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SUMMARY Recently, there has been an increase in use-after-free
(UAF) vulnerabilities, which are exploited using a dangling pointer that
refers to a freed memory. In particular, large-scale programs such as
browsers often include many dangling pointers, and UAF vulnerabilities
are frequently exploited by drive-by download attacks. Various methods
to prevent UAF attacks have been proposed. However, only a few meth-
ods can effectively prevent UAF attacks during runtime with low overhead.
In this paper, we propose HeapRevolver, which is a novel UAF attack-
prevention method that delays and randomizes the timing of release of freed
memory area by using a memory-reuse-prohibited library, which prohibits
a freed memory area from being reused for a certain period. The first con-
dition for reuse is that the total size of the freed memory area is beyond
the designated size. The threshold for the conditions of reuse of the freed
memory area can be randomized by HeapRevolver. Furthermore, we add a
second condition for reuse in which the freed memory area is merged with
an adjacent freed memory area before release. Furthermore, HeapRevolver
can be applied without modifying the target programs. In this paper, we de-
scribe the design and implementation of HeapRevolver in Linux and Win-
dows, and report its evaluation results. The results show that HeapRevolver
can prevent attacks that exploit existing UAF vulnerabilities. In addition,
the overhead is small.
key words: use-after-free (UAF) vulnerabilities, UAF attack-prevention,
memory-reuse-prohibited library, system security

1. Introduction

Recently, there has been an increase in use-after-free (UAF)
vulnerabilities, which can be exploited by referring a dan-
gling pointer to a freed memory. A UAF attack abuses the
dangling pointer that refers to a freed memory area and ex-
ecutes an arbitrary code by reusing the freed memory area.
The number of UAF vulnerabilities based on the investiga-
tion in [2] is shown in Fig. 1. The figure shows that the
number of UAF vulnerabilities has rapidly increased since
2010 [2]. Furthermore, the number of exploited UAF vul-
nerabilities has increased in Microsoft products [3]. In par-
ticular, large-scale programs such as browsers often include
many dangling pointers, and the UAF vulnerabilities are fre-
quently exploited by drive-by download attacks. For exam-
ple, many UAF attacks exploit the vulnerabilities of plug-ins
(e.g. Flash Player) in browsers. As a modern browser has a
JavaScript engine, an attacker can exploit the UAF vulner-
abilities using JavaScript, which creates and frees memory
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Fig. 1 Number of UAF vulnerabilities registered to CVE.

area.
We investigated the kind of applications that include

UAF vulnerabilities from the UAF vulnerabilities occuring
in 2016 from the CVE database. The number of UAF vul-
nerabilities in 2016 was 224. We classified the types of
applications. The investigation results showed that approx-
imately 46% of the UAF vulnerabilities were included in
browsers and browser plugins. These results also implied
that browsers and their plugins included many UAF vulner-
abilities. Therefore, countermeasures against UAF attacks
are required for these applications.

To show the characteristics of a UAF attack, we investi-
gated CVE-2012-4792, CVE-2012-4969, CVE-2013-3893,
and CVE-2014-1776 as UAF vulnerabilities used for attacks
in the real world. Investigation results demonstrated that in
a UAF attack, the memory is immediately reused after a tar-
get freed-object is reused to reduce the possibility of a target
memory area being reused by another process after it is re-
leased. This is because memory allocator deploys best fit
algorithm. In this case, the chunk is immediately reused if
the size of the chunk is the same as the requested size. The
memory allocator maintains locality for minimizing page
faults and cache misses. Maintaining the locality improves
the performance on modern processors. As a result, recently
freed chunks are immediately reused in such a memory allo-
cator. Therefore, the operations of the current memory allo-
cator are deterministic, and the attacker can guess the oper-
ations and reuse the target freed-memory. Various methods
to prevent UAF attacks have been proposed [4]–[21]. How-
ever, only a few methods can effectively prevent UAF at-
tacks during runtime with a low overhead. Furthermore, the
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memory usage of the existing methods is inefficient, and
these methods utilize a considerable memory area for pre-
venting UAF-attacks.

Thus, many related works have used techniques, such
as the DelayFree deploy technique that delays the time of
freeing a memory object. References [22]–[24] also pro-
posed methods to prevent UAF attacks against Internet Ex-
plorer (IE) by calling functions that have recently taken
measures against UAF attacks. However, DelayFree [23]
and Memory Protector [24] do not release the freed memory
areas for a fixed period, thus complicating the UAF attacks.
This period remains until the total size of the freed mem-
ory area is more than the threshold (beyond 100 KB). How-
ever, when the freed total memory size increases beyond the
threshold, all the memory areas prevented to be released are
released and can be reused. Each program must be altered
to apply these methods, thereby resulting in the increase in
the man-day requirement to modify a program and develop
a patch. An attack against DelayFree is reported in [25],
which indicated that an attack against DelayFree will suc-
ceed. An attack against IE secured using Isolated Heap and
Memory Protector was also reported in [26]. Therefore, new
countermeasures are required to prevent UAF attacks.

In this paper, we propose HeapRevolver, which is a
novel UAF-attack prevention method that delays and ran-
domizes the release timing of a freed memory area by using
a memory-reuse-prohibited library. By delaying release of
freed memory area, HeapRevolver prohibits the reuse of the
memory area for a certain period. In UAF attacks, the freed
memory area is immediately reused after the memory area is
released to exploit the UAF vulnerabilities. Thus, the above-
mentioned UAF attacks are prevented. The threshold for the
conditions of reusing the freed memory area can be random-
ized by HeapRevolver. This function makes it more difficult
to reuse the memory area for the UAF attacks by randomiz-
ing the timing of the memory area release. Accordingly, we
added a reuse condition, in which the freed memory area is
merged with an adjacent freed memory area before release.
By adding this condition, a UAF attack will fail if an offset
of the dangling pointer to the memory area is not appropri-
ately calculated. Furthermore, HeapRevolver can be imple-
mented in a library and be applied without altering the tar-
geted program for protection. Thus, applying HeapRevolver
to targeted programs is not difficult. As HeapRevolver can
reuse the freed memory area under the reuse conditions, the
memory can be efficiently used. Finally, we describe the de-
sign and the implementation of HeapRevolver in Linux and
Windows. We report on the evaluation results that showed
that the performance overhead of HeapRevolver is relatively
smaller than that of DieHarder [21], which is one of the rep-
resentative methods used to prevent UAF attacks by library
replacement.

