprecise computational program on a general OS

Table 3 Degree of execution resource in the basic evaluation

Service A Service B Service C
case exec 1 exec 2 exec 3
1 6 6, MAX 100% 6, MAX 100%
2 6 6, MAX 100% 6, MAX 75%
3 6 6, MAX 100% 6, MAX 50%
4 6 6, MAX 100% 6, MAX 25%
5 6 6, MAX 50% 6, MAX 50%
6 6 6, MAX 50% 6, MAX 25%

5.2 Evaluation for a general OS without the proposed mechanism

We evaluated the processing time and the CPU usage ratio of a program to
show the influence of attacks for CPU resource in a general OS without the
proposed mechanism. We used an imprecise computational program which
calculates an approximate solution for natural logarithms. This program is
CPU bound, thus it is importrant to prevent attack programs from using
excessive CPU time. In addition, we executed some attack processes (loop
process). The processing of eash process executes an infinite loop.

The evaluation was performed on a computer (CPU: Pentium4 3.0GHz, OS:
FreeBSD 4.3-RELEASE). The imprecise computational program is executed
when the number of loop process is from 0 to 5. We measured the processing
time and CPU usage ratio of imprecise computational program.

Fig. 9 shows the results of the evaluation.

5.3 Basic Evaluation

An execution tree was constructed before the evaluation. This execution tree
included three process groups (services A, B, and C). Each process group



14 Toshihiro Yamauchi et al.Service A Service B Service C

Ratio of assigned CPU time for each process0% 20% 40% 60% 80% 100%case6
case5
case4
case3
case2
case1

exec1-1exec1-2exec1-3exec2-1exec2-2exec2-3exec3-1exec3-2exec3-3
0% 20% 40% 60% 80% 100%case6

case5
case4
case3
case2
case1

exec1-1exec1-2exec1-3exec2-1exec2-2exec2-3exec3-1exec3-2exec3-3

Fig. 10 Results of the basic evaluation

involved three processes. The processing of eash process executes an infinite
loop. These processes were executed in a computer (CPU: Celeron 2.8GHz,
OS: Tender).

Table 3 shows the performance and priority of the execution resource of
each process group in the execution tree. The execution resource (directory
execution) of service A was given priority. The execution resources (directory
executions) of services B and C were limited by an upper bound. The upper
bounds of these execution resources were varied in this evaluation.

Fig. 10 shows the results of the basic evaluation. These results indicate
that our proposed mechanism can control each process group according to the
upper bound and that our proposed mechanism effectively limits the upper
bound for process groups.

5.4 Evaluation for a Case Involving an Attack

5.4.1 Evaluation method

We evaluated the processing time of a normal service A (SA) and an attack
service B (SB) to show the influence of an attack service on the proposed
mechanism. SB tries to obtain as much CPU time as possible. Fig. 11 shows
the execution tree used in this evaluation. SB was attached to the directory
execution with an upper bound. The directory execution is used for limiting
the upper bound of SB.

Two experiments were performed in the evaluation. In the first experiment,
the number of processes in SB was changed from 1 to 5. The upper bound of SB
was 50%. In the second experiment, the number of SB was 3. The upper bound



A Mechanism for Achieving a Bound on Execution Performance 15

exec1 exec2
A B-1 B-2 B-5

exec2-5
Attack service SB
exec2-2

exec exec execExecution with performance Execution with priority Execution with upper bound

exec2-1 ・・・
・・・

Root execution

Normal service SA
： ： ：

Fig. 11 Evaluation environment for a case involving an attack

of SB was changed from 25% to 100%. In both the experiments, the priority
of the directory execution was changed. First, the priority of the directory
execution (SB) was the same as that of SA. Next, the priority of the directory
execution (SB) was higher than that of SA. The processing of a process that
consists of SA is the same as that of the process that consists of SB. The
processing executes an infinite loop. The experiments were performed using a
computer (Processor: Celeron 2.8GHz, OS: Tender)

5.4.2 Evaluation for Number of Attack Processes

Fig. 12 shows the behavior of the processing time as the number of processes
in SB changes. In the evaluation shown in Fig. 12 (A), the priority of SA is
the same as that of SB. In the evaluation shown in Fig. 12 (B), the priority of
SB is higher than that of SA. The processing time of each service is plotted
on the y-axis, and the number of processes in SB is plotted on the x-axis.

In Fig. 12, the processing time of SA is constant because the upper bound
of SB is restricted by the directory execution with an upper bound. These
results show that the proposed mechanism can limit the influence of SB.

