
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016
2943

PAPER Special Section on Parallel and Distributed Computing and Networking

Rule-Based Sensor Data Aggregation System for M2M Gateways

Yuichi NAKAMURA†,††∗a), Akira MORIGUCHI††, Masanori IRIE††, Taizo KINOSHITA†††, Nonmembers,
and Toshihiro YAMAUCHI†, Member

SUMMARY To reduce the server load and communication costs of
machine-to-machine (M2M) systems, sensor data are aggregated in M2M
gateways. Aggregation logic is typically programmed in the C language
and embedded into the firmware. However, developing aggregation pro-
grams is difficult for M2M service providers because it requires gateway-
specific knowledge and consideration of resource issues, especially RAM
usage. In addition, modification of aggregation logic requires the applica-
tion of firmware updates, which are risky. We propose a rule-based sen-
sor data aggregation system, called the complex sensor data aggregator
(CSDA), for M2M gateways. The functions comprising the data aggre-
gation process are subdivided into the categories of filtering, statistical cal-
culation, and concatenation. The proposed CSDA supports this aggregation
process in three steps: the input, periodic data processing, and output steps.
The behaviors of these steps are configured by an XML-based rule. The
rule is stored in the data area of flash ROM and is updatable through the In-
ternet without the need for a firmware update. In addition, in order to keep
within the memory limit specified by the M2M gateway’s manufacturer,
the number of threads and the size of the working memory are static after
startup, and the size of the working memory can be adjusted by configuring
the sampling setting of a buffer for sensor data input. The proposed sys-
tem is evaluated in an M2M gateway experimental environment. Results
show that developing CSDA configurations is much easier than using C
because the configuration decreases by 10%. In addition, the performance
evaluation demonstrates the proposed system’s ability to operate on M2M
gateways.
key words: M2M gateway, sensor data aggregation, in memory processing,
IoT (the Internet of Things)

1. Introduction

With the growth of machine-to-machine (M2M) technol-
ogy, many companies have begun to offer M2M services,
which provide new value by utilizing machine sensor data.
For instance, construction and agricultural machine manu-
facturers provide remote monitoring services for their prod-
ucts by sending sensor and location data from products in
the field to servers over the Internet [1]–[3]. These ser-
vices reduce downtime and prevent machinery theft. In
M2M services, sensors connect to local networks, such as
Zigbee [4] or a controller area network (CAN) [5]. As a

Manuscript received January 8, 2016.
Manuscript revised May 14, 2016.
Manuscript publicized August 24, 2016.
†The authors are with Okayama University, Okayama-shi,

700–8530 Japan.
††The authors are with Hitachi Solutions, Ltd., Tokyo, 140–

0002 Japan.
†††The author is with Hitachi, Ltd., Tokyo, 101–8608 Japan.
∗Presently, with Hitachi, Ltd. and Okayama University.

a) E-mail: yuichi.nakamura.fe@hitachi.com
DOI: 10.1587/transinf.2016PAP0020

result, they cannot upload data directly to the Internet. In
order to create a bridge between sensors and the Internet,
M2M service providers utilize devices called M2M gate-
ways. An M2M gateway is able to communicate with both
the sensor network protocol and the IP [6]. For example,
when a remote monitoring service is used for construction
machinery, an M2M gateway is attached to the machinery,
and it gathers data from the sensors via the CAN. Then, it
uploads the data to a server via a wireless Internet connec-
tion. However, cost becomes an issue because wireless In-
ternet contracts are usually measured rates, and server re-
source increases with an increase in the quantity of data. In
addition, the number of M2M gateways can be in the tens of
thousands, sometimes millions, and the quantity of data up-
loaded to the server also increases, substantially raising the
cost. In order to reduce this cost, M2M service providers
must reduce the quantity of data transferred between the
M2M gateway and the server.

There are three main approaches used to reduce the
quantity of data transferred between an M2M gateway and
the server. The first approach reduces the protocol header
overhead by using a lightweight protocol. HTTP is a pop-
ular means of communication between the server and the
client. However, in M2M systems, HTTP overhead be-
comes an issue because the sensor data size is often about
100 bytes, whereas the HTTP header size is greater than 100
bytes. To reduce the overhead, lightweight protocols, such
as MQTT [7], WebSocket [8], and CoAP [9], are effective
because their protocol header size is around 10 bytes [10].
In addition to this protocol-based approach, the quantity of
data can be reduced before being sent from the M2M gate-
way.

The second approach reduces the data quantity by pro-
cessing the data on sensor nodes. TinyDB [11] processes a
language similar to SQL on sensor nodes. SensorWare [12]
also has a script language for sensor nodes. By using these
systems, only the necessary data are sent from the sensors,
thereby reducing the quantity of data sent from the M2M
gateway. These technologies are suitable for controlling de-
vices within sensor networks because their response times
are fast: when a sensor detects an event, an action is im-
mediately issued from the sensor. However, these technolo-
gies are not suitable for reducing the quantity of data trans-
ferred between an M2M gateway and the server for two
reasons. First, these systems are not intended for process-
ing data from multiple sensors. It is efficient to gather a

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



2944
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

sensor’s data depending on another sensor value; however,
these technologies do not support such complex processes.
Second, the installation and management costs are substan-
tial. Data processing middleware and configurations need
to be installed on all sensor nodes. If there are 100 sensors
per machine and 10,000 machines, the number of sensors
required is one million. Installing and managing software
for this many machines is difficult.

For such reasons, M2M service providers take the third
approach, i.e., data aggregation on the gateway, for example
by taking distributions and averages from sensors on M2M
gateways [13]–[15]. In this approach, the installation of ag-
gregation logic is restricted to the M2M gateway, which is
easier than installing the logic on the sensors. Moreover,
standardized technologies, such as TR-069 [16], used for
managing software and configuring gateway devices, con-
tribute to a reduction in installation and maintenance costs.
M2M service providers can write programs for the sensor
data aggregation, but there are two issues with this. First,
there is the problem of developing programs on firmware for
resource constrained environment of industrial usage. Since
cost and reliability requirements for industrial M2M gate-
way are high, and gateways are also sometimes battery pow-
ered, CPU and RAM specifications for M2M gateways are
much lower than enterprise servers. For example, battery
powered M2M gateways to monitor construction machines,
CPU is often 200Mhz-600Mhz, RAM is 1-64Mbytes, and
1Mbps CAN is used as a field area network protocol. For
such resource constrained environment, the programming
language for firmware development is usually C. Program-
ming in C requires bothersome memory management, an
issue that is hidden in higher-level languages. In addition,
M2M service providers need to learn the development en-
vironment, such as the compiler and tool chains, which
strongly depends on the gateway because M2M gateways
are not standardized. Attention also needs to be given to the
CPU and RAM usage of the aggregation program, partic-
ularly the matter of RAM usage. The input data rate can-
not be predicted, and sufficient memory must be allocated
in advance. However, when the input rate increases sud-
denly and too much memory is allocated, the system will
crash because M2M gateways often do not have swap. Con-
sequently, it is difficult for M2M service providers to write
aggregation programs on M2M gateways. The second prob-
lem arises when changing the data aggregation logic on the
firmware. In order to change the data aggregation logic, the
firmware must be updated. However, firmware updates are
risky because the gateway may not work if the update fails.