The differences between HeapRevolver and DelayFree
are as follows:

1. The designated size for the conditions of reusing
the freed memory area can be randomized by Heap-

Revolver. The designated size of DelayFree is constant.
2. A reuse condition in which the freed memory area is

merged with an adjacent freed memory area before re-
lease, is newly introduced in HeapRevolver.

3. The released memory size is at most half of the des-
ignated size in the freed memory in HeapRevolver. In
DelayFree, all the memory areas are released when a
reuse condition is satisfied, and they can be reused.

4. HeapRevolver can be implemented in a library and ap-
plied without altering the targeted program for protec-
tion.

5. Shared libraries are often used in various OS’s. Thus,
HeapRevolver is applicable to various environments.

The preliminary version of this study appeared in [1].
We have added new survey and investigation results and ad-
ditional evaluation results. The analysis has been provided
in detail.

2. Problem and HeapRevolver Design

2.1 Problem of Existing Methods

The related studies [22]–[24] face the following problems:
Problem 1: the reuse timing can be guessed by attack-
ers. The related methods do not release the freed memory
area for a fixed period and complicate UAF attacks. The
attackers can guess the reuse timing because of the period
being fixed. Thus, the reuse time estimation must be made
difficult.
Problem 2: need to alter the program code. Some meth-
ods alter the code of IE and call the recently added functions,
thus preventing a UAF attack. Altering a program code is,
therefore, necessary.
Problem 3: the target application and the OS’s are lim-
ited. The methods protect IE in Windows against UAF at-
tacks. Therefore, a more easy deployment method for vari-
ous OS’s and application programs is required for UAF at-
tack mitigation.

In this paper, we propose a novel UAF attack-
prevention method that will be used to resolve these three
problems.

2.2 HeapRevolver Design

In this paper, we focus on the objective that the UAF at-
tacks can be prevented by preventing the reuse of the freed
memory area. However, when the reuse of freed memory
area is prevented, memory usage becomes extremely ineffi-
cient. In addition, the overhead of creating a new memory
area increases because brk and sbrk system calls are issued
to expand the heap area. To solve this problem, we prohibit
the reuse of a memory area for a certain period after it is
freed. When a certain period has passed, the memory area
can be reused. We assume that if this period is fixed, the
reuse timing can be predicted by the attackers. Therefore,
we randomize the prohibited period of the reuse in Heap-
Revolver.
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To prevent UAF attacks reusing the memory objects,
HeapRevolver alters an existing library. The altered library
prohibits reuse of the freed memory for a certain period. The
conditions for reuse are as follows:
Condition 1: The total size of the freed memory area is
beyond the designated size.
Condition 2: The freed memory area is merged with an
adjacent freed memory area.

When condition 1 is satisfied, the memory area that sat-
isfies condition 2 is released. The released memory size is
at most half of the designated total size in the freed mem-
ory. Condition 1 refers to technique used in DelayFree [23]
and Memory Protector [24]. These techniques can prevent
the immediate reuse of the freed memory area immediately
after it is freed. However, the designated total size (thresh-
old) in the freed memory in these techniques is constant.
The threshold is 100 KB. When an attacker creates a mem-
ory area of 100 KB, the freed memory is released. Thus, an
attacker can attempt to reuse a memory area by creating a
memory area. Therefore, UAF attacks can be attempted.

In HeapRevolver, we develop two countermeasures for
this problem. First, the total size threshold of the freed
memory area is set to a larger value than that in DelayFree.
This measure increases the threshold entropy against UAF
attacks because threshold estimation becomes more diffi-
cult. Second, the threshold is randomized in some ranges.
In addition, the threshold is randomly updated when con-
dition 1 is satisfied. HeapRevolver releases at most only
half of the freed memory area, implying that the randomly
selected memory is delayed. These results in a certain mem-
ory area that cannot be reused for a long period. Therefore,
UAF attacks become more difficult because the target mem-
ory object of an attacker cannot be reused for a long time.
Furthermore, by adding condition 2, a UAF attack fails if
an offset of a dangling pointer to the memory area is not
appropriately calculated.

The C++ language is often used in large-scale pro-
grams as a web browser. The C++ program in Linux links
libstdc++ library and is executed. The libstdc++ library in-
cludes the glibc library. Thus, a new operator and a delete
operator finally call malloc and free functions in the glibc
library. Therefore, HeapRevolver can be applied to the lib-
stdc++ library by altering the glibc library and can protect
programs based on the C++ language.

Three advantages can be gained by altering the exist-
ing library. First, shared libraries are often used in various
OS’s. Thus, this approach is applicable to various environ-
ments. Second, this approach does not need to modify exist-
ing programs. It simply needs to replace the existing library
with a library applicable to our proposed method. Third,
the cost of introducing HeapRevolver is reduced because it
does not require program modification. In addition, Heap-
Revolver requires altering only the free function in Linux
and the HeapFree function in Windows, and not any other
function. Thus, the altering of functions is limited, and de-
ploying and implementing HeapRevolver are easy.

3. Implementation of HeapRevolver

3.1 Implementation of HeapRevolver in Linux

In this section, we describe the implementation of Heap-
Revolver for glibc (x86 64) in Linux by altering only the
free() function of the malloc algorithm that releases the
memory area. Figure 2 shows the memory structure of mal-
loc in HeapRevolver.

