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SUMMARY An operating system is an essential piece of software that
manages hardware and software resources. Thus, attacks on an operating
system kernel using kernel rootkits pose a particularly serious threat. De-
tecting an attack is difficult when the operating system kernel is infected
with a kernel rootkit. For this reason, handling an attack will be delayed
causing an increase in the amount of damage done to a computer system. In
this paper, we propose Kernel Rootkits Guard (KRGuard), which is a new
method to detect kernel rootkits that monitors branch records in the kernel
space. Since many kernel rootkits make branches that differ from the usual
branches in the kernel space, KRGuard can detect these differences by us-
ing the hardware features of commodity processors. Our evaluation shows
that KRGuard can detect kernel rootkits that involve new branches in the
system call handler processing with small overhead.
key words: kernel rootkit detection, last branch record, operating system,
system security

1. Introduction

Rootkits are programs that hide malicious behaviors from
computer users. There are two types of rootkits: user root-
kits that run at the user level and kernel rootkits that run
at the kernel level. In particular, attacks of kernel rootkits
against an operating system (OS) pose a serious threat. Ker-
nel rootkits modify the OS kernel and rewrite the data out-
putted by the OS. Therefore, detecting methods based on the
output data of the OS are ineffective. For example, anti-virus
software running at the user level cannot detect kernel root-
kits. Thus, detecting kernel rootkits is difficult, and various
methods to detect them have been proposed.

We mentioned that the existing kernel rootkit detec-
tion methods cannot resolve all of the following problems
simultaneously [3]: (1) cannot detect kernel rootkits imme-
diately, (2) cannot keep the extensibility of the OS kernel,
and (3) cannot be applied to different OS and OS versions.
To resolve those problems, we proposed a method to detect
kernel rootkits by checking the kernel stack [3]. However,
this method (4) cannot detect kernel rootkits that use in-
structions that do not push data into the kernel stack (e.g.,
the jmp instruction). In addition, a method proposed in [4]
requires a virtual machine monitor to detect kernel rootkits
in a guest virtual machine.
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In this paper, we propose Kernel Rootkits Guard (KR-
Guard), which is a new method to detect kernel rootkits and
resolve problems (1)–(4) simultaneously. KRGuard detects
kernel rootkits by monitoring the branch records in kernel
space recorded by the hardware features of commodity pro-
cessors. KRGuard utilizes the fact that many kernel rootkits
make branches that differ from the usual branches. There-
fore, KRGuard can detect kernel rootkits with new branches
between the hook function before calling the system call
handler, and the hook function before calling the system call
service routine. In addition, we describe the limitations, the
implementation of KRGuard as a kernel module on Linux,
and the evaluation results of KRGuard.

The preliminary version of this paper appeared in [1],
[2]. This paper describes the originality, effectiveness and
limitations of KRGuard in detail.

2. Design of KRGuard

2.1 Concept

KRGuard utilizes the fact that many kernel rootkits make
branches that differ from the usual branch path. Previous
research [5] indicates that 96% of all kernel rootkits employ
control-flow modifications, making branches different from
the usual types. For example, Fig. 1 shows the change in the
control-flow when the system call control-flow is modified
by kernel rootkits. Usually, after invoking a system call, the
control moves from the system call handler to each system
call service routine. On the other hand, when a computer
system is infected with kernel rootkits, the control moves
from the system call handler to the malicious code prepared
by the attacker before moving to each system call service
routine. In the malicious code, the processing that hides
attacks is executed. KRGuard detects kernel rootkits by
monitoring branch records in kernel space and by detecting
control-flow modifications. KRGuard uses the Last Branch
Record, a recent feature of Intel processors for monitoring
branch records in kernel space.

2.2 Last Branch Record

Last Branch Record (LBR) [6] is a recent feature of Intel
processors that was introduced in the Nehalem architecture.
When the LBR is enabled, the CPU records the address of a
branch instruction and its target instruction (branch record)
on the LBR stack register, which can store up to 16 entries.
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Fig. 1 Changes in the control-flow when system call control-flow is
modified.

Fig. 2 Processing flow of KRGuard.

When more than 16 entries are recorded, the oldest stack
data is overwritten. Monitoring branch records using the
LBR has the following advantages:

(1) It can record all branch records in the kernel. There-
fore, it can monitor branch records recorded by instruc-
tions that do not push data into the kernel stack.

(2) It is transparent to the OS structure.
(3) It generates minimal overhead [7].