We propose a framework called a complex sensor data
aggregator (CSDA) to aggregate sensor data on M2M gate-
ways. CSDA enables M2M service providers to develop
data aggregation logic without programming in C. The
CSDA defines the framework that supports the sensor data
aggregation. It splits the aggregation process into input,
data processing, and output steps, whose behaviors are con-
trolled by a configuration file. The aggregation logic can
also be changed by simply updating the configuration file

and restarting the CSDA. In addition, to work in memory-
constrained environments, a static aggregation processor
(where working memory size and number of threads are
fixed) is launched at startup time, and the working memory
size can be adjusted by configuring a sampling setting.

This paper presents the design of the CSDA and eval-
uates the proposed solution using an M2M gateway evalu-
ation board. In summary, we offer the following contribu-
tions. Since a preliminary work of this paper was presented
at proceedings [17], differences from the preliminary work
are also described.

• We subdivide the components of the data aggregation
logic into the categories of periodic statistical calcu-
lation, filtering, and data concatenation, and define a
framework based on this categorization, which enables
development and updating of data aggregation logic
without C programming. This contribution is basically
same as a preliminary work, although there are some
refinements.
• We identify issues involved in implementing sensor

data aggregation logic for a memory-constrained en-
vironment, e.g., the fact that memory usage needs to be
within the size specified by the M2M gateway’s man-
ufacturer and should not change after startup. We note
that in particular, the buffering area for statistical cal-
culations can easily break the memory usage limit be-
cause of the unpredictability of the input rate. For our
framework, we designed a static aggregation processor
that is launched according to the configuration speci-
fied and is composed of threads and working memory
whose size does not change after startup. We also de-
veloped a buffering technique in the processor that lim-
its memory consumption for unpredictable rates of data
input by utilizing data sampling. This contribution is
newly developed since [17], and a prototype was also
newly implemented.
• We describe our implementation of a CSDA prototype

including the above framework, processor, and buffer-
ing technique, and we evaluate the CSDA’s effective-
ness by using an evaluation board whose CPU clock
is 400 mhz, RAM size is 64 Mbytes, and CAN net-
work is used as a sensor network. Results show that
developing CSDA configurations is much easier than
using C because the configuration decreases by 10%.
In addition, the performance evaluation demonstrates
the proposed system’s ability to operate on resource-
constrained M2M gateways, i.e. the increase in mem-
ory usage compared with dedicated C logic is about
70 Kbytes, and memory usage can also be reduced by
adjusting the sampling setting. This prototype also cre-
ates the basis of a commercial product called the Entier
Stream Data Aggregator [18] and is being used in ac-
tual M2M gateways.

The remainder of this paper is organized as follows:
Sect. 2 presents an overview of data aggregation process on
M2M gateway and issues in developing aggregation logics.



NAKAMURA et al.: RULE-BASED SENSOR DATA AGGREGATION SYSTEM FOR M2M GATEWAYS
2945

Section 3 describes the design and implementation of our
proposed system called CSDA. Section 4 describes an eval-
uation of the proposed system. Section 5 discusses previous
works. Finally, Sect. 6 concludes this work.

2. Issues in Aggregation of Sensor Data

In the following sections, after the functions in the process
of sensor data aggregation for M2M gateways are subdi-
vided into categories, the issues involved in writing the ag-
gregation logic are described.

2.1 Categories of Functions in the Process of Sensor Data
Aggregation on an M2M gateway

2.1.1 Process of Sensor Data Aggregation

Before the functions in the sensor data aggregation process
can be subdivided into categories, the process of inputting
sensor data into the M2M gateway needs to be described.
An overview of an M2M system is shown in Fig. 1. Each
sensor node in the sensor network is connected to sensor
chips through a circuit. Sensor nodes are composed of a
physical sensor network interface and a CPU, in which an
embedded program fetches a value from the sensor chips
and sends that value to the sensor network with the node’s
ID. The node ID identifies that node in the sensor network.
The arbitration ID for the CAN protocol and the IEEE ad-
dress for Zigbee are examples of node IDs. Note that mul-
tiple sensors may be connected to the same sensor node; in
this case, multiple values are packed with that node’s ID.
The means by which fetched values are packed with node
IDs, i.e., short or long, little-endian or big-endian, depend
on the sensor node vendor. The M2M gateway and sensors
are connected by various types of networks, and data are
inputted into the gateway. For example, because the control
of vehicles, industrial machinery, and medical equipment re-
quires real-time communication, the CAN protocol, which
has priority control features, is often used. When measur-
ing temperature and humidity in a large area, such as a plant
or building, the wireless protocol Zigbee is used in order to
eliminate the cost of installing wires. M2M gateways have
physical interfaces and device drivers in order to communi-
cate with the sensor network protocol. They receive data
frames, which include the previously described node IDs
and sensor values.

The sensor data aggregation process runs on an M2M
gateway, using node IDs and sensor values as input. The

Fig. 1 Overview of M2M system

functions in the process can be subdivided into three cat-
egories: (1) periodic statistical calculations to reduce data
quantity, (2) filtering to reduce data frequency, and (3) con-
catenation to reduce communication overhead.

2.1.2 Periodic Statistical Calculations

The quantity of data is reduced by calculating statistical val-
ues, such as averages and occurrence counts, from multi-
ple data periodically within a given time frame. For exam-
ple, temperature sensor data for the cooling of water and oil
within construction machinery may be summarized by the
sum, average, minimum, maximum, and value occurrence
counts as taken at specified intervals (such as every 100 ms
or every second). These processed data are then sent to a
server [13]. Similarly, engine speed and temperature sensor
data of farm machinery may be condensed to the average,
minimum, and maximum and then sent to the server [15].
In addition, various statistic values of sensor data are uti-
lized, such as standard deviation [19], moving average [20]
and Fourier transform [21]. Furthermore, within a periodic
process, statistical calculations can be performed multiple
times, and multiple sensor data can be combined. In the
evaluation of deviation from the stable state of construction
machinery, variances are calculated for multiple tempera-
ture and pressure sensor values at given intervals, and then
the variances are summed [14].

2.1.3 Filtering

The quantity of data from an M2M gateway can be reduced
by filtering out the low priority data. Filtering is categorized
into two types: input filtering using node IDs and threshold
filtering.

• Node ID filtering: To obtain important sensor values,
the M2M gateway only takes the data frame, which
includes the specific node ID. For example, since en-
gine and transmission sensor values in construction
machines are the ones used to detect failure, only these
sensor values are gathered and sent to the server [13].
• Threshold filtering: The purpose of this filtering is to

gather only the values that indicate trouble. For exam-
ple, when a statistical value calculated from a construc-
tion machine’s sensor data exceeds some threshold, the
calculated value is sent to the server. Otherwise, no
data are sent [14].



2946
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

2.1.4 Concatenation

When data are sent to the server, protocol header informa-
tion is attached. To reduce the overhead, multiple sensor
data are joined and sent together. The timing of this de-
pends on the type of data being collected and the reason for
their collection. Referring again to the example of construc-
tion machinery, a summary of operation logs may be sent
daily, and any engine sensor data indicating failure can be
sent immediately [22].

However, additional statistical calculation combining
results of previous periodic statistical calculations is not
usually performed in M2M gateways because it consumes
computing resource; this is normally the task of a server
side application and is not within the scope of the aggrega-
tion process.