First, we explain the process of the original free() func-
tion of the malloc algorithm where the freed memory area
is not created by the mmap() function. glibc manages the
freed memory area in the malloc state structure in the mal-
loc library as a data structure called chunk. A freed chunk is
inserted in lists called fastbins and unsorted chunks. When
the size of the freed chunk is below or equal to 128 bytes,
it is inserted in fastbins. When the size of the freed chunk
is bigger than 128 bytes, the freed memory area is merged
with an unused adjacent memory area (if the adjacent mem-
ory area is unused) and inserted in unsorted chunks. If not,
the freed memory area is not merged and is inserted in un-
sorted chunks.

In the malloc() function process, the lists are checked
to find a new memory area. Then, an appropriate chunk is
used.

Next, the free() function process of HeapRevolver is
explicated as follows: Lock bins and wait bins are added to
the malloc state structure for HeapRevolver.

(1) The freed memory area (chunk) is stored in the head
of the list (lock bins).

(2) When the total size of the freed chunk stored in
lock bins and wait bins is beyond the threshold limit, the
freed chunks are released from the lock bins list until half
of the designated total size is released. The freed chunks
must be merged with a chunk located in an adjacent memory
cell before the chunks are released. When a freed chunk
is removed from the lock bins, HeapRevolver searches for
a freed chunk that can be merged with the adjacent chunk
from the wait bins and unsorted chunks. If HeapRevolver
finds a chunk for merging, the freed chunk is merged with it

Fig. 2 Memory structure of malloc in HeapRevolver.
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and is entered into the unsorted chunks for release.
(3) If no chunk can be merged, the chunks in lock bins

are moved to wait bins after attaching an attribute, indicat-
ing means that the chunk must be merged before reuse.

We believe that the threshold for the total size of the
freed chunks is 1 MB, which is sufficient to complicate UAF
attacks. In glibc of Linux/x86 64, a memory area that is
larger or equal to 128 KB is created by the mmap() function.
Thus, if the chunk size is smaller than 128 KB, the chunk is
entered in the lock bins. Therefore, more than seven chunks
are entered in lock bins when the threshold ≥ 1 MB. Fur-
thermore, HeapRevolver randomizes the threshold of the to-
tal size when the total size of freed memory is larger than
the threshold value. We assume that the threshold is ran-
domized between some ranges designated by the users or
administrators.

The proposed method is applied to a library, which
is introduced by replacing an existing library in a specific
directory or changing a linked dynamic library before it
is loaded. For example, a linked dynamic library can be
changed by modifying the path names of LD PRELOAD
and LD LIBRARY PATH.

3.2 Implementation of HeapRevolver in Windows

Windows’ APIs kernel32.dll and ntdll.dll provide similar
memory management processing as the glibc library in
Linux. In addition, the HeapFree() function in kernel32.dll
is often used to release a heap area. Thus, we implemented
a function of HeapRevolver in the HeapFree() function. In
our implementation, the HeapFree() function is hooked by
our original function.

The hook function of HeapRevolver is implemented
using a dynamic link library (DLL) injection and Windows
API hook. DLL injection is a DLL mapping method to
other processes and executes DLL processing in the pro-
cesses. Windows API hook is a method that hooks a Win-
dows API call and executes a certain processing before the
hooked Windows API call. We deployed an import address
table (IAT) hook for the Windows API hook. The address
of the API functions exported from DLL is stored in IAT
during the loading-process time. IAT hook is a method that
modifies the address of APIs in IAT to call a target function.

Figure 3 shows the flow of hooking the HeapFree()
function to the target process. First, HeapRevolver maps
Hook.dll that performs IAT hook to a target process by

Fig. 3 Flow of hooking HeapFree() function on Windows.

DLL injection. Next, Hook.dll overwrites the address of
the HeapFree() function stored in IAT in the address of
the Hook HeapFree() function of Hook.dll. When the
Hook HeapFree() function of Hook.dll is called by IAT
hook, the Hook HeapFree() function of Hook.dll obtains the
arguments of the HeapFree() function and stores them in
a ring buffer. Next, the Hook HeapFree()) function checks
whether the sum of the freed memory are beyond the thresh-
old. If the sum exceeds the threshold, the Hook HeapFree()
function obtains the arguments of the HeapFree() func-
tion and calls the HeapFree() function to release the freed
memory area. The Hook HeapFree() function calls the
HeapFree() function until half of the threshold is released.
If the sum of the freed memory does not exceed the thresh-
old, the proposed function returns without any operation.
Thus, the Hook HeapFree() function delays the release of
the freed memory area until the sum of the freed memory
area exceeds the threshold.

The implementation of HeapRevolver in Windows is
almost the same as in Linux. However, the prototype imple-
mentation of Windows does not include the determination of
whether or not a memory area is already merged with an ad-
jacent memory area. This point needs to be further studied.
In addition, the prototype implementation in Windows uses
the number of freed memory areas as a threshold instead of
the sum of the freed memory area sizes because the process
of managing the size is complex. Even when the amount
of freed memory area is used as a threshold, the entropy can
increase and complicate UAF attacks using a large threshold
and randomizing it.

4. Evaluation

4.1 Security Analysis

4.1.1 Possibility of Success of UAF Attacks in Heap-
Revolver

We analyzed the possibility of attacks against Heap-
Revolver. For an attack to succeed, an attacker must reuse
the freed memory area and overwrite the memory. Subse-
quently, malicious codes must be executed by referring to a
dangling pointer. In HeapRevolver, the freed memory area
cannot be reused until it satisfies the reuse condition because
the area is entered into a wait bin queue. Thus, most of the
aforementioned UAF attacks can be prevented using Heap-
Revolver. Only when a memory area is freed, the sum of
the freed memory area exceeds the threshold and the target
memory area is merged to an adjacent memory area. The
freed memory area can then be immediately reused after it
is released. However, reusing the freed memory area is diffi-
cult in this case because the attacker must predict the size of
the merged memory area (described in the next paragraph).
In addition, the attacker must understand the number and the
total size of the freed memory areas. The threshold of reuse
is randomly set when the freed memory area is released and
large-scale programs, such as browsers, process many mem-
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ory allocations and releases. Hence, predicting when the
sum of the freed memory area exceeds the threshold is very
difficult.

