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Abstract. In order to prevent the malicious use of the computers exploiting 
buffer overflow vulnerabilities, a corrective action by not only calling a pro-
grammer's attention but expansion of compiler or operating system is likely to 
be important. On the other hand, the introduction and employment of intrusion 
detection systems must be easy for people with the restricted knowledge of 
computers. In this paper, we propose an anomaly detection method by modify-
ing actively some control flows of programs. Our method can efficiently detect 
anomaly program behavior and give no false positives. 

1   Introduction 

Buffer overflow vulnerabilities often arise from some bugs existing potentially in 
programs [1]. Accordingly, we can offer the following methods. 

 
Programmers' efforts 

All of the programmers should contrive and follow a common framework for 
secure programming. The framework consists of a set of rules, under which 
they can write source codes without buffer overflow vulnerabilities. 

Compiler improvement for retrieval 
We can adapt a compiler, and apply pattern matching or syntactic parsing 
techniques at the compilation of source codes, whereby we may find some 
vulnerable functions or parts of them. 

Operating system's control 
All of the application programs are certainly controlled by an operating system. 



Therefore, the operating system can find anomalous behaviors of them and 
prevent illegal use of computers. This approach comprises some methods of 
excluding some vulnerability around dynamic libraries. 

 
We can also restrain programmers from writing source codes which includes some 
bugs, by calling their attentions. But, as long as they are likely to overlook them, 
any approaches available for the users count for much. Methods using compilers 
may accompany the recompilation of application programs. Other methods may 
require the users' knowledge of vulnerabilities. 

Some approaches within the pale of the operating system conversion, can sup-
press the influence on the operating system to minimum. Against this background, 
the topic of this paper focuses on them. Typically, the role of detecting the illegal 
use of a computer is referred to as anomaly detection system. This is classified into 
the follows: misuse detection system, which finds some signatures of invasive act, 
or anomaly detection system, which catches on the anomalous behaviors derived 
from the normal ones. The main advantage of anomaly detection systems is that 
they may detect novel intrusions, as well as various kinds of known intrusions. 
However, the systems can be complicated and increase the overheads. Our method 
can be categorized into the anomaly detection, but have following characteristics. 

 
1. Our method can detect the buffer overflow in real time and prevent the at-

tacker from using the computer without authorization. 
2. Our method can keep the overhead for anomaly detection to a minimum. 

Therefore, it is easy for users to introduce our method without degrading 
the system performance. 

3. Our method does not require the recompilation of application programs. 
This provides relatively easy transition from the current system. Therefore, 
the users need little knowledge for installation and employment. 

 
In order for intrusion detection systems to be accepted as practical tools, a capa-

bility to detect the illegal use of computers with high accuracy and with low over-
head is essential. Therefore, it is very important to satisfy the first and second re-
quirements. Moreover, users' knowledge of operating systems and application pro-
grams is often limited. Because it is desirable that the cost for introduction and 
employment is as low as possible, the third requirement is expected to encourage 
users. 

This paper is organized as follows. In chapter 2, we describe a background, 
against which intrusions exploiting buffer overflows vulnerabilities occur and 
mechanism of them. Also, we clarify novelty of our method and scope of applica-
tion. Then, we explain about our method in chapter 3. Subsequently, we instantiate 
how to implement our method on the IA-32 Linux in chapter 4, and analyze secu-
rity and efficiency in chapter 5. At last, we conclude in chapter 6. 



2   Background and Motivation 

2.1   Intrusions Exploiting Buffer Overflow Vulnerabilities 

When running a program, a memory area, called stack, are temporarily reserved for 
sequential input and output data. The stack contains the First-In Last-Out data struc-
ture that pops elements in the opposite order than they were pushed. When calling a 
subroutine or a function, it can be used for evacuating some data in progress and a 
return address. 

In the high level languages like C or C++, the reservation and management of local 
buffers relies on the programmers. They are responsible for managing or reserving 
local buffers appropriately. However, if careless programmers often allow an attacker 
to write greater length of values than they allocated previously, the attacker can hap-
pily write over the end of buffers and pollute parts of a frame pointer (fp) and a return 
address (ret). This is called a buffer overflow. In the process of the intrusion, the 
attacker intentionally causes a buffer overflow and replaces a return address or a 
function pointer with the address of shellcode or shared library (attack code). Figure 1 
shows the appearance of stack corrupted by the buffer overflow. The attacker is able 
to execute arbitrary commands by modifying the control flow to run the shell pro-
gram. 

local buffer fp ret arg.1, 2, …

attack code

low addr. high addr.  