2.2 Issues with Sensor Data Aggregation Using Firmware
Programming

The sensor data aggregation process previously described is
programmed into the firmware of the M2M gateway. How-
ever, there are difficulties in developing and updating pro-
grams in firmware.

2.2.1 Developing Firmware in Resource-Constrained En-
vironment

For industrial usage, cost and quality requirements for M2M
gateways are strict because they often operate in extreme en-
vironments, sometimes operate in battery powered environ-
ment and the number of deployed devices is large. As a re-
sult, memory and CPU resources are much more constrained
than on enterprise server. In addition, since product life cy-
cle is longer than consumer devices, the growth of CPU and
memory is slow. A CPU clock for an M2M gateway is of-
ten around 200-600 MHz, and it usually has about 1-64 MB
of RAM. For example, RAM size for a M2M gateway to
monitor construction machines [23] is only 2-8Mbytes, and
field area network is 1Mbps CAN. CAN is fast and RAM
resource becomes especially limited. Second example is an
industrial controller with M2M gateway functionality [24]
to monitor production lines. RAM size for user program is
8-16 Mbytes and 10Mbps industrial Ethernet is used as a
field area protocol. Another example can be found in gen-
eral purpose industrial communication board, with a CPU
clock of 250 MHz and 64 MB of RAM [25]. There are two
issues with developing aggregation programs on firmware in
a resource-constrained environment.

The first issue is the limitation of the SDK. Because it
is difficult to use higher-level languages on this sort of hard-
ware, the programming language is usually C. However, C is
difficult to program, and the handling of memory is bother-
some. Moreover, SDKs for M2M gateways vary depending
on the gateway device. The development process typically
consists of the following steps: writing aggregation logic in

C on a PC, cross-compiling it for the gateway, producing
a firmware image, and transferring it to the M2M gateway’s
flash memory. All of these processes are different depending
on the M2M gateway because hardware, OS, and userland
programs are not standardized.

The second issue is with managing limited memory,
i.e., keeping within the limits specified by the M2M gate-
way’s manufacturer and stable memory usage. In an M2M
gateway, an out-of-memory condition can easily happen be-
cause the RAM size is often small and no swap space is
prepared. If one application uses a lot of memory, other ap-
plications may not work because of the memory shortage.
To avoid this problem, manufacturers of M2M gateways ask
application developers to use a specified amount of memory
and to test the memory usage of applications in advance.
Therefore, memory usage of the aggregation logic must be
kept within specified limits. In addition, the usage must also
be static, i.e., the memory usage must be fixed at startup
time and cannot change.

However, it is not easy to keep within a memory limi-
tation because the data input rate is not stable. Buffer man-
agement for performing periodic statistical calculations is
especially important. Data need to be stored in a buffer in
order for statistical calculations to be performed for a spec-
ified time span. For example, when the average of tempera-
ture sensor data for 30 seconds is being calculated, all data
generated from the temperature sensor during those 30 sec-
onds are stored in buffer. The frequency of data generation
varies depending on the configuration of the machine con-
trolling the sensors. In sensors for a particular engine con-
trol unit, for example, the temperature sensor data are gen-
erated every second in its usual state, but when the engine
begins to work hard, the control unit generates sensor data
every 0.1 seconds. To process statistical calculation for sen-
sor data arriving at such variable frequency, it would be eas-
ily handled if buffer were allocated dynamically, but mem-
ory usage needs to be static for M2M gateways. Therefore,
buffers for statistical calculations must be allocated stati-
cally. Typically, static memory regions are managed by us-
ing a ring buffer [26]. However, statistical information will
be lost when input traffic increases. For example, an array of
size 3,000 is allocated for a ring buffer to calculate the 30-
second average for a sensor. When the frequency of input
data is every 10 ms, the 3,000-element array is fully used
and the 30-second average is calculated without a problem,
but when the frequency increases and exceeds every 10 ms,
statistical information will be lost. At a frequency of every
1 ms, only the last 3 seconds of data will be stored in the
buffer, and the average for 30 seconds cannot be calculated.
To prevent such a case, the size of the ring buffer needs to
be large enough, but this would exceed the memory limit.

In the above example, note that all data do not neces-
sarily have to be saved to calculate only average, because
it can be obtained from the sum and the number of data.
However, in order to calculate other statistic values such as
moving average, deviation and Fourier transform, all data
within a specified time range have to be saved. In addition,



NAKAMURA et al.: RULE-BASED SENSOR DATA AGGREGATION SYSTEM FOR M2M GATEWAYS
2947

in calculating only average it is preferable to save all data
in a buffer to reduce context switch overhead between data
receiving process and data calculation process.

2.2.2 Updating Firmware

In order to modify the aggregation logic after the M2M gate-
ways are deployed, the firmware needs to be updated. How-
ever, there are difficulties in modifying programs, installing
firmware, and recovering from a failure.

• Modifying programs: The C program needs to be mod-
ified in order to change the aggregation logic; this in-
volves difficulties similar to those previously described
for the development of the C program. In addition, the
C program requires repeat testing in order to avoid re-
gression.
• Installing new firmware: After new firmware is devel-

oped, it must be installed on the devices. There are two
ways of doing this. In the first method, field engineers
perform the installation. Although this is the most re-
liable method, it is very expensive when the number
of devices is 10,000 or 100,000 or more. To reduce
this human cost, the second method is used, in which
the updating is performed through the network. How-
ever, network costs are still an issue in this scenario.
Since firmware is usually implemented on read-only
file systems, entire file system images, which often ex-
ceed 10 MB, must be delivered via the mobile network,
and the network cost over all the devices becomes im-
possible to ignore.
• Recovering from a failure: When the writing of

firmware from the network fails because of a power
outage during the update, the firmware is broken. To
avoid this, a backup area, whose size is the same as
the firmware’s, is a necessary component of the flash
ROM. In addition, the recovery procedure must be per-
formed by an engineer.

3. Proposal of Complex Sensor Data Aggregator

3.1 Basic Design of the CSDA

As described in the previous section, there are problems
with programming and updating sensor data aggregation
logic for M2M gateway firmware. Here, memory needs to
be carefully managed. The memory usage of the aggre-
gation logic must remain within the limit specified by the
M2M gateway’s manufacturer, and it should not increase af-
ter the aggregation logic begins to work.

In this section, we propose a framework called CSDA
as a solution to these problems. An overview of the CSDA
is shown in Fig. 2. The process of aggregation is specified
in a configuration file, thus eliminating the need for pro-
gramming in C. Typical logic components such as those for
averaging and filtering are embedded in advance, and the

Fig. 2 Architecture of the CSDA

combination of components to handle the required aggrega-
tion tasks is described in the configuration file. The process
begins with the process launcher, which starts the static ag-
gregation processor, which is responsible for the aggrega-
tion process described in the configuration file. In order to
prevent an increase in memory usage after startup, the static
aggregation processor is composed of static working mem-
ory and a static number of threads, which handle the aggre-
gation tasks by combining embedded logic components. In
addition, to enable the adjusting of memory usage within the
specified limits, the working memory size can be reduced
by modifying the sampling configuration of a buffer, the de-
tails of which are described in Sect. 3.2.3. The update mod-
ule changes the configuration where aggregation logic is de-
scribed, via the network. Here, it is assumed that the mem-
ory usage of the CSDA has been tested in a test environment
and found to be within the limits before the configuration is
changed. The detailed design of the static aggregation pro-
cessor, configuration file, and update module are described
in the following sections.