2.3 Overview

KRGuard detects kernel rootkits that modify the control-
flow of a system call by monitoring the branch records using
the LBR in Linux. It should be noted that we do not address
attacks on KRGuard itself in this paper.

Figure 2 shows the processing flow of KRGuard. KR-
Guard detects kernel rootkits that modify the control-flow of
the system call as follows:

(1) A user program invokes a system call.
(2) KRGuard hooks the transition to the system call han-

dler.
(3) KRGuard judges whether the invoked system call is a

monitored system call, and the following processing is
executed:
(A) If the invoked system call is a monitored system
call, then control is given to Step (4). (B) Otherwise,
KRGuard does nothing, and control is given to the sys-
tem call handler.

(4) The LBR is enabled (to start monitoring branches), and
control is given to the system call handler.

(5) The following processing is executed:
(A) If the invoked system call is a monitored sys-
tem call, KRGuard hooks the transition to each system
call service routine, and control is given to Step (6).
(B) Otherwise, control is given to each system call ser-
vice routine.

(6) The LBR is disabled (to stop monitoring branches).
(7) KRGuard checks branch records in the LBR stack. If

branch records in the LBR stack are abnormal (see
Case (2) described in Sect. 2.4), KRGuard alerts the
user.

(8) Branch records in the LBR stack are cleared, and con-
trol is given to each system call service routine.

KRGuard monitors the following 13 system calls that
are likely to be modified by attackers: exit(), fork(), read(),
write(), open(), close(), execve(), ioctl(), readlink(), stat64(),
lstat64(), getuid32(), and getdents64(). Those system calls
monitored by KRGuard are determined by referring to [3],
[8], and [9].

Using these steps, KRGuard monitors the branch
records between the invoking system call and the transition
to each system call service routine.

2.4 Checking Branch Records in the LBR Stack

KRGuard detects kernel rootkits based on the quantity of
branch records in the LBR stack.

In KRGuard, branch records recorded by the LBR are
classified in the following four ways:

(1) When the computer system is not infected with kernel
rootkits, the LBR records two pieces of branch records.

(2) When the computer system is infected with kernel root-
kits, the LBR records more than two pieces of branch
records by processing the kernel rootkits.

(3) When the process is traced (by the feature of ptrace),
the LBR records more than two pieces of branch
records by processing the trace.

(4) When an interrupt occurs, the LBR records more than
two pieces of branch records by processing the inter-
rupt.

When the quantity of branch records contained in the
LBR stack is two, KRGuard determines that the computer
system is not infected with kernel rootkits. When the quan-
tity is greater than two, KRGuard verifies whether the pro-
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cess is traced intentionally by the user by outputting process
information to the user. If the user intentionally traces the
process, the user can confirm that the process is intention-
ally traced by checking the process information outputted
by KRGuard. When the process is not intentionally traced,
KRGuard determines that the computer system is infected
with kernel rootkits. Handling a case in which an interrup-
tion occurs is an issue that we will consider in the future.

2.5 Detectable Kernel Rootkits and Limitations

KRGuard monitors the branches between the hook function
before calling the system call handler, and the hook func-
tion before calling the system call service routine. There-
fore, KRGuard can detect kernel rootkits with new branches
within this range. For this reason, KRGuard has the advan-
tage of being able to newly detect kernel rootkits that embed
a branch instruction in a system call handler, compared with
the method of Ikegami et al. [3].

However, in the kernel rootkits that tamper with the
system call handler, it is not possible to detect kernel root-
kits that embed a branch instruction in the codes of the sys-
tem call service routine. In addition, some kernel rootkits
do not call legitimate system call service routines. In this
case, because the legitimate system call service routines are
not hooked and a branch information comparison is not per-
formed, they cannot be detected by KRGuard.

However, by introducing a mechanism for checking
whether the corresponding system call service routine was
called in the previous system call when a system call was is-
sued, as in the method of Ikegami et al. [3], we can detect the
kernel rootkits that do not call legitimate system call service
routines. In addition, kernel rootkits that cannot be detected
by the KRGuard can be dealt with by using methods [4] and
[10], which periodically check the kernel.