5.4.3 Evaluation for Number of the Upper Bound of Execution Resource

Fig. 13 shows the processing time of each service for the case in which the
upper bound of the execution resource attached to SB is changed. The upper
bound was increased from 25% to 100%. In the evaluation shown in Fig. 13
(A), the priority of SA is the same as that of SB. In the evaluation shown in
Fig. 13 (B), the priority of SB is higher than that of SA.

In Fig. 13, as the proposed mechanism restricted the deterioration in the
performance of SB, the processing time of SA decreased. These results show



16 Toshihiro Yamauchi et al.

05001,0001,5002,0002,500

1 2 3 4 5Number of processes in SB
Processing ti
me SASB

05001,0001,5002,0002,500

1 2 3 4 5Number of processes in SB
Processing time

SASB

(A) Priority: SA = SB (B) Priority: SB > SA

Fig. 12 Behavior of processing time as the number of processes in SB changes

05001,0001,5002,0002,5003,000

25% 50% 75% 100%Upper bound of execution resource attached to SB
Processing ti
me SASB

05001,0001,5002,0002,5003,000

25% 50% 75% 100%Upper bound of execution resource attached to SB
Processing time

SASB

(A) Priority: SA = SB (B) Priority: SB > SA

Fig. 13 Processing time when the upper bound of the execution resource attached to SB
is changed

that the proposed mechanism can restrict CPU abuse caused by a malicious
service. In addition, the performance of SA was improved because the assign-
ment of CPU time for SB was restricted.

From Fig. 13 (B), the processing time of SA is found to be longer than
that of SA shown in 12 (A). These results show that SA was influenced by SB.
In addition, the processing time of SA is constant when the upper bound is
more than 75% and the processing time of SB is decreased. In this case, the
processing of SB finishes first, and thus, the entire CPU time is assigned to
SA. Thus, the processing time of SA did not increase.



A Mechanism for Achieving a Bound on Execution Performance 17

Table 4 Evaluation environment

Server machine Client machine
OS Tender Windows Vista
Processor Celeron D 2.8GHz Core 2 Duo E6600 2.4GHz
Memory 768MB 2048MB
Program Apache HTTP Server 1.3.33 ApacheBench 2.2.17.0

5.5 Evaluation Using Apache Web Server

5.5.1 Evaluation Environment and Method

In order to evaluate the proposed mechanism, we simulated a DoS attack
against a Web server. The scenario was as follows. We assumed that an attacker
intrudes into a server machine and takes control of processes. The attacker
creates processes and attempts to consume the CPU time in the machine.
To consume the CPU time, the attacker runs processes (attack processes)
that execute an infinite loop. As a result, the performance of the web server
(Apache) is influenced by the attack.

Table 4 shows the evaluation environment. To measure the server perfor-
mance, a client program was run on a client machine. The average of the
response time of the client program was calculated as a measure of the per-
formance. A web page on the server machine was accessed 100 times by the
client program. The two machines are connected with 100Base-TX ethernet.

The evaluations were performed for three cases. First, the evaluation was
performed without applying the proposed mechanism to programs. Second,
the evaluation was performed by applying the earlier proposed mechanism
(leaf execution resource with an upper bound) to programs. Third, the evalu-
ation was performed by applying the proposed mechanism (directory execution
resource with an upper bound) to programs.

In the first evaluation, the Apache web server and attack processes were
executed by attaching execution with priority to the processes. In the sec-
ond and third evaluations, an execution tree was constructed, and then, the
Apache web server and attack processes were executed. In these evaluations,
the response time of the Apache web server was measured.

Two experiments were performed under the three conditions. Experiment
1 was performed as follows.

1. The number of attack processes was changed from 1 to 5.
2. The evaluation was performed for two cases of the priority of the web

server. In the first case, the priority of the Apache web server was the
same as that of the attack processes. In the second case, the priority of
attacker processes was higher than that of the Apache web server.

3. The upper bound of the execution resource attached to attack processes
was 50%.

Experiment 2 was performed as follows.



18 Toshihiro Yamauchi et al.

020040060080010001200

0 1 3 5Number of attack processes
Average
 respons
e time (m
s)

Fig. 14 Evaluation without the proposed mechanism (priority is same)

1. The number of attack processes was 3.
2. The evaluation was performed for two cases of the priority of the web

server. In the first case, the priority of the Apache web server was the
same as that of the attack processes. In the second case, the priority of
attacker processes was higher than that of the Apache web server.