3.2 Design of Static Aggregation Processor

Figure 3 shows the design of the static aggregation proces-
sor. Three types of threads aggregate sensor data according
to a specified configuration. The number of threads is de-
fined by the configuration and does not change after startup,
thereby preventing an increase in memory usage. Buffers
between threads, called the sampling buffer and the process-
ing cache, are also designed to control memory usage; the
sampling buffer in particular has the ability to adjust mem-
ory usage. The design of the threads and buffers is described
next.



2948
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 3 Design of Static Aggregation Processor

3.2.1 Threads for Aggregation Process

In order to cover the categorized functions of the aggrega-
tion process as described in Sect. 2.1, the static aggregation
processor handles sensor data in three steps: input, data pro-
cessing, and output. These are implemented in the following
three kinds of threads:

• Step1, input thread: One thread is launched at startup
time. In this thread, node IDs and binary data, includ-
ing sensor values, are passed from the device driver,
and the node IDs are filtered out. Then, sensor values
are extracted from the binary code and buffered in a
memory area called the sampling buffer.
• Step2, data processing threads: This step takes data

from the sampling buffer periodically at a configured
rate (e.g., every 100 ms), and statistical calculations,
such as the average, sum, minimum, maximum, and
occurrence counts, are performed on the extracted sen-
sor values. Threshold filtering is also performed on
the sensor values and the calculated values. The two
tasks, statistical calculation and threshold filtering, can
be combined. The results of this data processing are
saved in a memory area called the processing cache.
The number of threads launched at startup depends on
the variations of the frequency of data processing spec-
ified in the configuration file. For example, if data
processing is configured for every 100 ms and every
10 ms, two threads are launched, and no new threads
are launched after that.
• Step3, output thread: It reads the result data of the pro-

cessing thread from the processing cache and concate-
nates them; then, the data are periodically passed to the
data upload program, or passed immediately if the data
indicate an event requiring urgent attention. In addi-
tion, if persistent storage is available, data can be stored
there. The number of threads launched at startup also

Fig. 4 Array usage of sampling buffer

depends on the variations of the frequency of output
processing specified in the configuration.

3.2.2 Memory Management Strategy

To ensure that memory usage remains within the CSDA’s
limit, the entire working memory size must be fixed at
startup. However, the frequency of input data for process-
ing threads and aggregated data from processing threads in-
creases as sensor data traffic increases, and dynamic mem-
ory allocation can easily violate the memory usage limit as
described in Sect 2.2.1. Therefore, for input and output of
processing threads, static working memory area is prepared
in order to establish the memory usage. The size of the
static working area is defined by the CSDA’s memory us-
age, which is the amount allowed by the manufacturer of
the target M2M gateway. From the working area, a sam-
pling buffer is allocated for input, and a processing cache is
allocated for output at startup according to the configuration
specified, and the allocated memory size does not change
after that. The configuration needs to be adjusted not to con-
sume the entire working memory area because startup will
fail if the working memory area is fully used. The sampling
buffer in particular is designed to adjust the memory usage
because the quantity of sensor data input can become very
large. The design of these buffers is described next.

3.2.3 Design of Sampling Buffer

As described in Sect 2.2.1, statistical information is lost
when a simple ring buffer is used as the input buffer. To re-
duce such loss of statistical information and to enable mem-
ory usage adjustment, not all input data are saved in the sam-
pling buffer when the frequency of data increases; instead,
data are sampled at a configured rate. For example, when the
sampling buffer is configured to save data every 100 ms and
input data come every 10 ms, data are saved every 100 ms.
This memory usage can be reduced by configuring the sam-
pling rate because the amount of memory needed is smaller
when the sampling rate is low.

Figure 4 shows the details of the sampling buffer. At
CSDA startup, the sampling buffer is allocated from the
static working memory area for each input sensor from the
working area; the array layout is as shown in the figure.
Here, p is the time period of the stored data and L is the
length of the array; their values are specified in the CSDA
configuration file. At index i, representative data for the time
between t + (i - 1)*p/L and t + i*p/L are stored. The repre-
sentative data can be configured from the maximum value,



NAKAMURA et al.: RULE-BASED SENSOR DATA AGGREGATION SYSTEM FOR M2M GATEWAYS
2949

minimum value, and latest value, and p/L is the sampling
rate. For convenience, the working of this array may be ex-
plained by an example. Assume that data are stored from
sensor A for 30 seconds (p = 30), L is configured as 300,
and the sampling rate p/L is 0.1 seconds. In array element 0,
representative data between t and t + 0.1 seconds are stored;
in array element 1, representative data between t + 0.1 and
t + 0.2 seconds are stored; and in array element i, represen-
tative data between t + i*0.1 and t + (i + 1)*0.1 seconds are
stored. When the time reaches t + 30, data are stored from i
= 0, and t is incremented by 30. In this way, data from sen-
sor A are stored every 0.1 seconds for 30 seconds. Then, in
the data processing step, data are taken from the buffer and
used to perform the statistical calculations.

Developers of aggregation logic in CSDA can adjust
L according to the memory usage limits of the target M2M
gateways. For example, assume that 2 bytes of sensor data
are averaged for 20 seconds and that 200 Kbytes of CSDA’s
working memory is available for the sampling buffer. In
this case, the maximum value of L will be 10,000, and the
maximum sampling rate will be 0.1 ms. On the other hand,
when only 2 Kbytes of working memory is available for the
sampling buffer, the maximum value for L will be 100 and
the sampling rate will be 10 ms.

3.2.4 Design of Processing Cache

This cache is used to store the result from the data process-
ing step. There are two uses of this cache. The first one
is simply to store the result of the data processing step and
pass the result on to the next output step. The second use is
to compute statistical values such as frequency counts over
long time periods. For example, when a value is calculated
every 100 ms and a frequency distribution for the value is
created in the data processing step, in order to create a fre-
quency distribution covering 1 minute, the frequency data
must be stored in the processing cache.

The cache is also allocated from the static working
memory area, and the allocation size is specified in the con-
figuration file. When the cache becomes full, old cached
data are removed or cached out to persistent storage if it ex-
ists. If data loss is not permitted, the cached-out data can
also be sent to the server immediately.

3.3 Configuration Language

A configuration language was designed to describe aggre-
gation for the CSDA. XML was adopted as the text repre-
sentation for the configuration language because it can be
easily parsed and handled by other programs such as con-
figuration tools and GUIs. However, it is difficult to han-
dle an XML-based text configuration file on an M2M gate-
way because the XML parser usually consumes memory re-
source. To save memory, an XML-based configuration is
encoded into a binary format outside the M2M gateway, and
it is delivered and then loaded to the CSDA at startup. The
configuration file for the CSDA consists of three sections,

Fig. 5 Part of configuration for input step

corresponding to the steps in the aggregation process as de-
scribed in Sect 3.2.1, i.e., input, data processing, and output.

