A New OS Structure for Simplifying Understanding of
Operating System Behavior

Toshihiro Yamauchi, Akira Kinoshita, Taisuke Kawahara and Hideo Taniguchi
Graduate School of Natural Science and Technology, Okayama University
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan

E-mail: yamauchi,taniQcs.okayama-u.ac.jp

Abstract

It is difficult to understand the processing flow of complicated software
such as operating systems (OSs). Thus, a mechanism that can collect and
analyze behavioral information in order to comprehend the behavior of
OS is necessary. Although several collection mechanisms have been devel-
oped, their OS structures were not designed to collect OS behavior. In this
paper, we describe an OS structure that simplifies comprehension of OS
behavior and the implementation of it on Tender OS. We also describe
a mechanism for the visualization of OS behavior. Finally, we investigate
the cost of introducing our proposed comprehension mechanism and the
overhead and efficiency of the proposed mechanism.

Keywords : Understanding OS behavior, Visualization, Operating sys-
tem, OS structure

1 Introduction

Software size has been increasing and many functions are deployed in re-
cent software. If the size of software increases, analysis of software behavior at
runtime becomes increasingly difficult. In addition, it is difficult to understand
the processing flow of complicated software such as operating systems (OSs).
In order to comprehend the internal behavior of an OS, the series of program
execution information in an OS can be utilized. Furthermore, to support an un-
derstanding of OS behavior, it is necessary to visualize the program execution
information recorded in an OS.

There are some research efforts that are geared towards collecting program
execution information and supporting the understanding of software behavior
[1-4]. Their purpose is to support OS kernel development. Because they have
to collect various pieces of information, they implement many hook functions in
an OS. However, it is difficult to add a collection function at the target function
in an OS.

To the best of our knowledge, few OSs are primarily designed with com-
prehension of OS internal program behavior in mind. In this paper, we first
outline the drawbacks of existing methods for comprehending OS behavior, and
then we propose an OS structure that is designed to aid the understanding of
OS behavior, and describe its implementation on the Tender operating system.
Our proposed OS structure introduces a unified interface to call OS functions
in the OS kernel. Every function must call a unified interface controller to call
other functions. Second, OS programs are divided into program modules de-

pending on the operation, target resource, and operation type. This mechanism
can help a user understand OS structure and functions. Third, this mechanism
can collect information on calling functions in the OS kernel. To record this
information in a unified interface controller, all of the OS behavior can be un-
derstood in our proposed OS structure. Finally, it looks at the cost, overhead
and efficiency of our proposed OS structure.

2 Drawbacks of existing kernel trace functions

LKST [1], Systemtap [2], and DProbe [3] deploy some hooks in the OS
kernel. When a function deployed on the hook is executed, the hook function
for collecting execution information is invoked. DTrace [4] provides a function
that modifies the OS kernel and user processes to record additional data that
the user specifies at locations of interest. In these research efforts, a user can
not only use default hooks, but also additional hooks that may interest the user.
Consequently, a user can get detailed information about the kernel at runtime.

However, in order to insert the additional hooks, a user needs to have knowl-
edge of the OS. In addition, it is difficult to insert appropriate hooks into the OS
kernel. Furthermore, if kernel trace functions require patches for deployment,
the modification of kernel version up is not easy for the developer of kernel trace
functions.

Oprofile is a research effort for OS profiling [5]. It can get statistical infor-
mation of an OS by measuring the frequency of program execution. However, as
this information is only statistical, Oprofile cannot be used to analyze program
behavior. LSMPMON [6] records the processing time at the each hook point
of LSM and the calling count. However, it can only collect program execution
information of secure OS based on LSM.

3 OS structure for simplifying understanding of operating system
behavior
3.1 Requirements

The requirements of an OS structure for simplifying comprehension of OS
behavior are as follows:

Requirement 1: Modularization

Programs in the kernel of the OS should be classified into program modules
based on the kind of resource and the type of operation. When each program
is labeled in terms of kind and type, an information collection module can
understand the flow of processing and the contents of processing in the kernel
of the OS.

Requirement 2: Unified calling interface for modules

A unified interface to call OS functions should be introduced in the OS kernel.
All function calls should then pass through the unified interface to call other
OS functions. Thus, the unified interface controller can collect information
associated with all function calls. In this OS structure, only one collection
module in the unified interface controller is required for collecting OS behavior
information.

3.2 Design of program module and a unified interface

In order to modularize OS functions, a program is divided into meaning-
ful functional units. Every program that operates the resources that the OS

manages as a unit of a function is modularized. Furthermore, a program that
operates the same resource is divided into five operations: OPEN, CLOSE,
READ, WRITE, and CONTROL. Each operation of each resource corresponds
to a unit of a module. The call interface of all the modules is unified in our pro-
posed structure. For example, the OPEN operation is called using the open_rsc()
function. The first argument of open_rsc() is a kind of resource. By specifying
the kind of resource and the function name, a program module can be called.

In order to understand the call relationship between modules, the following
characteristics are required of each module:

1. Call of a module and return from a module should be detectable.
2. Each module should be distinguishable.

The call of a module is controllable by fulfilling the above characteristics.
The call of all the modules is systematically manageable by unifying control of
the call of each module.