The additional condition for attacks is the immediate
reuse of the freed memory area after it is released. The re-
quested size of memory allocation in many attacks is the
same as that of the target freed memory area. In Heap-
Revolver, the reusable memory area must be merged to an
adjacent memory area. Thus, the possibility of reuse is con-
siderably reduced when the same size is designated for the
memory allocation. For example, in Linux, unused memory
area with a size is the same as the requested size is reused
prior to the reuse of the memory area with another size.

If a dangling pointer is referred to before all the pre-
vious conditions are satisfied, the attacks will fail because
of segmentation or other faults. After the faults, the appli-
cation is terminated, and the next attack becomes impossi-
ble. Such failure in attacks reveals the attempts of attacks.
Therefore, we believe that the attackers will avoid perform-
ing low-possibility attacks.

4.1.2 Attack Possibility against HeapRevolver

To defeat HeapRevolver, attackers consider repeating mem-
ory allocation and releasing memory. In addition, to in-
crease the probability of successful attacks, heap spraying
is used. Heap spraying is effective when the memory lay-
out is predictable or the memory fragmentation in the heap
area is suppressed. In HeapRevolver, freeing the memory
area is randomly delayed, and memory fragmentation, such
as external fragmentation, in the heap area frequently oc-
curs. In this situation, a large area of heap spraying is often
allocated in the last part of the heap area. We believe that
the success of heap spraying is low. For the attacks against
HeapRevolver to succeed, both UAF attacks and heap spray-
ing must succeed; thus, the possibility of the success of two
attacks is low, and the risk of revealing attack attempt is high
because of failures.

As a typical attack, to overwrite a freed memory area
referred by dangling pointer, the attacker attempts to allo-
cate a large memory area after the target memory area is
freed. Next, the attacker overwrites the entire target mem-
ory area. Overwriting a large memory area is expected to
improve the possibility of a successful attack. This type of
attack can succeed after the target memory area is freed and
reused. As aforementioned, reusing the target memory area
is difficult. In addition, the timing of freeing the target mem-
ory area is non-deterministic. Thus, creating attack codes
with a high success probability against HeapRevolver is dif-
ficult.

4.2 Evaluation Environment

We used a computer with Intel Core i7-3770 (3.40 GHz)
and 4-GB main memory for the evaluation. The OS’s
and versions used in the evaluations are Linux 3.13.0-45-
generic/x86 64 (Ubuntu 14.04 LTS) and Windows 7 (64

bit). The HeapRevolver was implemented in glibc-2.19 in
Linux.

To show the feasibility and overhead of the Heap-
Revolver, we evaluated the performance of HeapRevolver
on Linux and Windows. The following experiments
were performed: the UAF-attack-prevention experiments in
Linux and Windows showed that UAF attacks can be pre-
vented by HeapRevolver. In addition, we evaluated the per-
formance overhead and memory usage of HeapRevolver. Fi-
nally, we compared HeapRevolver with DieHarder, which is
one of the UAF prevention methods that use library replace-
ment. In the overhead evaluations, we used fixed thresholds
on HeapRevolver because we clarified the relationship be-
tween the threshold size and the performance and memory
overhead of HeapRevolver.

We used four programs types for the evaluations.
Browsers are targets of UAF attacks in the real world. We
supposed that the main target for HeapRevolver protection
is the browser programs. Thus, we used six browser bench-
mark programs [27]–[32] to evaluate the overhead.

Subsequently, HeapRevolver was implemented in the
free() function in Linux and the HeapFree() function in Win-
dows. We supposed that HeapRevolver affects the perfor-
mance of memory allocation and release processes. Thus,
we used the malloc-test program [33] as a memory-intensive
program for the evaluations.

In addition, to evaluate the performance of the various
processes, we used UnixBench [34], SysBench [35], and Hi-
meno benchmark [36] for the evaluations.

4.3 Prevention Experiments of UAF Attack in Linux

We describe the experimental results of attempting UAF at-
tacks using a program. In the program, an object of an
Addnum class was created and deleted. Subsequently, when
a memory area with the same size as that of the Addnum
object was created, the memory area of the deleted Addnum
object was reused. The address where a pointer of the shell
code was stored was overwritten on the vtable address of
the Addnum object. The shell code was executed by a call
to the overwritten vtable. The program was executed when
the address space layout randomization and data execution
prevention were disabled.

Figure 4 shows the execution results before and af-
ter the application of HeapRevolver in Linux. Figure 4 (A)
shows that the Addnum object and buf were allocated in the
same memory area. Next, the UAF attack was performed
by referring to a dangling pointer. Thus, the shell codes
were executed. In contrast, Fig. 4 (B) shows that an Addnum
object and buf were allocated in different memory areas.
The memory area that did not include the pointer of the
shell code was accessed by referring to the dangling pointer.
Hence, the UAF attack failed due to the segmentation fault.
HeapRevolver can prevent the UAF attack.
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Table 1 Overheads in malloc-test.