Fig. 1. Appearance of stack 

2.2   Related Work and Motivation 

We introduce some approaches addressing intrusion detection from the side of the 
operating system. They are slightly different from the approaches on the compiler's 
side, and do not have to recompile each application program in introducing it into 
the system. If they require operating system to be restarted on the occasion of intro-
duction, all of the services on it must be halted. Therefore, in order to be provided 
as a kind of add-in tool, it is also more preferable that they do not have to conduct 
recompilation of kernel. 

The Openwall [2] has functionality of not allowing processes to run any executable 
codes in the stack area. When an attacker stores shellcode in the stack area and substi-
tutes an original return address with the pointer to it, this mechanism is able to catch 



on it probably. Currently, some CPUs support the so-called NX (Non-Execute) bit 
which prohibits execution of codes that is stored in certain memory pages to prevent 
the intrusions exploiting buffer overflow vulnerabilities as well as Openwall. How-
ever, these are not perfect solutions, because there exists another attack which cannot 
be detected with non-execution of stack [3]. 

The StackGuard [4] is able to detect the actual occurrence of buffer overflow by 
checking whether a certain value, called canary, inserted in stack is changed or not. 
However, it cannot decide whether local variables are correct or not. When an at-
tacker overwrites a function pointer, it may still fail to detect executions of unauthor-
ized codes. 

The PointGuard [5] prevents intrusion from occurring by encrypting function 
pointer in memory, even if an illegal falsification using buffer overflow is done. Be-
cause the encryption is mounted by the value exclusive-OR'ed with a random number, 
the overhead is small. However, PointGuard can be applied when the program is 
compiled, and application to execution code is not assumed. This paper concentrates 
on the feasibility of technique for detecting alternation of function pointer and return 
address under the situation in which only execution code is given. 

Prasad et al. [6] proposed a method for detecting the stack overflow that uses re-
writing execution code on IA-32 in detail. They touched about the difficulty of disas-
sembling execution code. And, they clarified the coverage and made it to the measure 
of effectiveness. Their system can detect stack overflow by building the mechanism 
of RAD [7] into the execution code on Intel 32-bit Architecture (IA-32). Then, they 
supposed that their disassembler can catch prologue and epilogue of the function, and 
the existence of the area to insert the jmp instruction as a precondition [6]. We think 
therefore that it is appropriate that our method also puts same assumption as theirs. 
That is, we assume the existence of the one similar to the frame pointer or it in the 
function. 

3   Our Proposal 

3.1   Modification of Control Flow 

When loading a program into the memory area, our method modifies the control flow 
of it. Then, it inserts an additional flow, which provides the verification process, 
called verification function, to check the legitimate use in the vicinity of each func-
tion call. The process of the modified function works as follows. 

1. When the function is called, a stack frame is allocated for the return address. 
The return address in this stack frame is set to the next instruction. When the 
function call finishes, the process will be resumed at the return address set in 
the stack frame. 

2. Next, the size of a pointer is taken from the value of the stack pointer. The 
address of the verification function is to be put in this reserved area. Then, the 
value of the frame pointer is put in the stack. The value of the frame pointer is 



newly replaced by the value of the stack pointer. After a stack frame is allo-
cated for the local variables, the process of the original (unmodified) function 
will be carried out. 

3. At the end of the function, the address of the verification function is overwrit-
ten by using the frame pointer in the reserved area. Therefore, in spite that the 
function is finished successfully or abnormally, the control of the process will 
be transferred to the verification function. 

3.2   Adjustment for Function Call 

If there is the function call in the coverage of our method, it will be modified as fol-
lows. When calling another function, the return address that is supposed to be put in 
the stack is exclusive OR'ed with the random value p. The result is put in the stack as 
if it is the return address. 

Next, the process of the function call is modified so that the control is transferred 
to the address specified by the operand of it, which is exclusive OR'ed by random 
value p. Also, the operand itself of the function call is correspondingly modified in 
advance. Especially, if the operand can be considered as one of the registers or a 
pointer to memory, we will try to find the instruction which provides the input to it. If 
a certain constant value is found in the instruction, it will also be exclusive OR'ed 
with the random value p. The value of p is chosen at every execution of the program. 
Here, we note that if the control is transferred to the raw address specified by the 
external input is called, we cannot locate such value. Such programs are not included 
in the coverage of our method. Because the p is not only secret (only known by the 
operating system) but also fresh (different at each execution), the operating system 
can only run the program normally. 