3.3.1 Input Section

In this section, the node ID filtering, target sensor values,
and configuration of the sampling buffer are described. Fig-
ure 5 shows an example of this configuration. Here, the sep-
aratorId attribute in line 1 refers to the node ID filtering.
Only the input data whose node ID is described in separa-
torId are processed. In this example, only the data frames
with node IDs of “1” are processed. The offset and length
attributes correspond with the data extracted from the data
frame payload. In line 2, 0 to 7 bits of payload are extracted
and stored as a short data type (2 bytes) in a sampling buffer.
Similarly, 8 to 15 bits of payload are extracted and stored in
a sampling buffer. In order to identify the extracted data,
the rawDataId attribute is used. Data extracted by line 2 are
identified by “100”, and data extracted by line 3 are identi-
fied by “101”. Line 5 configures the sampling buffers. In
this example, p is configured as 4,000 ms, and L is config-
ured as 400. Therefore, the sampling rate (p/L) is 10 ms.
As a result of the configuration, two sampling buffers with
a length of 400, each of whose elements is 2 bytes (short)
in size, are allocated from static working memory. This al-
location is processed at CSDA startup, and if all working
memory is used up, startup will fail with an error. If such a
failure occurs, the size attribute will need to be reduced.

3.3.2 Data Processing Section

In this section, the configuration for periodic data process-
ing, which consists of statistical calculations, threshold fil-
tering, and a combination of the two, is specified. An ex-
ample configuration is shown in Fig. 6. The sequencer tag
declares the start (line 1) and end (line 24) of the periodic
data processing. A corresponding data processing thread is
launched at startup. If there are two sequencer tag pairs, two
threads are launched at startup. The seqCacheSetting tag
in line 2 configures the processing cache. Here, 200 bytes
are allocated from static working memory for the process-
ing cache. The runCondition tag in lines 3-5 specifies the
frequency of periodic processing. This configuration means
that calculations within the sequencer tag (lines 1-24) are to
be processed every 1,000 ms, and input data are to be ex-
tracted from the sampling buffer for the last 1,000 ms. After



2950
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 6 Part of the configuration for data processing step

the runCondition tag, processes are described in step tags,
and each step tag has a step number specified in the stepId
attribute.

A statistical calculation is specified by an operation tag
within the step tag. Embedded logic components are called
as identified by the method attribute. Lines 6-10 are an ex-
ample of a statistical calculation. Here, the method attribute
is “average”, and the averaging calculation is called from
embedded logic components. In order to refer to data from
the input step, a rawRefId in an arg tag is used. Data corre-
sponding to rawDataID = “100” are taken from the sampling
buffer for the last 1,000 ms and are averaged. Lines 11-14
are an example of threshold filtering. If the result of the pre-
vious step (average) is greater than 10, then go to the next
step; if it is not greater than 10, then go to step 4 (line 23)
as specified by the false attribute. In the next steps (lines
15-22), a histogram of frequency counts is taken for data
whose rawDataID = “101”. Results of this calculation are
also identified by a stepId attribute in the step tag, to be used
by others. For example, the result of the histogram step is
identified as “3”. Processing cache usage is configured by
the cache attribute in the step tag. If it is “yes”, as in line 15,
the result of the calculation is saved in the processing cache.

3.3.3 Output Section

The process of concatenating and sending data to the server
is specified. An example configuration for the output step
is shown in Fig. 7. The deliverer tag declares output sec-
tion. A corresponding output processing thread is launched
at startup. If there are two deliverer tag pairs, two threads
are launched at startup. In the example, only one thread is

Fig. 7 Part of the configuration for output step

launched. In lines 2-8, every 60 minutes, data that are iden-
tified as “3” and “4” are taken from the processing cache
and concatenated. Finally, the result is passed to another
program to send the data to the M2M server.

3.4 Update Module

This module downloads the configuration from the network
and rewrites it. The configuration is written in data area in
Flash ROM which is usually used to store various config-
uration data. Failure recovery must be considered similar
to firmware update. To achieve this, aggregation processors
and update modules run as separate processes. The update
is performed as follows:

• Step 1: The update module downloads the configura-
tion file onto the RAM, and a copy of the old configu-
ration file is created in the flash ROM as a backup.
• Step 2: The update module writes a new configuration

to the flash ROM.
• Step 3: The update module restarts the aggregation pro-

cessor
• Step 4: The aggregation processor loads new configu-

ration from the flash ROM

Even if writing the configuration fails in Step 2 because of
an unexpected power outage, the update can be resumed
from Step 1, and the old configuration can be used, re-
gardless of whether the resuming download fails. The flash
ROM size required for the backup is at most the size of the
configuration.

4. Evaluation

CSDA was implemented in C, and the CSDA effectiveness
was evaluated in an experimental environment similar to an
M2M gateway. CSDA was compared with the development
of dedicated logic in a traditional C program. First, to inves-
tigate the advantage of CSDA, the developmental process
and the updating of aggregation logic on an M2M gateway
was evaluated. In addition, the capability of the sampling
buffer to adjust memory usage within the limits was also
evaluated. Second, overhead was evaluated. CSDA has per-
formance overhead compared with a dedicated C program
because CSDA includes logic to process various calcula-
tions according to configurations. To verify that the level of



NAKAMURA et al.: RULE-BASED SENSOR DATA AGGREGATION SYSTEM FOR M2M GATEWAYS
2951

Table 1 Embedded system used in the evaluation

Specification

CPU Freescale i.MX25 (ARM926EJ-S) 400 MHz
RAM LPDDR SDRAM 64 MB

Sensor network interface ISO11898 compliant CAN interface
OS Linux 2.6.26

overhead is acceptable, memory and CPU usage were mea-
sured and compared with those of a dedicated C program.

4.1 Experimental Setup

CPU clocks for M2M gateways are typically around 200-
600 MHz, and RAM sizes are around 1-64 MB, as was
stated in Sect 2.2.1. We used the Armadillo 420 [27] as an
evaluation device because its CPU power and RAM size are
similar to the above specifications and its SDK is available
to the public. Its specifications are shown in Table 1. The
CAN was selected as a sensor network because it is widely
used in industrial devices. CSDA was implemented in C and
ported to the device in the following evaluations.

4.2 Evaluation of Advantage of CSDA

To verify the advantage of CSDA over a dedicated C pro-
gram, the development and update processes are compared.
Next, the capability of the sampling buffer to adjust working
memory usage within the set limits is evaluated.

4.2.1 Development of the Aggregation Process

The productivity of C and of CSDA in the development of
an aggregation process are compared. The following aggre-
gation process was used for the evaluation:

• Input process step: Take two kinds of sensor value for
Sensor A and Sensor B.
• Data processing step: When the 30-second average

value for Sensor A is greater than a given threshold,
create a histogram of the Sensor B values.
• Output step: Send the histogram data once each day.

The number of steps was calculated for the dedicated C code
and the number of tag pairs was counted for the CSDA con-
figuration. The number of steps required in the C program
was 575, and the number of tag pairs in the CSDA configu-
ration was 29. The semantics of C and XML are different,
but the amount of configuration is much less than in the C
code. The sampling buffer was not implemented in the ded-
icated C program; if it were to be implemented, the amount
of the program would increase more.