Memory size
lib

thread num
1 3 5

glibc 0.335 1.02 1.71
100 B HeapRevolver (100 KB) 0.398 (18.8%) 1.200 (17.6%) 2.015 (18.1%)

HeapRevolver (1 MB) 0.399 (19.1%) 1.205 (18.1%) 2.020 (18.4%)
glibc 0.371 1.132 1.885

512 B HeapRevolver (100 KB) 0.425 (14.5%) 1.310 (15.7%) 2.195 (16.4%)
HeapRevolver (1 MB) 0.437 (17.8%) 1.324 (17.1%) 2.210 (17.2%)
glibc 0.374 1.137 1.903

1024 B HeapRevolver (100 KB) 0.526 (40.6%) 1.495 (31.5%) 2.481 (30.4%)
HeapRevolver (1 MB) 0.543 (45.2%) 1.503 (36.6%) 2.509 (31.8%)

Table 2 Evaluation results on UnixBench, SysBench, and Himeno benchmark.

lib UnixBench SysBench (s) Himeno benchmark
glibc 4,139.18 25.98 2,690.24
HeapRevolver (100 KB) 4,131.38 (0.19%) 26.21 (0.23%) 2,689.64 (0.02%)
HeapRevolver (1 MB) 4,130.57 (0.21%) 26.22 (0.24%) 2,688.05 (0.08%)

Fig. 4 Experimental results of UAF attack prevention in Linux.

4.4 Evaluation of the Performance Overhead in Linux

To compare the performances of HeapRevolver and the orig-
inal glibc, they were evaluated using several program types.
The HeapRevolver thresholds in the evaluation were 100 KB
and 1 MB.

First, the malloc-test benchmark was used to evalu-
ate the processing time. The malloc-test benchmark con-
tained some tests for the malloc and freeing processes. The
tests were performed by multi-threading. The process-
ing time was measured when the process was repeated for
10,000,000 times. The requested memory sizes were 100,
512, and 1,024 bytes. The number of threads was changed
from one to five.

Table 1 lists the evaluation results, which showed that
the overhead of HeapRevolver was less than 20% in the
malloc-test when the memory sizes were 100 and 512 bytes.
The HeapRevolver overhead increased by approximately
30%–45% when the requested memory size was 1024 bytes.
We believe that this increase caused the repeated issue for
the sbrk system call to change the size of the data segment
in this evaluation. The evaluation results showed that the
large threshold of the HeapRevolver involved a large over-

Fig. 5 Performance overhead of browser benchmarks on Firefox.

head for every requested memory size.
The performance overhead of the HeapRevolver was

then measured using the UnixBench, SysBench and Hi-
meno benchmarks. Table 2 lists the evaluation results,
which showed that the HeapRevolver overhead was less than
0.25% in every benchmark evaluation. The performance
overhead of the 1-MB HeapRevolver was greater than that
of the 100-KB HeapRevolver. We supposed that the per-
formance overhead increased according to the size of the
threshold, and that the performance overhead was small and
acceptable.

Next, the overhead in applying the proposed method
to glibc was measured using browser benchmarks. We
used Firefox and Chrome as browsers for the evaluation.
The processing time of the browser benchmarks was mea-
sured using Google’s Octane 2.0, Apple’s SunSpider 1.0.2,
Mozilla’s Kraken 1.1, Microsoft’s LiteBrite, FutureMark’s
Peacekeeper, and Mozilla’s Dromaeo. The measurement re-
sults were the average score of three execution times. Fig-
ures 5 and 6 show the comparison results of HeapRevolver
with glibc in Firefox and Chrome, respectively, considering
their performance overhead.

Figure 5 shows that the overhead was less than 1.8% in
both 100 KB and 1 MB in Firefox. The overhead in the 1
MB HeapRevolver, in which the reuse duration was longer,
was larger than that in the 100 KB HeapRevolver because
the change in the amount of the data segment size (heap
area), such as sbrk system call, increased when allocating a
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Table 3 Response time (overheads) of thttpd web server (ms).

Method Request file size
100 bytes 1 KB 10 KB 100 KB

glibc 74.0 75.3 131.1 1,057.8
HeapRevolver (100 KB) 77.1 (4.2 %) 80.0 (6.3%) 130.6 (−0.4%) 1,053.4 (−0.4 %)
HeapRevolver (1 MB) 77.6 (4.9 %) 76.4 (1.5 %) 131.4 (0.2 %) 1,057.9 (0.0 %)

Fig. 6 Performance overhead of browser benchmarks on Chrome.

new memory area. Figure 6 illustrates that the overhead in
Chrome was less than 2.6% in both the 100 KB and 1 MB
HeapRevolvers. The overhead of the 1 MB HeapRevolver
in Chrome was larger than that of 100 KB in Firefox.

Finally, the response time of a web server was mea-
sured. The thttpd 2.25b was used as a web server, while
ApacheBench was used as a benchmark in measuring the
response time of the web server in this evaluation. A to-
tal of 50 concurrent accesses were executed in this evalu-
ation. Each access was repeated 1,000 times. The size of
the requested file varied from 100 bytes, 1 KB, 10 KB, and
100 KB.

Table 3 lists the evaluation results of the response time
of thttpd and shows that the overhead of HeapRevolver in
every result was small. However, the overhead of Heap-
Revolver increased when the requested file size was 100
bytes. These process included network and CPU processes.
Thus, we assume that the overhead of the memory alloca-
tion and release were hidden by network processes in cases
where the size of the requested file is larger than 100 bytes.

The results of the abovementioned four evaluations
showed that the HeapRevolver overhead was small. How-
ever, in the memory allocation and freeing processes, the
results showed that the performance overhead affected the
performance of the program.

4.5 Evaluation of Memory Consumption in Linux

We performed three experiments to evaluate the memory
consumption of HeapRevolver in Linux. The thresholds of
HeapRevolver were 100 KB and 1 MB.

We measured the memory usage of the malloc algo-
rithm with HeapRevolver and compared it with that of orig-
inal glibc. We used a malloc-test program. Five threads
were run in this experiment, and the allocation and free-
ing processes were performed when the memory size was
512 bytes. Each thread repeated this process for 10 million
times. We measured the memory usage when the processing
of the five threads was finished.

Table 4 Memory usage of the malloc-test.