3.3 Structure of OS behavior visualization mechanism

The visualization processing is divided into four parts:

1. Collection of visualization information (collection part)

2. Visualization information data transfer (transfer part)

3. Analysis of operation based on visualization information (analysis part)
4. Visualization of analytical data (visualization part)

Collection part collects program execution information at a unified interface,
and records the collected information. Because the collection part should con-
tinuously monitor processing, which is the target of information collection, it is
implemented inside the OS. The analysis and visualization parts perform data
processing and processing of visualization, respectively. Analysis part inspects
visualization information; classifies according this information to the analysis
part for every identifier, kind of resource, and kind of operation; and totals the
number of times a call is made and the processing time of each resource pro-
cessing. In the transfer part, the information collected in the collection part is
written out to a disk and saved. This saved information is used in the analysis
and visualization parts. Visualization part outputs SVG picture in order to
support the comprehension of the OS operation. The details of these four parts
are written in paper [7].

4 Evaluation of the proposed OS structure
4.1 Implementation on Tender operating system

In order to satisfy requirement 1, management in Section 3. was performed.
In Tender, OS resources can exist independently. The objects to be controlled
and managed by Tender are known as “resources.” The programs that use
each resource are separated from each other. The program modules consist of
five program components, namely, “open,” “close,” “read,” “write,” and “con-
trol.” Resources have identifiers and names for operations. The interface for the
operation of resources is a unified interface called the Resource Interface Con-
troller (RIC). Programs that use resources are called through the RIC. Each
program that manages resources has to call program components through the
RIC. Bypassing the RIC is prohibited in the Tender kernel. Therefore, if the

Table 1: Example of the collected information at RIC

id src-id dest-rid rsc-kind operation ret_val flowid call_k-time ret_k-time
4686 -1 d0140 VMEM OPEN 140 a0008 df894b764 df899c735
4687 4686 b068b VREG OPEN 68b a0008 dfg94d4cf df89593cb
4688 4687 2284e PMEM OPEN 284e a0008 df8958de0 df8958f89
4689 4686 30137 VKM OPEN 137 a0008 df895a2d2 df8971a2c
4690 4689 b068b VREG CONTROL 1000 a0008 df895acla df895ada9
4691 4689 d0001 VMEM CONTROL 0 a0008 dfg895af19 df89718e9
4692 4691 b068b VREG CONTROL 1000 a0008 dfg895blfa df895b38e
4693 -1 80000 EXEC CONTROL 80009 ef0000 df8962618 dfg968b2d
4694 4691 b068b VREG CONTROL 284e000 a0008 dfg897137f df897151b

information on the call to a program section is recorded, the call relationship
function of the OS can be understood. Table 1 shows the example of the col-
lected information at RIC.

In Tender, original functions are implemented. A new type of execution
resource is implemented. It can control the maximum CPU usage such that
the abuse of CPU resources can be prevented [8]. In addition, by preserving
and recycling process resources, Tender can realize a reduction in the cost of
process creation and termination [9)].

Below, the results evaluated about the application to introduction cost, a
performance overhead, and a performance improvement and grasp of OS oper-
ation are described.

4.2 Cost of introduction

As comparison for information gathering, the number of information gath-
ering parts for LKST, DTrace, and Tender were compared.

The number of information gathering parts for LKST is about 100 places in a
default setup at the time of introduction. In DTrace, it is 30,000 or more places,
which is scalable according to the system. Since there are many information
collection parts, it is difficult to understand all the parts where information
collection is performed in these systems.

On the other hand, in Tender, since resource processing is managed in a
unified manner by RIC, information can be collected at one place and under-
standing of the information collection part is easy. Moreover, since a call for
resources always passes through RIC, when adding new OS modules, there is
no need for modification to add information collection for the new modules.

4.3 Performance overhead

The overhead of the proposed mechanism in Tender was measured for each
resource processing. Specifically, the execution time in the case where infor-
mation collection processing is effective and invalid was measured for 66 system
calls in Tender. A 1 GHz Pentium III computer was used for the measurement.
The increased time per resource processing call was about 0.5us on average, and
1 ps at the maximum. The increase percentages were 0.7% on average and 66.4%
at the maximum.

4.4 A case of performance improvement

The Apache Web server was run on Tender and the performance analysis
was performed on Tender for the performance improvement. What the process-
ing time of each resource in the descending order is shown in Figure 1. Figure
1 shows that resource processing that processing time is the largest is creation

Flowid rsc ope rum avetime totaltime variance

14341 53212][762575]
141010 55003][6145747]

SYSCALL :VREGION :OPEM E
[4138][49633][15968E82]
[
[
[

[68
INTR SEXEC :CONTROL [39
SYSCALL :PROC SWRITE [12
SYSCALL :PROG <RERD [21
SYSCALL sVMEMORY :CONTROL [252
$YUM 1OPEM [188]
SYSCALL $MREGION :CLOSE [s2][a0]L BE0E]L 726]
SYSCALL sVREGION :CONTROL [3957]0][366310 104]
SYSCALL - :PLATE sCONTROL - [B][489](275610 3150]
UMKNOWN ~ sYMEMORY :CONTROL [12]0 196](235710 267171

1204][28291][1271088]
3810 13ee8][18871

T 000 TR R
w
@
o
=]
=
=
[

=

Figure 1: List of analyzed information of OS behavior using Apache Web server

—&— Original
—®— Improved

350 [

a0

250

200 [

150

100

Processing time of open
“Virtual Region” (it sec.)