In addition, there are the following three difficulties in
writing C code. The first is that of bit operation. In the in-
put step, sensor data are extracted from the binary frame.
In order to handle binary communication, bit operations are
used, as shown in Fig. 8; these operations are difficult to
read. Eight variables and three arrays are used in a mere

Fig. 8 Comparison of C and CSDA at input step

three lines. Using the CSDA, on the other hand, data ex-
traction can be described in one simple line. The second
difficulty is with memory operations. As is well known,
failure to handle C arrays causes many problems. If there
is a bug in the boundary handling, the memory may be de-
stroyed, and this weakness can be also exploited in a buffer
overflow attack [28]. The CSDA hides such memory opera-
tions. Third is thread management. The thread needs to be
separated for the input process and data processing in order
to enable the receiving of data during the data processing.
Thread programming depends on the OS, and programmers
need to learn manners. Moreover, the shared resource needs
to be handled carefully because failure can lead to resource
destruction or a deadlock. Here as well, the CSDA hides the
operations.

4.2.2 Updating Aggregation Logic

Updating of the aggregation logic in CSDA is compared
with traditional firmware updating through consideration of
the following aspects during the update process:

1. Delivery of update data: In a firmware update, the en-
tire image needs to be delivered. In some cases its size
can exceed 10 Mbytes. In CSDA, the binary configura-
tion file needs to be delivered, but its size is small. For
example, the size of the binary configuration used in
the previous section is 1 Kbyte. This will save network
bandwidth and loading of the delivery server.

2. Logic updating: Since the size of the binary configura-
tion file is much smaller than a firmware image, the
time for rewriting the configuration file will be also
much smaller than that needed for rewriting a firmware
image.

3. Failure recovery: In most M2M gateways, there is
a failure recovery feature for firmware updates. If
a firmware update fails, it is recovered from backup
firmware. However, intervention by an engineer in the
field is necessary since the M2M gateway is not func-
tioning after the failure.
In CSDA, there is a failure recovery feature as de-
scribed in Sect 3.4. Recovery after a failure can be per-
formed without the need for an engineer in the field
because other parts of the M2M gateway and update
module are working. For example, if there is a monitor
function in the update module that watches the CSDA
status, the monitor function can detect a failure and re-
cover the configuration file from backup.



2952
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Table 2 Result of memory usage measurement of CSDA with varying
configuration of sampling buffer. L is length of array for sampling buffer
and R is sampling rate.

CSDA CSDA CSDA
L=30000 L=3000 L=300
R=1 ms R=10 ms R=100ms

Memory usage 448 259 240
(Kbytes)

4.2.3 Capability of Sampling Buffer to Reduce Memory
Usage

To verify that memory usage can be reduced by adjusting the
sampling buffer, the CSDA memory usage was measured for
varying array lengths of the sampling buffer. In the evalua-
tion, it was assumed that data are inputted from three sen-
sors whose data are 2 bytes in size and that three sampling
buffers are prepared to store data from them for 30 seconds.
The CSDA was simply configured to perform 30-second av-
eraging of the sensor data stored in the sampling buffers.

Memory usage of the CSDA was measured as follows.
As described in Sect 3.2.3, CSDA has static working mem-
ory for the sampling buffer. Logic to measure the size of
CSDA’s unused working memory (A) was inserted in the
CSDA, and the total CSDA memory usage (B) was mea-
sured by free command. (Note that B is the difference in the
output of the free command before and after starting CSDA.)
Here, the actual CSDA memory usage is B - A. A and B
were measured when the length of array for the sampling
buffer was 300 (for a sampling rate of 100 ms), 3,000 (for a
sampling rate of 10 ms), and 30,000 (for a sampling rate of
1 ms).

The measured memory usage for the sampling buffer is
shown in Table 2. B - A is displayed there. For example, in
the case of L = 30,000, A was 132 Kbytes and B 580 Kbytes;
thus, the CSDA memory usage was 580 - 132 = 448 Kbytes.
From the table, it is observed that CSDA memory usage de-
creases as L decreases and that the rate of decrease is just
7 bytes. It is confirmed that the CSDA memory usage can be
adjusted in a memory-constrained environment by configur-
ing L. For example, assuming only 300 Kbytes is allowed
by the M2M gateway’s manufacturer, when L = 30,000 (R
= 1 ms), the memory usage will be 448 Kbytes, exceeding
the limits. In such a case, memory usage can be reduced by
reducing L. The value of L that achieves the best sampling
rate within the memory usage limit can also be easily calcu-
lated. Since the rate of memory usage decrease is 7 bytes,
by reducing L by 21,143 (= 148 Kbytes/7), memory usage
will be just 300 Kbytes. The resulting L is 8,857 (= 30,000
- 21,143), and the sampling rate will be 3.4 ms (= 30 s /
8,857).

4.3 Evaluation of Overhead

When aggregation logic is implemented on the CSDA,
memory usage is expected to be higher than that with a

dedicated C program, because the CSDA is implemented
in C and logic to handle various aggregations is included.
CPU usage is expected to be higher as well. To verify that
such overheads are acceptable, the RAM and CPU usage are
compared with those in a dedicated C program.

4.3.1 Overhead in RAM Usage

The overhead in memory usage was measured as follows:

• Aggregation logic that simply performs 30-second av-
erages of data from three sensors and discards the out-
puts was implemented both in a dedicated C program
and in CSDA. Neither the sampling buffer nor the pro-
cessing cache were implemented in the dedicated C
program; i.e., it reads 30 seconds of data into a dynam-
ically allocated buffer.
• To determine the increase in CSDA memory usage for

handling various aggregations, C and D were measured
as follows:
C: (memory usage of CSDA) - (size of sampling buffer)
D: (memory usage of dedicated C program) - (size of
dynamically allocated buffer)
C - D thus represents the CSDA overhead.

The result of measuring the CSDA overhead (C - D) was
72 Kbytes, where C was 248 Kbytes and D was 176 Kbytes.
This increase is not significant, because even if the RAM
size is 8 Mbytes, it is less than 1%.

4.3.2 Overhead of CPU Usage

In order to see the CPU overhead, complicated aggregation
logic was configured and evaluated on the device, the same
as that of Table 1. The logic for the evaluation was a statisti-
cal calculation to predict faults in a construction machine
using data from three sensors, which is composed of 30
calculation elements [14]. To simulate heavy traffic, sensor
data were inputted every 1 ms, then the statistical calcula-
tion was performed every 100 ms. CPU time was measured
for 1 second. CPU time was also measured for a dedicated
C program where only the aggregation logic was coded.

The observed CPU usage of the CSDA was 1.5% (CPU
time 15 ms), and that for the dedicated C program was less
than 0.1% (CPU time less than 1 ms). The CPU usage of
the CSDA was not significant even under heavy traffic with
complicated aggregation logic, but was worse than for the C
program. The performance loss is due to overhead in parsing
the calculation rule. When a use case with more complicated
aggregation logic is encountered in the future, it will need to
be tuned.

4.4 Limitation Consideration

The limitation of the CSDA is that it cannot describe statisti-
cal calculations whose logic and configuration language are
not already embedded. In order to use the CSDA in a variety



NAKAMURA et al.: RULE-BASED SENSOR DATA AGGREGATION SYSTEM FOR M2M GATEWAYS
2953

of cases, it is assumed that enough sets of statistical calcula-
tions are supported. In practice, “enough sets” are prepared
after the CSDA is used in multiple situations. However, if
“enough sets” are defined, the memory consumption may
become too large because of the amount of embedded logic.
To solve this problem, a plug-in framework would be useful.
If new calculation logic is necessary, it could then be sup-
ported by adding plug-ins. Memory usage would thereby
be saved since only the necessary plug-ins would need to be
installed in the CSDA.