3. Implementation

3.1 Requirements

We implemented KRGuard in Linux 2.6.32 as the Linux
Kernel Module (LKM) with an Intel Core i5-3470 3.2-GHz
CPU. To implement KRGuard, we needed to satisfy the fol-
lowing technical requirements:

• Hooking the transition to the system call handler and
collecting a system call number
- We need to hook the transition to the system call han-
dler to move a control-flow to the function of enabling
the LBR. In addition, we need to collect a system call
number to judge whether an invoked system call is a
monitored system call.
• Hooking a transition to the system call service routine

- We need to hook the transition to the system call ser-
vice routine to move a control-flow to the function of
checking branch records.
• Collecting branch records using the LBR

- KRGuard detects kernel rootkits by checking branch

records that are recorded by the LBR. Therefore, we
need to collect branch records using the LBR.
• Collecting process information

- If a process is traced, KRGuard outputs the executed
program-name and process ID to the user. Therefore,
we need to collect the flag that indicates whether trac-
ing occurs, the executed program-name, and process
ID.

3.2 Hooking the Transition to the System Call Handler and
Collecting a System Call Number

Hooking the transition to the system call handler is imple-
mented by overwriting the SYSENTER EIP MSR register.
In the SYSENTER EIP MSR register, the address of the
system call handler is stored. We can move a control-flow
to our hook function by overwriting the address of a sys-
tem call handler stored in the SYSENTER EIP MSR reg-
ister with the address of our hook function. Additionally,
KRGuard reads the system call number in the EAX register.

3.3 Hooking a Transition to the System Call Service Rou-
tine

Hooking a transition to the system call service routine is im-
plemented by overwriting the address of system call service
routines stored in the system call table with the address of
a hook function. The system call service routines that cor-
respond to a specific system call are hooked and monitored.
(described in Sect. 2.3).

3.4 Collecting Branch Records Using the LBR

The LBR recording is enabled by setting the 0th bit of the
MSR DEBUGCTLA MSR register (LBR flag), and is dis-
abled by resetting the flag. Branch records are recorded
for up to 16 entries, and each entry is indicated by a lo-
cation number of 0 to 15. The location number indicat-
ing the latest branch record is stored in the lower 4 bits
of the MSR LASTBRANCH TOS register, and KRGuard
reads these bits to obtain the location number of the latest
branch record. In addition, we can get branch records by
reading the LBR stack register. Clearing branch records is
implemented by overwriting the LBR stack register with all
zeroes.

3.5 Collecting Process Information

If a process is traced, KRGuard outputs the execution
program-name and process ID to the user. To achieve this,
we collected the following information:

• The flag indicating whether a process is being traced
• Execution program-name
• Process ID

We are able to collect the above information from the



2380
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

process control block, which is a data structure that con-
tains the information needed to manage a particular pro-
cess. In Linux 2.6.32, the process control block consists of
the thread info structure and the task struct structure. KR-
Guard evaluates the “flag” variable in the thread info struc-
ture, indicating whether a program is being traced. In ad-
dition, KRGuard collects the “comm” and “pid” variables,
which store the program-name and process ID, respectively.

4. Evaluation

4.1 Purpose and Environment

The evaluation items and purposes of evaluation are indi-
cated below:

• Detection experiment of kernel rootkit
- We evaluated the ability of KRGuard to detect ker-
nel rootkits by infecting the target OS with an existing
kernel rootkit.
• Performance overhead

- We measured the overhead per system call incurred
by KRGuard. In addition, we measured the processing
time of compiling the Linux kernel to evaluate its effect
on the performance of real applications.

The evaluation environment is described in Table 1.

4.2 Detection Experiment of Kernel Rootkit

In this evaluation, we used the KBeast [11] program as a
real kernel rootkit to infect the target Linux OS. By re-
viewing our logs, we confirmed that KRGuard was able to
detect the presence of the KBeast program. In addition,
Fig. 3 depicts the branch records recorded before/after in-
fection with KBeast and shows that the LBR recorded two
branch records before infection, and more than or equal to
16 branch records after infection. Since the LBR recorded
more than two pieces of branch records, it showed that KR-
Guard can detect the kernel rootkit.

Table 1 Evaluation environment.

OS kernel Linux kernel 2.6.32-5 (32bit)
CPU Intel Core i5-3470 3.2-GHz
Memory 4.0 GB

Fig. 3 Branch records before/after infection with KBeast.

4.3 Performance Overhead

We evaluated the performance overhead per system call in-
curred by KRGuard by measuring the processing time per
system call. The system calls measured were open(), get-
dents64() and read(). We measured the processing time per
open() and getdents64() by taking the average time over
1000 invocations of each call. We measured the process-
ing time per read() by taking the average time over 1000
read attempts of 1KB and the average time over 1000 read
attempts of 100KB into the buffer.