3.3   Process of Verification Function 

The verification function takes the random value p and the (exclusive OR'ed) return 
address as arguments. It can verify that the function was called from the valid origin. 
If p is not correct, the return address may probably be corrupted. In other word, we 
can decide that there exists the invasive action using the buffer overflow. In our 
method, the return address given as an argument will be exclusive OR'ed with the 
random value p once again, and the control will be transferred to the address pointed 
by the result. For this reason, only when p is correct, the execution will be resumed 
correctly. 
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Fig. 2. State transition associated with function call 

3.4   Procedure of Detecting Anomalous Behavior 

We explain the procedure where our method detects the invasion act. Figure 2 shows 
that the function A calls another function B. The top of these flows represents normal 
execution, and the lower flows shows that the return address or the function pointer 
are illicitly replaced. 

f(A,x) indicates that CPU is running x-th instruction in the function A. In our 
method, when A calls B, both the operand of the function call and the return address 
are exclusive OR'ed with the random value p. If its operand (e.g., function pointer) is 
illicitly replaced by the pointer to the address of a shellcode or a shared library (z'), 
the control is transferred to the address z' ⊕ p. This address may point to an illegal 
address, and cause an error. Also, it is assumed that an attacker can replaces the re-
turn address with an address (z''). Regardless of buffer overflow, the verification 
function is certainly called. Therefore, when the process is restarted at (A, z'' ⊕ p). If 
the attacker does not know the random value p, he cannot succeed in any intrusion. 

4   Implementation 

4.1   Modification of Program 

In this chapter, we touch on capability of the implementation in an existing system. 
Specifically, we use Linux operating system (Kernel 2.4.19) working on Intel 32-bit 



Architecture, and take GNU C Compiler (gcc-2.96). But, we believe that our method 
is applied for another platform. 

_func1:

pushl %ebp

movl %esp, %ebp

subl $24, %esp
movl $_func2, -4(%ebp)

movl $LC1, 4(%esp)

movl $1, (%esp)

movl -4(%ebp), %eax
call *%eax

leave

ret

…
_func2:

pushl %ebp

movl %esp, %ebp

subl $8, %esp
incl 8(%ebp)

movl 12(%ebp), %eax

movl %eax, 4(%esp)
movl $LC0, (%esp)
call _printf

leave
ret  

Fig. 3. Original code 

Figure 3 shows the original (assembler) code before our method is applied. This 
code means that a function func2 is called in a function func1. The modified (assem-
bler) code is shown in Figure 4. We schematically explain the behavior when run-
ning it. Note that the code modification is performed at the binary level. Here, for 
ease of explanation, we show the assembler codes. 

1. Firstly, when func1 is called, a stack frame is reserved for the address of the 
verification function. At once, the frame pointer %ebp is put in the stack. the 
stack pointer %esp is used as a new %ebp. Then, 24-bytes are subtracted 
from the stack pointer to obtain a memory space for local variables. 

2. The part, where there exists a call instruction (call _func2), is modified so 
that both the return address put in the stack and the operands of the call in-
struction are exclusive OR'ed with the random value p. 

3. When the process of the original code is finished, the address of verification 
function is written in the reserved area by using the frame pointer %ebp. The 
verification function is then started. 



_func1:
call _trampoline11
nop
movl $_trampoline20, -4(%ebp)
movl $LC1, 4(%esp)
movl $1, (%esp)
movl -4(%ebp), %eax
jmp _trampoline12
nop
nop
...

_trampoline10:
xorl $0x12345678, (%esp)
jmp _func1

_trampoline11:
movl (%esp), %eax
pushl %ebp
movl %esp, %ebp
subl $24, %esp
jmp *%eax

_trampoline12:
call *%eax
movl $_ver, 4(%ebp)
leave
ret

_ver:
xorl $0x12345678, (%esp)
ret

_func2:
call _trampoline21
nop
incl 12(%ebp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
movl $LC0, (%esp)
jmp _trampoline22
nop
nop
...