Method Memory usage (KB)
glibc 588
HeapRevolver (100 KB) 588
HeapRevolver (1 MB) 1452

Table 5 Memory usage after Firefox finished browsing the 10 websites

Method Memory usage (MB)
glibc 282
HeapRevolver (100 KB) 279
HeapRevolver (1 MB) 294

Fig. 7 Memory usage of Octane on Firefox.

Table 4 shows that the memory usages of glibc and the
100-KB HeapRevolver were almost the same. The size of
the freed memory area was less than the threshold. When
the threshold was 1 MB, the size of the exceeded memory
usage was within the threshold limit. Therefore, these re-
sults implied that the maximum overhead of the memory
usage for each process was less than the threshold.

We used Firefox 31.0 and Selenium IDE to evaluate
the memory consumption when continuously browsing 10
websites. We then measured the memory consumption after
Firefox finished browsing the 10 websites.

Table 5 lists the evaluation results of the website brows-
ing. The memory usage of glibc and that of HeapRevolver
were almost the same. The memory usage was between 279
and 294 MB because the memory usage overhead of Heap-
Revolver was small, and the memory usage variation was
relatively large.

The change in the amount of virtual memory consump-
tion when a browser benchmark was run was measured to
compare HeapRevolver with glibc. Octane, SunSpider, and
Kraken were used in this evaluation.

Figures 7–8 show the memory consumption of Octane
in Firefox and Chrome. The evaluation results of Octane in
Firefox and Chrome illustrated that the memory consump-
tion of HeapRevolver was almost the same as that of glibc.
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Table 6 Maximum memory consumption on browser benchmarks (KB).

Browser lib Octane SunSpider Kraken
glibc 5,375,276 917,996 1,158,092

Firefox HeapRevolver (100 KB) 5,382,988 (0.14 %) 922,416 (0.48 %) 1,124,996 (−2.86 %)
HeapRevolver (1 MB) 5,407,820 (0.61 %) 949,344 (3.41 %) 1,151,620 (−0.56 %)
glibc 1,441,932 1,431,016 1,421,312

Chrome HeapRevolver (100 KB) 1,427,148 (−1.03 %) 1,414,824 (−1.13 %) 1,406,628 (−1.03 %)
HeapRevolver (1 MB) 1,428,172 (−0.95 %) 1,415,848 (−1.06 %) 1,406,628 (−1.03 %)

Fig. 8 Memory usage of Octane on Chrome.

Furthermore, the memory consumptions of SunSpider and
Kraken of the browser benchmarks in both browsers were
almost the same as those of glibc. Therefore, the overhead in
the memory consumption in HeapRevolver was also small.

Table 6 lists the maximum memory consumption un-
der each condition. The maximum memory consumption
of glibc of Octane in Firefox was 5,375,276 KB, while that
in HeapRevolver of Octane in Firefox was 5,382,988 KB
when the threshold was 100 KB and 5,407,820 KB when
the threshold was 1 MB. The evaluation results showed the
overhead of the maximum memory consumption in Firefox
was small.

Table 6 indicates that the maximum memory consump-
tion of glibc of Octane in Chrome was 1,441,932 KB, while
that in HeapRevolver of Octane in Chrome was 1,427,148
KB when the threshold was 100 KB and 1,428,172 KB when
the threshold was 1 MB. The evaluations of SunSpider and
Kraken in Chrome demonstrated that the maximum mem-
ory consumption of HeapRevolver in Chrome was slightly
smaller than that of glibc.

The amount of memory consumption with the intro-
duction of HeapRevolver was small, as obtained from the
abovementioned evaluation results.

4.6 Prevention Experiments against UAF Attack in Win-
dows

We experimented on whether or not UAF attacks using real
attack codes distributed in Metasploit [37] could be pre-
vented. The attack codes used in the environments exploited
CVE-2011-1260 and CVE-2012-4969 of IE 7 on Windows
XP, CVE-2014-0322 of IE10, and CVE-2016-9079 of Fire-
fox 38 on Windows 7. We determined that approximately
3,000 freed memory areas existed and were reserved for
reuse in Linux when a threshold of 1 MB was set. Thus, we
used 3,000 as the threshold for the Windows experiments.

Fig. 9 Overheads of IE10 browser benchmark.

We applied HeapRevolver to IE and Firefox on Win-
dows as described earlier. The attack codes were then ex-
ecuted in each environment. Thus, HeapRevolver success-
fully prevented all the UAF attacks that reused memory ob-
jects. However, the UAF attacks sometimes succeeded when
we applied HeapRevolver to IE and Firefox on Windows.
We will describe the relation between the attack success rate
and a threshold later.

4.7 Evaluation of the Performance Overhead in Windows

We measured the overhead of HeapRevolver both before and
after the introduction of HeapRevolver on Windows 7. We
ran three types of browser benchmark, namely, Octane, Sun-
Spider, and Kraken, on IE 10. The HeapRevolver threshold
was 3,000. Figure 9 shows the evaluation results.

The measured overhead of HeapRevolver in the three
browser benchmarks was less than 2.5%. These browser
benchmarks were CPU-intensive and required a large mem-
ory. Thus, we supposed that the influence on the perfor-
mance of the browser benchmarks can be explicitly ob-
served. Nevertheless, the results showed that the Heap-
Revolver overhead in Windows was small, and the overhead
was acceptable.

4.8 Evaluation of Randomizing a Threshold

We first evaluated the relation between attack the success
rate and a threshold to evaluate the effectiveness of random-
izing a threshold. The attack codes used in the environments
exploited CVE-2014-0322 of IE10, and CVE-2016-9079 of
Firefox 38 on Windows 7.

Figure 10 shows the relation between the attack suc-
cess rate and a threshold and illustrates that the attack suc-
cess rate decreased according to the increase of a threshold.
HeapRevolver were not applied to the browsers when the
threshold is zero. The attack success rate of CVE-2014-
0322 was equal to 10% when the threshold was equal to
4,000, and was zero when the threshold was equal to 5,000.
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Fig. 10 Relation between the attack success rate and a threshold.