Table 2 lists the measurement results for open() and
getdents64(), and Table 3 lists the measurement results for
read(). According to the results in Tables 2 and 3, the
overheads per system call incurred by KRGuard are 0.77
µs–0.80 µs, which are larger than the overheads incurred
by Ikegami’s method [3] (0.01 µs–0.37 µs in the following
environment: Pentium4 3.60-GHz CPU and 4-GB mem-
ory). However, compared with other kernel rootkit detection
methods, the performance overhead per system call incurred
by KRGuard is sufficiently smaller. The overhead per sys-
tem call is larger than that of Ikegami’s method because KR-
Guard has additional overhead that is generated by reading
and writing to the LBR stack register.

Table 4 shows the compiling time of the Linux kernel
before/after introducing KRGuard. It shows that the perfor-
mance overhead for compiling the Linux kernel is 16.6 s
(0.74%). Based on this result, we think that the overhead
incurred by KRGuard and its effect on a real application’s
performance are small.

5. Related Work

There are some research studies on control flow integrity
(CFI). CFIMon [12] detects violations of the control flow
integrity of applications based on hardware support for per-
formance monitoring in modern processors. CFIMon uses a
Branch Trace Store (BTS) to obtain all of the branch infor-
mation of a running application. BTS involves some over-

Table 2 Processing time of open() and getdents64() before/after
introducing KRGuard (µs).

System call Before After Overhead
open() 0.39 1.18 0.79
getdents64() 0.07 0.85 0.78

Table 3 Processing time of read() before/after introducing
KRGuard (µs).

System call File size Before After Overhead

read()
1KB 0.24 1.01 0.77

100KB 4.26 5.06 0.80

Table 4 Processing time of compiling Linux kernel (s).

Before After Overhead
2146.43 2162.49 16.06 (0.74%)
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head to obtain all branch information.
On the other hand, our target is the kernel. This re-

quires the overhead to be small because all applications are
affected by the overhead of the kernel. Thus, the challenge
in detecting kernel rootkits to minimize the overhead of the
security mechanism and its false positives. Therefore, we
leveraged LBR and limited kernel rootkits to be detected.
The number of stored branch recodes of LRB is limited;
thus KRGuard does not involve large overhead. In addition,
the duration of LBR enabled is restricted in the system call
handler, and it prevents false positives.

Ge et al. [13] proposed a mostly automated approach to
produce and enforce fine-grained CFI policies comprehen-
sively for kernel software with low overhead. This approach
can be applied to a wider range of kernel software and pre-
vents more attacks than KRGuard. On the other hand, as
mentioned above, because KRGuard deploys the hardware
function LBR and limits the target function, the overhead of
KRGuard is smaller than that of [13]. In addition, we think
that KRGuard can easily be applied to the Linux kernel be-
cause the mechanism is very simple.

There are some Return-oriented programming (ROP)
exploit run-time prevention techniques using LBR [7], [14],
[15]. PathArmor [14] is a context-sensitive CFI approach,
and it can restrict the number of illegal control flows for ap-
plications. ROPecker [15] and kBouncer are practical ROP
prevention techniques that detect abnormal control transfers
of ROP execution. These approaches can extensively de-
tect violations of the control flow and control transfer in ap-
plications. Although the range of detectable illegal control
transfers in KRGuard is small, KRGuard can detect kernel
rootkits that modify the control flow of the system call han-
dler with low overhead at run-time.

6. Conclusions

This paper proposed KRGuard, which is a new method
to detect kernel rootkits by checking branch records in
LBR. By using the LBR, KRGuard can monitor all indirect
branches between the invoking system call and the transi-
tion to each system call service routine, including indirect
branches that do not push data into the kernel stack. In ad-
dition, since the LBR is a feature of the CPU and not the
OS, KRGuard has high portability to different systems and
versions. KRGuard checks branch records every time a sys-
tem call, monitored by KRGuard, is invoked. Therefore,
after an injection with kernel rootkits, KRGuard can detect
kernel rootkits immediately. In addition, KRGuard does not
prohibit additional kernel modules.

Our evaluation demonstrates that KRGuard can detect
the KBeast program, which is a real kernel rootkit. In the

evaluation of performance, it is shown that overheads per
system call incurred by KRGuard are about 0.77 µs–0.80 µs.
In addition, the overhead of compiling the Linux kernel is
16.6 s (0.74%), and we think that the overhead incurred by
KRGuard is small.
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