_trampoline20:
xorl $0x12345678, (%esp)
movl $ _func2, %eax
xorl $0x12345678, %eax
…
xorl $0x12345678, %eax
jmp *%eax

_trampoline21:
movl (%esp), %eax
pushl %ebp
movl %esp, %ebp
subl $8, %esp
jmp *%eax

_trampoline22:
call _printf
movl $_ver, 4(%ebp)
leave
ret
...  

Fig. 4. Modified code 

4.2   Assuring the Consistency in the Vicinity of Modification 

The most important thing to change the control flow is to minimize the effect on the 
original program. Also, it is important that we avoid using the variable parameters 
amenable to environment or external input. As shown in Figure 4, we rewrite the call 
instruction so that the return address is exclusive OR'ed with p（= 0x12345678）
before stepping into the next function func2. However, in the verification function, 
the result of it is exclusive OR'ed once again. Definitely, the consistency can be pre-
served in the vicinity of the application of our method. 

The call instruction, 
 

movl $_func2, -4(%ebp) 
... 
movl -4(%ebp), %eax 
call *%eax 
 

is adjusted as follows. 
 
    movl $_trampoline20, -4(%ebp) 
    ... 
    movl -4(%ebp), %eax 



    jmp _trampoline12 
    ... 
_trampoline12: 
    call *%eax 
    ... 
_trampoline20: 
    xorl $0x12345678, (%esp) 
    movl $ _func2, %eax 
    xorl $0x12345678, %eax 
    ... 
    xorl $0x12345678, %eax 
    jmp *%eax 
    ... 
 
By inserting the ``trampoline'' function, we do not have to consider any effects on 

former and latter instructions. Thus, as shown in Figure 3, 4, we can find that the 
size of func1 and func2 are kept during the modification. If the size was changed, we 
also had to update all the values of addresses in the latter instructions. 

However, in the func2, the references to the arguments are modified as follows. 
 

incl  8(%ebp)  12(%ebp) 
 
This is because we reserved the stack frame for the address of  the verification 

function. 

5   Security and Efficiency 

5.1   Resistance for Intrusion 

An attacker can hijack the control flow by overwriting the return address or the func-
tion pointer. But, the buffer available to the attacker is likely to be limited. Therefore, 
we assume that the attacker certainly uses functions or libraries supplied by the oper-
ating system. When she invades the system without using them, our method cannot 
work well. Namely, if she only tries to overwrite some variables, the system will 
condone her offence. 

Modifying a return address of the function call prevents the attacker from replac-
ing them with addresses of shellcode or shared libraries. On the other hand, the threat 
of replacement of function pointer cannot be eliminated in this scheme. We cannot 
decide whether an input to the function pointer is correct, because the pointer variable 
can be changed in the normal process. Our method is also resistant to this attack by 
modifying the operands of function call. 



5.2   Possibility of Intrusion 

The modification of a program code is carried out when loading it into the memory 
space. In order for the attacker to get the correct return address and modify it, she 
must guess the random value p. Possibility of succeeding in the attack is very small, 
when the attacker cannot guess it, because we assume that p is very large value (about 
232). 
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Fig. 5. Overhead per function call (x-axis: number of execution times, y-axis: increase of exe-
cution time [sec]) 

5.3   Efficiency 

Our method is applied to each function. We measured how much overhead is required 
to adapt our modification comparing the basic performance. Specifically, we saw the 
overhead per function call provided by executing the original code and modified code 
in our method (Figure 3, 4). Our machine has Pentium 4 1GHz, 512MB RAM. The 
result of fifteen sets of one million executions shows that the (average) increase of 
execution time is 0.255137 seconds, and the relation between the increase and the 
number of execution times in Figure 5. In order to be accepted as practical art, our 
method should be applied to the application programs widely used, and be evaluated 
in spite that this is negligible small value. 



6   Conclusion 

The case of abuse of computers using buffer overflow are continually reported and 
considered as serious problem. Currently, some CPUs support the so-called NX bit 
(Non-Execute) which prohibits the execution of code that is stored in certain mem-
ory pages to prevent the intrusion exploiting buffer overflow vulnerability. However, 
this is not a perfect solution, because there is another attack which cannot be detected 
with non-execution of stack. 

In this paper, we proposed an anomaly detecting method by modifying the control 
flow of the program. Our method has advantage of no false positives and reducing 
the overhead. It is also expected that it only takes the costs of the introduction and 
employment, and encourages users to install it. Future work is further evaluation of 
anomaly detection system. 
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