3. The upper bound of the execution resource attached to attack processes
was changed from 10% to 100%.

5.5.2 Evaluation without the Proposed Mechanism

The evaluation described in this subsection was performed without applying
the proposed mechanism to programs. In this evaluation, the Apache web
server and attack processes were executed by attaching execution with priority.
As described in section 5.5.1, there are two conditions for the priority: the
priority of the processes in Apache is the same as that of the attack processes
or the priority of the attack processes is higher than that of the processes in
Apache.

Fig. 14 shows the results of experiment 1 for the case in which the priority
of SA is the same as that of SB. The figure indicates that the influence of the
attack processes increased according to the number of attack processes. The
average response time increased by 200 ms for each attack process. As a result,
the increase in the number of attack processes has a significant influence on
the average response time.

In addition, the average response time was measured when no attack pro-
cess exists. The result was 6.9 ms. This corresponds to the case in which the
number of processes is 0, as shown in Fig. 14.

When the priority of the attack processes is high, the response of the
Apache web server was timeout. This result implies that attack processes con-
sumed the CPU time. Thus, the processes of Apache were not executed. Hence,



A Mechanism for Achieving a Bound on Execution Performance 19

execA1 execB1
P1

・・・
Root execution

P1
execB2
P2

execBn
Pn攻撃プロセス・・・ Attack processesApache

execA2
P2

・・・

exec exec execExecution with performance Execution with priority Execution with upper bound： ： ：
Fig. 15 Execution tree for evaluating leaf execution resource with an upper bound

in this case, an increase in the number of attack processes has a significant
influence on the service of Apache.

5.5.3 Evaluation with the Leaf Execution Resource

The evaluation described in this section was performed by applying the earlier
proposed mechanism to programs. Leaf executions that have an upper bound
were attached to the attack processes. Experiments 1 and 2 were performed.
Fig. 15 shows that an execution tree is used for this evaluation.

Fig. 16 shows the results of Experiment 1. In Fig. 16 (A), the upper bound
is 50%, and in Fig. 16 (B), the upper bound is 20%. In both cases, the number
of attack processes is 1, 3, and 5.

In Fig. 16 (A), the influence of the attack processes increased with the
number of attack processes. When the priority of attack processes is higher
than that of Apache and the number of attack processes is more than 3, the
response of Apache was timeout. When the number of attack processes was 1,
the average response time was 14.5 ms. Thus, Fig. 16 (B) depicts the results
for the case in which the upper bound of the attack process is 20%. These
results show that if the priority of the attack processes is high, the influence is
significant. When the proposed mechanism was not applied to attack process,
the response time could not be measured. However, in this case, the response
time can be measured. These results show that the leaf execution resource
with an upper bound can limit the influence of attack processes.

Fig. 17 shows the results of experiment 2. As shown in Fig. 17 (A), the
proposed mechanism can limit the influence of the attack processes when the
upper bound of the attack processes is less than 40%. In addition, the limi-
tation of the influence of attack processes is small when the upper bound of
the attack processes ranges from 50% to 90%. However, the proposed mech-



20 Toshihiro Yamauchi et al.

050100150200250300350400450

1 3 5Number of attack processes
Averag
e resp
onse t
ime (m
s)

02
46
81012141618

1 3Number of attack processes
Averag
e resp
onse t
ime (m
s)

(A) Priority: SA = SB, Upper bound=50% (B) Priority: SB > SA, Upper bound=20%

Fig. 16 Evaluation results of experiment 1 for evaluation of leaf execution

0100200300400500600700

10 20 30 40 50 60 70 80 90 100Upper bound of each attack process (%)
Averag
e resp
onse t
ime (m
s)

0102030405060

10 20 30Upper bound of each attackprocess (%)
Averag
e resp
onse t
ime (m
s)

(A) Priority: SA = SB (B) Priority: SB > SA

Fig. 17 Evaluation results of experiment 2 for leaf execution evaluation

anism can limit some influence in this case. When the upper bound of the
attack processes is 100%, the influence of the attack processes for Apache is
significant, because the proposed mechanism does not restrict the influence of
attack processes.

Fig. 17 (B) shows that the response of the Apache web server was timeout
when the upper bound of the attack processes was higher than 40%, because
the priority of the attack processes was higher than that of Apache processes.
This result shows that the leaf execution with an upper bound can restrict the
influence of the attack processes when the upper bound is low.



A Mechanism for Achieving a Bound on Execution Performance 21

execB
execBnexecB2execB1 ・・・

・・・P1 P2 PnAttack processesexec exec execExecution with performance Execution with priority Execution with upper bound： ： ：

Root execution
execA1
P1 ・・・Apache

execA2
P2

・・・

Fig. 18 Execution tree for evaluating directory execution resource with an upper bound

5.5.4 Evaluation with the Directory Execution Resource

Fig. 18 shows the execution tree used in this evaluation. Each attack process
was attached to leaf execution, and then each leaf executions was attached
to the directory execution resource with an upper bound. As a result, the
proposed mechanism can restrict the upper bound of the attack processes as
a unit of the process group.