5. Related Works

OSGi [29] is used to facilitate program writing in an M2M
gateway [30], [31]. Because the OSGi is a Java-based frame-
work, it is easier to use than C when writing arbitrary log-
ics. However, coding is still necessary, and it only works
on a rich M2M gateway because Java requires enough CPU
space and memory.

A data stream management system (DSMS) [32] par-
tially removes data aggregation coding. It processes the in-
put data stream based on the rule called query. However,
because it is not originally intended for sensor data aggre-
gation, the rule language does not cover the input and out-
put steps. It is primarily intended for real-time processes,
so it requires enough CPU and memory resource. There is
a DSMS for resource-constrained devices [26], but its rules
are static and a firmware update is necessary to change them.
Yamamoto and Koizumi proposed DSMS for distributed en-
vironment on top of MySQL [33]. It facilitates describing
data aggregation logic by utilizing SQL, but it uses tradi-
tional ring buffer for statistical calculation and not suitable
for memory constrained environment.

AirSenseWare [34] processes data using sensor nodes
and a rule-based server. Its focus is the framework for dis-
tributed data processing and not aggregation on a gateway.

SwissQM [35] processes data using sensor nodes that
cooperate with a gateway device. Here, the role of the gate-
way is different from the one discussed in this paper. Gate-
ways employ various types of query rules, such as XQuery
and SQL, and data processing is performed on sensor nodes.

There are sensor data aggregation methods on M2M
gateways by data compression techniques. Yamaguchi
et al. [36] compressed sensor data on M2M gateway
by utilizing multi-dimensional similarity of sensor data.
Papageorgiou et al. [37] developed an algorithm to choose
the best data compression method for sensor data aggrega-
tion. Matamoros et al. [38] aggregates sensor data on M2M
gateways to reduce overhead of bridging sensor to the Inter-
net. These works focus on data compression on specific sit-
uations. Problems are different from our work because we
propose a framework to facilitate developing and updating
aggregation logics for resource constrained environment.

There are works related to evaluation of effects of sen-
sor data aggregation on M2M gateways. Lo et al. [39] evalu-
ated relationship between protocol overhead and communi-
cation delay when sensor data are aggregated on gateways.

Tsai et al. [40] simulated effect of data aggregation to en-
ergy consumption of M2M systems.Problems are also dif-
ferent from our work because these works do not mention
development of aggregation logics.

6. Conclusions

To reduce the server load and communication cost of M2M
systems, sensor data are aggregated in an M2M gateway.
The aggregation logic is usually programmed in C rather
than higher-level programming languages because the CPU
and memory resources are constrained. However, there are
difficulties with programming in C and with updating the
programs. We proposed a framework called complex sen-
sor data aggregator (CSDA) to solve such difficulties. The
proposed CSDA is highlighted as follows.

• CSDA enables sensor data aggregation in M2M gate-
ways without the need for programming. This CSDA
supports categorized data aggregation methods in three
steps: the input, the periodic data processing, and the
output steps. In each step, behavior is configured using
XML-based rules.
• In order to keep CSDA within the memory limit spec-

ified by the M2M gateway’s manufacturer, the number
of threads and the size of working memory is static af-
ter startup, and the size of the working memory can be
adjusted by configuration of a sampling setting for a
buffer for sensor data input.
• Experimental results on an evaluation board show that

developing CSDA configurations is much easier than
programming in C. The amount of configuration is less
than 10% of the comparable C code. Memory usage
can also be reduced by adjusting the sampling setting.
In addition, the basic memory usage and CPU usage of
the CSDA are not significant for M2M gateways; i.e.,
the CPU usage with the CSDA is about 1.5% for com-
plicated aggregation logic, and the increase in mem-
ory usage compared with dedicated C logic is about
70 Kbytes.

Acknowledgments

We would like to thank Noriko Takada and Kenji Okura in
Hitachi, Ltd. for giving us information about data aggrega-
tion requirement from industrial use cases. We would also
like to thank to people in Entier group in Hitachi Solutions,
Ltd. for help in developing prototype.

References

[1] Komatsu: Komtrax: http://www.komatsuamerica.com/
komtrax

[2] Hitachi Construction Machinery: Global-eService: http://www.
hitachi-c-m.com/global/businesses/products/global e-service.html

[3] Yanmmar: Yanmar’s Advanced Technology Gives Customers a
SmartAssist, 2013: http://yanmar.com/news/contents/105278.php

[4] Zigbee Alliance, Interconnecting Zigbee & M2M Networks,



2954
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

http://docbox.etsi.org/workshop/2011/201110 m2mworkshop/03
m2mcooperation/zigbee taylor.pdf

[5] CiA: Controller Area Network, http://www.can-cia.org/index.
php?id=can

[6] ETSI TS 102 690 V1.1.1, Machine-to-Machine communications
(M2M) functional architecture, 2011.

[7] MQtt: http://mqtt.org
[8] I. Fette and A. Melnikov, Request for comments 6455: The Web-

Socket Protocol, IETF, 2011.
[9] Z. Shelby, K. Hartke, and C. Bormann, Request for comments 7252:

The Constrained Application Protocol (CoAP), IETF, 2014.
[10] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight Internet

protocols for web enablement of sensors using constrained gateway
devices,” Proc. 2013 International Conference on Computing, Net-
working and Communications (ICNC2013), pp.334–340, 2013.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TinyDB:
An Acquisitional Query Processing System for Sensor Networks,”
ACM Transactions on Database Systems, vol.30, no.1, 2005.

[12] A. Boulis, C.-C. Han, R. Shea, and M.B. Srivastava, “SensorWare:
Programming sensor networks beyond code update and querying,”
Pervasive and Mobile Computing, vol.3, no.4, pp.386–412, 2007.

[13] T. Murakami, T. Saigo, Y. Ohkura, Y. Okawa, and T.
Taninaga, “Development of Vehicle Health Monitoring Sys-
tem (VHMS/WebCARE) for Large-Sized Construction Machine,”
Komatsu Tech Rep, vol.48, no.150, pp.15–21, 2003.

[14] J. Fujiwara and H. Suzuki, “Device for collection construction ma-
chine operation data,” WIPO Patent, WO2013077309 A1, 2013.

[15] Y. Shinohara and H. Sakamoto, “Remote monitoring terminal device
for traveling work machine or ship,” WIPO patent, WO2013080712
A1, 2013

[16] BroadBand Forum, TR-069 Issue 1 Amendment 2, http://www.
broadband-forum.org/technical/download/TR-069 Amendment-
2.pdf

[17] Y. Nakamura, A. Moriguchi, and T. Yamauchi, “CSDA: Rule-based
Complex Sensor Data Aggregation System for M2M Gateway,”
Proc. Eighth International Conference on Mobile Computing and
Ubiquitous Networking (ICMU 2015), pp.110–115, 2015.

[18] Hitachi Solutions, Ltd., Entier Stream Data Aggregator: http://www.
hitachi-solutions.co.jp/entiersda/ (In Japanese)

[19] E. Guenterberg, H. Ghasemzadeh, R. Jafari, and R. Bajcsy, “A Seg-
mentation Technique Based on Standard Deviation in Body Sensor
Networks,” Proc. 2007 IEEE Dallas Engineering in Medicine and
Biology Workshop, pp.63–66, 2007.