1 2 3 4 5 & 7 8 9 10 1 12 13
of open “Physical Memory”

Figure 2: Processing time of creation of virtual region

of a virtual region. Then, the creation processing of a virtual region was in-
vestigated using visualization information. The processing time of a physical
memory resource creation is about 1 ms. However, the processing of a physical
memory resource creation includes an overhead which is about 50 ms to 100
ms. From this, it is thought that the processing of a physical memory resource
creation involve large overhead before or after the processing.

Since a resource name was assigned to each resource in resource creation
processing, OS checks duplication of a resource name before the resource cre-
ation. The investigation by the analysis showed that this duplication check had
taken big time.

By generating a resource name from a resource identifier and the page num-
ber of created physical page, OS avoid the duplication of the resource name
collision. The relation between the processing time of open “virtual region” and
a number of created physical memory resource is shown in Figure 2. Figure 2
shows that this modification can reduce processing time more than 50%.

4.5 A case of understanding OS behavior

We show process scheduling and an exception as an example of understand-
ing OS behavior by the proposed method. In this experiment, when three pro-
cesses are run, the proposed system recorded the information of OS behavior,
and visualized them. The visualized information is shown in Figure 3. PROC
means a process, SYSCALL means a system-call processing, PREEMPTION
and TIMESLICE mean the time of preemption and time slice processing, and
EX means an exception.

In Tender, process execution speed regulating function using “execution”
resource is implemented. The process a000c, the process a000d, and the process
a000e are assigned the processor processing time 10%, 30%, and 50%, respec-
tively. Figure 4 shows that the ratio of the assigned processor time is correspond
to 10%, 30%, and 50%. Figure 4 shows the part of an exception in figure 3. Fig-
ure 4 shows that an exception ee000e is recorded and visualized in our method.
Therefore, we can analyze events before and after the exception by using the

fow

— H| | = . |

W
f— £38%
= | 1111

| | |
T J T 146 147 148 149

o 0 » M o 150

- [ms]

Figure 3: Visualized OS behavior Figure 4: Expanded figure of an exception

= | TANINI | |]
e TiERLe
i I PROC
TRLIcE :a0002
EX T
;.;; SEEGa
W || } l }
|
‘

visualized information.
5 Conclusion

This paper proposes an OS structure that simplifies comprehension of OS
behavior. A unified interface is introduced in this structure for understanding
all calls made by program modules. In addition, its implementation in the
Tender operating system is described. This OS structure consists of four parts:
collection, transfer, analysis, and visualization parts. Evaluation results show
that the cost of introduction and overhead of the proposed OS structure are
reasonable, and show the efficiency of the proposed structure in two cases.

References

[1] Hitachi Ltd., Fujitsu Ltd., “Linux Kernel State Tracer,” Online publishing,
http://lkst.sourceforge.net/ , 2001.

[2] Vara Prasadd William Cohenl Frank Ch. Eiglerd Martin HuntO Jim Kenis-
tond Brad Chen, “Locating System Problems Using Dynamic Instrumentation,” In
Proceedings of the Linux Symposium, Vol. 2, pp.49-64, 2005.

[3] Richard Moore, “A Universal Dynamic Trace for Linux and other Operating Sys-
tems,” Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Confer-
ence, pp.297-308, 2001.

[4] B. M. Cantrill, M. W. Shapiro, A. H. Leventhal, “Dynamic Instrumentation of
Production Systems,” USENIX Annual Technical Conference, pp.15-28, 2004.

[5] J. Levon and P. Elie, “Oprofile: A system profiler for linux,” http://oprofile.sf.net/
, 2004.

[6] T. Yamauchi, K. Yamamoto, “LSMPMON: Performance Evaluation Mechanism of
LSM-based Secure OS,” International Journal of Security and Its Applications (IJSIA),
Vol.6, No.2, pp.81-89, 2012.

[7] T. Yamauchi, A. Kinoshita, T. Kawahara, H. Taniguchi, “Design of an OS Archi-
tecture that Simplifies Understanding of Operating System Behavior,” Proc. Interna-
tional Conference on Information Technology and Computer Science (ITCS 2012), pp.
51-58, 2012.

[8] T. Tabata, S. Hakomori, K. Yokoyama, H. Taniguchi, “A CPU Usage Control
Mechanism for Processes with Execution Resource for Mitigating CPU DoS Attack,”
International Journal of Smart Home, Vol. 1, No. 2, pp.109-128, 2007.

[9] T. Tabata, H. Taniguchi, “An Improved Recyclable Resource Management Method
for Fast Process Creation and Reduced Memory Consumption,” International Journal
of Hybrid Information Technology (IJHIT), Vol.1, No.1, pp.31-44, 2008.