As described in section 5.5.1, two experiments were performed.
Fig. 19 shows the results of experiment 1. Figs. 19 (A) and (B) show that

the number of attack processes has little influence on the average response time
of the Apache web server. Therefore, the proposed mechanism can restrict the
decrease in the performance of the Apache web server.

Figs. 20 (A) and (B) show that the proposed mechanism can restrict the
influence of the attack processes for the Apache web server when the upper
bound of the attack processes ranges from 10% to 80%. However, when the
upper bound is 90%, the influence of the attack processes is comparatively
high.

5.6 Summary of Evaluations

As described in section 5.1, we performed three evaluations. Table 5 summa-
rizes the results of three evaluations. Table 5 shows that our proposed mecha-
nism can limit the influence of attack processes and improve the performance
of normal services.



22 Toshihiro Yamauchi et al.

02
46
81012141618

1 2 3 4 5Number of attack processes
Averag
e resp
onse t
ime (m
s)

02
46
810121416

1 2 3 4 5Number of attack processes
Averag
e resp
onse t
ime (m
s)

(A) Priority: SA = SB (B) Priority: SB > SA

Fig. 19 Evaluation results of experiment 1 for evaluation of directory execution

050100150200250

10 20 30 40 50 60 70 80 90 100Upper bound of each attack process (%)
Averag
e resp
onse t
ime (m
s)

0102030405060708090

10 20 30 40 50 60 70 80 90Upper bound of each attack process (%)
Averag
e resp
onse t
ime (m
s)

(A) Priority: SA = SB (B) Priority: SB > SA

Fig. 20 Evaluation results of experiment 2 for evaluation of directory execution

6 Related Work

Most defense techniques against Internet-originated DoS attacks have targeted
the transport and network layers of the TCP/IP protocol stack [12]. Our re-
search focuses on the access control mechanism of and the rate limiting tech-
nique for CPU resources.

In the past decade, resource accounting techniques and resource protection
techniques for defending against DoS attacks have been proposed, and these
techniques have been successfully utilized to counter DoS attacks. The Scout
operating system has an accounting mechanism for all the resources employed
by each I/O path [13]. Scout also has a separate protection domain for each



A Mechanism for Achieving a Bound on Execution Performance 23

Table 5 Summary of Evaluations

Evaluations Summary of evaluation results
Basic Evaluation 1. Our proposed mechanism can control each process group ac-

cording to the upper bound.
2. Our proposed mechanism effectively limits the upper bound

for process groups.

A Case Involving
an Attack

1. Our proposed mechanism can limit the influence of an attack
service (SB) because the upper bound of SB is restricted.

2. The performance of a normal service (SA) is improved because
the assignment of CPU time for SB is restricted.

Using Apache
Web Server

1. The leaf execution with an upper bound can restrict the in-
fluence of the attack processes when the upper bound is low.

2. The directory execution with an upper bound can restrict the
influence of the attack processes for the Apache web server
when the upper bound of the attack processes ranges from
10% to 80%. When the upper bound is 90%, the influence of
the attack processes is comparatively high.

path. The present research focuses on the I/O paths and not on the access
control of CPU resources.

The resource control mechanism is implemented by the Resource Control
Lists (RCL) in Linux RK[14]. This mechanism has resource reserve function
and rate limiting function of CPU time, and this mechanism controls a process
as a unit of RCL and enforces the RCL rules to it. Thus, this mechanism
cannot control CPU time of users as a unit of rate limiting. In addition, this
mechanism is not suitable for the type enforcement mechanism in secure OS,
because the subject of RCL does not match the subject of secure OS.

Resource containers [15] have been proposed, and they can be used to ac-
count for and limit the usage of kernel memory. This container mechanism
supports a multilevel scheduling policy; however, it only supports fixed-share
scheduling and regular time-shared scheduling. Resource reservation frame-
work for MINIX 3 has been proposed[16]. This framework provides limited
hard real-time and soft real-time support for applications. In addition, this
frame work improves dependability by enabling temporally isolated execution
in order to prevent DoS attacks.

Execution resources with upper bounds are classified under resource ac-
counting techniques [17]. The execution resource can control the maximum
extent of CPU usage of programs for preventing abuse of CPU resources. The
policy of rate limiting can be enforced for a CPU resource by using an access
control mechanism for the execution resource. In addition, the proposed access
control model can be applied to general OSes and secure OSes.