[20] Y. Zhuang, L. Chen, X.S. Wang, and J. Lian, “A Weighted Moving
Average-based Approach for Cleaning Sensor Data,” 27th Interna-
tional Conference on Distributed Computing Systems, p.38, 2007.

[21] T. Canli, A. Gupta, and A. Khokhar, “Power Efficient Algorithms for
Computing Fast Fourier Transform over Wireless Sensor Networks,”
Proc. IEEE Computer Systems and Applications, pp.549–556, 2006.

[22] T. Takishita, K. Murakami, K. Seki, and K. Morishita, “Application
of ICT to Lifecycle Support for Construction Machinery,” Hitachi
Review, vol.62, no.2, pp.107–112, 2013.

[23] Quake Global: Q4000, http://quakeglobal.com/files/tinymce/
uploaded/documents/Q4000%202013.pdf

[24] Hitachi Industrial Equipment Systems: HX series, http://www.
hitachi.com/New/cnews/month/2015/11/151116.html

[25] Hitachi Super LSI Systems: Communication module for industrial
devices, http://www.hitachi-ul.co.jp/system/cmodule/index.html (in
Japanese)

[26] S. Katsunuma, S. Honda, K. Sato, and H. Tanaka, “The Static
Scheduling Method in Data Stream Management for Automotive
Embedded Systems,” IPSJ Journal Database, vol.5. no.3, pp.36–50,
2012.

[27] Atmark Techno, Inc., Armadillo-420, http://armadillo.atmark-
techno.com/armadillo-420

[28] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, Q. Zhange, and H. Hinton, “StackGuard: automatic

adaptive detection and prevention of buffer-overflow attacks,” Proc.
7th USENIX Security Symposium, pp.63–78, 1998.

[29] OSGi Alliance, OSGi Service Platform, Release 3, IOS Press, Inc.,
2003.

[30] Y. Li, F. Wang, F. He, and Z. Li, “OSGi-based service gateway archi-
tecture for intelligent automobiles,” Proc. Intelligent Vehicles Sym-
posium 2005, pp.861–865, 2005.

[31] Kura: https://eclipse.org/kura/
[32] The STREAM Group, STREAM: The Stanford Stream Data Man-

ager IEEE Data Engineering Bulletin, 2003.
[33] M. Yamamoto and H. Koizumi, “An Experimental Evaluation of

Distributed Data Stream Processing using Lightweight RDBMS
SQLite,” IEEJ Transactions on Electronics, Information and Sys-
tems, vol.133, no.11, pp.2125–2132, 2013.

[34] K. Muro, T. Urano, T. Odaka, and K. Suzuki, “AirsenseWare: Sen-
sor-Network Middleware for Information Sharing,” Proc. 3rd Inter-
national Conference on Intelligent Sensors, Sensor Networks and
Information 2007 (ISSNIP2007), pp.497–502, 2007.

[35] R. Muller, G. Alonso, and D. Kossmann, “Swiss QM: Next Genera-
tion Data Processing in Sensor Networks,” Proc. 3rd Biennial Con-
ference on Innovative Data Systems Research, pp.1–9, 2007.

[36] K. Yoi, H. Yamaguchi, A. Hiromori, A. Uchiyama, T. Higashino,
N. Yanagiya, T. Nakatani, A. Tachibana, and T. Hasegawa, “Multi-
dimensional sensor data aggregator for adaptive network manage-
ment in M2M communications,” Proc. 2015 IFIP/IEEE International
Symposium on Integrated Network Management, pp.1047–1052,
2015.

[37] A. Papageorgiou, B. Cheng, and E. Kovacs, “Real-time data re-
duction at the network edge of Internet-of-Things systems,” Proc.
11th International Conference on Network and Service Manage-
ment, pp.284–291, 2015.

[38] J. Matamoros and C. Anton-Haro, “Data aggregation schemes for
Machine-to-Machine gateways: Interplay with MAC protocols,”
Proc. Future Network & Mobile Summit, pp.1–8, 2012.

[39] A. Lo, Y. Law, and M. Jacobsson, “A cellular-centric service ar-
chitecture for machine-to-machine (M2M) communications,” IEEE
Wireless Commun., vol.20, no.5, pp.143–151, 2013.

[40] S.-Y. Tsai, S.-I. Sou, and M.-H. Tsai, “Reducing Energy Con-
sumption by Data Aggregation in M2M Networks,” An Interna-
tional Journal of Wireless Personal Communications, vol.74, no.4,
pp.1231–1244, 2014.

Yuichi Nakamura received his BS and MS
degrees in physics from University of Tokyo in
1999 and 2001, and MS degree in computer sci-
ence from The George Washington University
in 2006. He worked for Hitachi Solutions from
2001 to 2015. He is working for Hitachi since
2015 and is also studying at Okayama Univer-
sity to obtain a PhD degree.

http://dx.doi.org/10.1109/iccnc.2013.6504105
http://dx.doi.org/10.1016/j.pmcj.2007.04.007
http://dx.doi.org/10.1109/embsw.2007.4454174
http://dx.doi.org/10.1109/icdcs.2007.83
http://dx.doi.org/10.1109/aiccsa.2006.205144
http://dx.doi.org/10.1109/ivs.2005.1505213
http://dx.doi.org/10.1541/ieejeiss.133.2125
http://dx.doi.org/10.1109/issnip.2007.4496893
http://dx.doi.org/10.1109/inm.2015.7140431
http://dx.doi.org/10.1109/cnsm.2015.7367373
http://dx.doi.org/10.1109/mwc.2013.6664485
http://dx.doi.org/10.1007/s11277-013-1574-1


NAKAMURA et al.: RULE-BASED SENSOR DATA AGGREGATION SYSTEM FOR M2M GATEWAYS
2955

Akira Moriguchi received his BS and MS
degree in Chemistry from University of Kyushu
in 2006 and 2008. He has worked for Hitachi
Solutions, Ltd. since 2008 and engaged in R&D
for M2M technologies.

Masanori Irie has worked for Hitachi So-
lutions, Ltd. since 2003. He belongs to Entier
group at Hitachi Solutions and is responsible for
development of DBMS for embedded system.

Taizo Kinoshita is Vice President of IoT
Business Division of IT Company, Hitachi, Ltd.
He received his PhD in Electrical Engineer-
ing from Nagoya University. When he joined
in Central Research Lab. in 1981, he engaged
in high speed digital optical and wireless net-
work research. After his status of Director in
Central Research Lab, he established corporate
venture company of Wirelessinfo in 2006. He
contributed especially for social infrastructure
IoT/M2M real application and business, of rail-

way, highway, smart city. He is now responsible for IoT/M2M business in
Hitachi, and is also Director of Next Generation M2M Consortium.

Toshihiro Yamauchi received BE, ME and
PhD degrees in computer science from Kyushu
University, Japan in 1998, 2000 and 2002, re-
spectively. In 2001 he was a Research Fellow
of the Japan Society for the Promotion of Sci-
ence. In 2002 he became a Research Associate
in Faculty of Information Science and Electri-
cal Engineering at Kyushu University. He has
been serving as associate professor of Gradu-
ate School of Natural Science and Technology
at Okayama University since 2005. His research

interests include operating systems and computer security. He is a member
of IPSJ, IEICE, ACM, USENIX and IEEE.