Table 7 Evaluation of randomized threshold (CVE-2014-0322).

Ranges of randomized threshold Attack success rate
Without HeapRevolver 90%

From 3,000 to 5,000 20%
From 4,000 to 6,000 0%
From 5,000 to 7,000 0%

Table 8 Evaluation of randomized threshold (CVE-2016-9079).

Ranges of randomized threshold Attack success rate
Without HeapRevolver 55%

From 3,000 to 5,000 40%
From 4,000 to 6,000 45%
From 5,000 to 7,000 35%
From 6,000 to 8,000 25%

The attack success rate of CVE-2016-9079 was equal to
25% when the threshold was equal to 4,000, and was 5%
when the threshold was equal to 5,000. These results im-
plied that HeapRevolver can effectively prevent the UAF at-
tack against IE10 and Firefox. In addition, these results in-
dicated that the HeapRevolver threshold should be random-
ized, where the threshold was equal to or more than 4,000.
The relationship between the decrease in the attack success
rate and the memory consumption was a tradeoff. There-
fore, not only the attack success rate, but also the memory
consumption amount must be considered.

Next, we evaluated HeapRevolver when the threshold
was randomized in several cases to evaluate the effective
randomized ranges of the threshold. Table 7 lists the evalua-
tion results of the randomized threshold (CVE-2014-0322).
The attack success rate in the ranges of 4,000 to 6,000
and 5,000 to 7,000 was zero. These results indicated that
HeapRevolver can prevent UAF attacks when an appropri-
ate threshold range is set.

Table 8 lists the evaluation results of the randomized
threshold (CVE-2016-9079). The attack success rate in the
four cases was from 25% to 45%. The attack success rate
gradually decreased to the increase of a threshold. These re-
sults indicated that HeapRevolver can prevent UAF attacks.
However, the attack success rate was not decreased suffi-
ciently in the four cases. We will analyze the relation be-
tween attack success rate and ranges of randomized thresh-
old in detail in the future.

The threshold was randomly chosen from the range
each time the reuse condition was satisfied. We chose 2,000
as the width of randomly choosing the threshold. There-

Fig. 11 Comparison of HeapRevolver and DieHarder for browser
benchmarks in Firefox.

Fig. 12 Comparison of HeapRevolver and DieHarder for browser
benchmarks in Chrome.

fore, we supposed that the entropy of the threshold was suf-
ficiently high, and that it was sufficiently for an attacker to
guess the threshold.

4.9 Comparison with the Existing Method

We compared HeapRevolver with DieHarder [21], which
can be classified to be the same as HeapRevolver. The Heap-
Revolver threshold in this evaluation was 1 MB.

Figures 11 and 12 show the performance overhead
of HeapRevolver compared with that of glibc when Oc-
tane, SunSpider, and Kraken were executed in Firefox and
Chrome. The performance overhead of HeapRevolver was
less than that of DieHarder, except in Kraken. The perfor-
mance overhead of HeapRevolver was less than 3.0%, but
the that of DieHarder in SunSpider was relatively large (i.e.,
approximately 4%). We will analyze the resultant factor of
DieHarder in the future. However, we believe some inef-
ficient processing in the reuse of objects in DieHarder oc-
curred.

Table 9 lists the evaluation results of the malloc-test.
The performance overhead of DieHarder was more than
200% that of glibc because DieHarder allocated memory
area at random from some ranges in the memory area. The
malloc-test is a memory-intensive program. Therefore, we
supposed that the performance overhead increased com-
pared with that in HeapRevolver.

In addition, we evaluated the performance overhead re-
sults of the original glibc using UnixBench, SysBench, and
Himeno benchmarks (Table 10). The results showed that the
performance overhead of HeapRevolver was smaller than
that of DieHarder in all the benchmarks.

Finally, we evaluated the change in the amount of
memory consumption under three browser benchmarks in
Firefox. Figure 13 shows that the memory consumption of
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Table 9 Evaluation results of malloc-test.

Memory size lib
thread num

1 2 3 4 5

512B
HeapRevolver (1MB) 0.437 (17.8%) 0.880 (17.6%) 1.324 (17.1%) 1.765 (16.2%) 2.210 (17.2%)
DieHarder 1.247 (236%) 2.586 (245%) 4.094 (262%) 5.421 (259%) 6.982 (270%)

Table 10 Evaluation results of UnixBench, SysBench, and Himeno benchmarks.

lib UnixBench (KB/s) SysBench (s) Himeno benchmark
HeapRevolver (1MB) 4,130.57 (0.21%) 26.22 (0.24%) 2,688.05 (0.08%)
DieHarder 4,124.77 (0.35%) 26.25 (1.04%) 2,674.44 (0.60%)

Fig. 13 Overheads of Firefox browser memory usage (Octane).

Fig. 14 Overheads of Firefox browser memory usage (SunSpider).

DieHarder in Octane was more than twice that of Heap-
Revolver. Figure 14 depicts that the memory consump-
tion of DieHarder in SunSpider was approximately three
times more than that of HeapRevolver. The overhead of
DieHarder was very heavy to use in the real world. Compar-
atively, the results showed that the memory usage of Heap-
Revolver was efficient because HeapRevolver delayed the
reuse of freed memory within the threshold size.

We now discuss the results in the Chrome browser. We
evaluated the total memory consumption of the processes
created by Chrome because Chrome creates more than one
process. We measured the total memory consumption of vir-
tual memory in all Chrome processes, and compared Heap-
Revolver with DieHarder. The total memory consumption
of HeapRevolver in Octane was 45,904,020 KB, whereas
that of DieHarder was 87,906,816 KB. These results implied
that the memory consumption of DieHarder in Octane was
approximately twice that of HeapRevolver. In addition, the
memory usage trend in Chrome was similar to that in Fire-
fox.