24 Toshihiro Yamauchi et al.

7 Conclusion

We proposed an improved mechanism for achieving a bound on the execution
performance of process groups in order to limit unnecessary processor use.
We improved the previously proposed mechanism used for controlling the up-
per bound for a process. We introduced directory execution as an execution
resource with an upper bound. In order to do so, the process scheduling mech-
anism was changed for the control of an execution resource with an upper
bound of directory execution. The proposed mechanism was implemented in
execution resource on Tender operating system.

To show the feasibility of the proposed method, we evaluated the proposed
mechanism on Tender. The results of the basic evaluation show that our
proposed mechanism can control each process group according to the upper
bound. Further, the results of evaluation for a case involving an attack show
that the proposed mechanism can limit the infuence of SB because the upper
bound of SB is restricted by the directory execution with an upper bound.
Finally, the results of the evaluation conducted the Apache web server show
that the directory execution resource with an upper bound can efficiently limit
the influence of the attack processes for Apache processes by restricting the
upper bound of the attack processes.

References

1. CERT/CC Statistics 1988-2005: http://www.cert.org/stats/
2. Wagner D, Dean D: Intrusion Detection via Static Analysis, In Proceedings of the 2001

IEEE Symposium on Security and Privacy, pp.156 － 168 (2001)
3. Hofmeyr S A, Forrest S, Somayaji A: Intrusion Detection using Sequences of System

Calls, Journal of Computer Security, Vol.6, No.3, pp.151 － 180 (1998)
4. Sekar R, Bendre M, Bollineni P, Dhurjati D: A Fast Automaton-Based Method for De-

tecting Anomalous Program Behaviors, In Proceedings of of IEEE Symposium on Security
and Privacy, pp. 144–155 (2001)

5. Sandhu R S, Coyne E J, Feinstein H L, Youman C E: “Role-Based Access Control
Models,” IEEE Computer, vol. 29, no. 2, pp. 38–47 (1996)

6. Security-Enhanced Linux, http://www.nsa.gov/selinux/
7. Tabata T, Nomura Y, Taniguchi H: A Mechanism of Regulating Execution Performance

for Process Group by Execution Resource on Tender Operating System, Systems and
Computers in Japan, Vol. 38, No. 4, pp. 63-78 (2007).

8. Tabata T, Hakomori S, Yokoyama K, Taniguchi H: A CPU Usage Control Mechanism for
Processes with Execution Resource for Mitigating CPU DoS Attack, International Journal
of Smart Home, vol. 1, no. 2, pp. 109–128 (2007)

9. Tender project, http://www.swlab.cs.okayama-u.ac.jp/lab/tani/research/tender-e.html
10. Tabata T, Taniguchi H: An Improved Recyclable Resource Management Method for Fast

Process Creation and Reduced Memory Consumption, International Journal of Hybrid
Information Technology (IJHIT), vol. 1, no. 1, pp.31-44 (2008)

11. Yamauchi T, Fukutomi K, Taniguchi H: ISIPC: Instant Synchronous Interprocess Com-
munication, Journal of Next Generation Information Technology, vol.1, no.3, pp.75-83
(2010)

12. Garg A, Reddy A: Mitigation of DoS attacks through QoS regulation, In Proceedings
of IEEE International Workshop on Quality of Service (IWQoS), pp.45–53 (2002)

13. Spatscheck O, Petersen L L: Defending Against Denial of Service Attacks in Scout, In
Proceedings of 3rd Symp. on Operating Systems Design and Implementation, pp. 59–72
(1999)



A Mechanism for Achieving a Bound on Execution Performance 25

14. Miyoshi A, Rajkumar R: Protecting Resources with Resource Control Lists, In Proceed-
ings of the Seventh Real-Time Technology and Applications Symposium (RTAS ’01), pp.
85–94 (2001)

15. Banga G, Druschel P, Mogul J C: Resource containers: A new facility for resource
management in server systems, In Proceedings of the Third Symposium on Operating
Systems Design and Implementation (OSDI ’99), pp. 45–58 (1999)

16. Mancina A, Faggioli D, Lipari G, Herder J N, Gras B, Tanenbaum A S: Enhancing a de-
pendable multiserver operating system with temporal protection via resource reservations,
Real-Time Systems, vol. 43, no. 2, pp.177–210 (2009)

17. Mirkovic J, Reiher P: A taxonomy of DDoS attack and DDoS defense mechanisms,
ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 39–53 (2004)