All comparison results demonstrated that the Heap-

Revolver overhead was smaller than that of DieHarder in
most cases. Furthermore, the amount of memory consump-
tion of HeapRevolver was less than that of DieHarder. In
addition, source codes are necessary to apply DieHarder
in Windows. The allocator must also be linked and com-
piled during the development process. In comparison, Heap-
Revolver does not need a source code and can be applied to
programs, where the source codes cannot be obtained.

We compared HeapRevolver with DieHarder in the as-
pect of security. DieHarder is based on DieHard [38], [39]
and randomizes the placement of allocated objects and the
length of time before freed objects are recycled. The ran-
domized placement can provide entropy for the position of
allocated objects, and the entropy decreases the probabil-
ity that overflow attacks will succeed. In contrast, Heap-
Revolver does not randomize the position of allocated ob-
jects. Thus, the probability of overflow attacks of Heap-
Revolver is higher than that of DieHarder. In addition,
DieHarder introduces a sparse page layout, mapping a large
fixed-size region of virtual address space, and sparsely us-
ing individual pages. They protect against heap spraying at-
tacks by providing more entropy in object addresses. Heap-
Revolver does not deploy a sparse page layout and so on.

DieHarder randomly chooses newly allocated chunks
across all the free chunks of proper size. DieHarder’s over-
provisioning ensures O(N) free chunks. Therefore, the prob-
ability of returning the most recently freed chunk is low, but
not zero. Meanwhile, HeapRevolver prohibits the reuse of
the freed memory for a certain period, in which the prob-
ability of returning the most-recently freed chunk is zero.
Thus, the probability of UAF attack reusing the most re-
cently freed chunk of HeapRevolver is lower than that of
DieHarder.

HeapRevolver focuses on the prevention of UAF at-
tacks. Hence, the memory consumption of HeapRevolver
does not significantly increase. In contrast, DieHarder
prevents overflow attacks, heap spraying, and UAF at-
tack. However, the overprovisioning of freed chunks of
DieHarder causes the large memory overhead mentioned
above. In addition, a sparse page layout increases the size
of a process’ page table, and sparsely using individual pages
wastes physical memory.

5. Related Work

Dangling pointer-detection approaches [4]–[8] include dy-
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namic binary translation, shadow memory, and taint analy-
sis. These approaches detect dangling pointers before pro-
gram execution. However, UAF attacks cannot be prevented
in runtime if the dangling pointers are abused, which can-
not be detected before a practical use. References [9] and
[10] add codes that detect dangling pointers in a compila-
tion and detect UAF attacks in runtime. References [9] and
[11] detect dangling pointers by a static analysis of a binary
program. Reference [12] inserts dynamic runtime checks
for protecting against UAF vulnerabilities. This approach
requires a source code.

UAF attacks in Refs. [13]–[15] were prevented by re-
placing a malloc library with a new library in which the
allocation unit is a page. However, the memory usage is
inefficient because the allocation unit of the created mem-
ory area consists of pages. Reference [16] proposes a li-
brary that reuses an object with the same size and alignment.
This library writes data, whose type is different from that
of the freed object, when UAF vulnerabilities are exploited.
Therefore, a UAF attack that uses a different data type can
be prevented. References [17] and [21] randomized the po-
sition of the created memory area. Some UAF attacks can
be prevented using this approach.

In Refs. [18]–[20], a UAF attack was prevented using
a method that prevents the alteration of vtable. Most UAF
attacks rewrite the pointer stored in vtable, and an arbitrary
code is executed. However, these methods cannot handle a
UAF attack that does not alter vtable. In addition, rewriting
the binary of a target program beforehand is required. The
modification also depends on the binary form. Therefore,
rewriting the AP binary is difficult.

Reference [40] presents a novel strategy to exploit
the UAF vulnerabilities in Linux kernel and the mitigation
schemes. The target is Linux kernel, but the target of Heap-
Revolver is the application programs in Linux and Win-
dows. OpenBSD introduced the malloc function that uses
the mmap function. The allocation of the memory areas by
the malloc is randomized, and the memory area is unmapped
from the process address space. The OpenBSD malloc func-
tion is based on the OpenBSD mmap system call. Thus, it
cannot be applied to other OS’s without the modification of
OS kernels. In addition, the page cannot be unmapped until
all the memory areas in a page are released. Thus, the un-
mapped memory areas that are released can be accessed by
UAF attacks.

6. Conclusions

This study proposed HeapRevolver and described its design
and implementation in Linux and Windows. The memory-
reuse-prohibited library prevents the freed memory area
from being reused during a certain period. Hence, the Heap-
Revolver can prevent UAF attacks without altering the tar-
geted program for protection. The UAF attacks became
more difficult because the timing of reuse of the freed mem-
ory area was randomized in HeapRevolver by randomiz-
ing the maximum total size of the freed memory areas (the

HeapRevolver threshold).
The evaluation results in Linux showed that the Heap-

Revolver overhead was sufficiently small. However, the pro-
cess of repeating memory allocation and releasing mem-
ory slightly influenced the performance. Furthermore, the
evaluation results showed that the increase in the memory
consumption was slight compared with that in the original
glibc, and the overhead was acceptable. The experimental
results in Windows using UAF exploit codes implied that
UAF attacks can be prevented using HeapRevolver. The per-
formance evaluation results by using browser benchmarks
also showed that the HeapRevolver overhead was less than
2.5%. Finally, we compared HeapRevolver with DieHarder
through evaluations. The results of the browser benchmarks
demonstrated that the HeapRevolver overhead was smaller
than that of DieHarder in most cases, and the amount of
memory consumption of HeapRevolver was approximately
half that of DieHarder.

Moreover, HeapRevolver can be easily deployed in ex-
isting systems and programs and can make UAF attacks
more difficult. In addition, the HeapRevolver overhead was
sufficiently small to be deployed in real systems. We believe
that HeapRevolver can prevent UAF attacks by exploiting
zero-day vulnerability.
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