Topology-driven Configuration of Emulation
Networks with Deterministic Templating

Satoru Kobayashi, Ryusei Shiiba, Shinsuke Miwa, Toshiyuki Miyachi, and Kensuke Fukuda

Abstract—Network emulation is an important component of
a digital twin for verifying network behavior without impacting
on the service systems. Although we need to repeatedly change
network topologies and configuration settings as a part of trial
and error for verification, it is not easy to reflect the change
without failures because the change affects multiple devices,
even if it is as simple as adding a device. We present topology-
driven configuration, an idea to separate network topology and
generalized configuration to make it easy to change them. Based
on this idea, we aim to realize a scalable, simple, and effective
configuration platform for emulation networks. We design a
configuration generation method using simple and deterministic
config templates with a new network parameter data model,
and implement it as dot2net. We evaluate three perspectives,
scalability, simplicity, and efficacy, of the proposed method using
dot2net through measurement and user experiments on existing
test network scenarios.

Index Terms—Configuration management, Template, Emula-
tion network, Topology graph

I. INTRODUCTION

Digital twins have attracted attention in recent years as an
approach to improve the reliability of information services.
They are digital duplicates of real-world objects available for
digital applications such as analysis and verification [1]. In
network management, emulation network is a suitable choice
to achieve the digital twins [2]. It allows the operators to verify
network configurations more dynamically, such as changing
configurations and injecting faults [3], [4].

In order to effectively use the emulation networks for these
purposes, it is necessary to perform trial and error on con-
figurations by changing the network topology. However, it is
time-consuming for operators to repeatedly change emulation
network configurations [5]. For example, if we want to add a
router to a network, we usually need to change not only the
configuration settings of the added router, but also the settings
of the adjacent or logically connected devices. This process is
inefficient and sometimes results in configuration errors.

An effective approach to solve this problem is to separate
network configurations into topology and general configura-
tions. Network device settings usually have some common
parts with those of the other devices. By generalizing these
settings, we can separate the configuration settings into those
for topology structures and those for device roles and behav-
iors. With this separation, we can change the network topology

S. Kobayashi is with Okayama University.

R. Shiiba is with Sokendai.

S. Miwa and T. Miyachi are with National Institute of Information and
Communications Technology.

K. Fukuda is with National Institute of Informatics, and Sokendai.

only by modifying the topology parts, and change the detailed
configurations only by modifying the behavior parts. We call
this idea as “topology-driven configuration,” which is a major
goal of this paper.

One possible approach to generalize configurations for the
topology-driven configuration is to use config templates [6]. A
config template is an incomplete configuration description that
includes some variable specifications. By specifying variable
parameters for templates, we can obtain configuration settings
for multiple devices with similar roles. The advantage of the
config template is its generality; It simply generates configu-
ration strings with variables, so the approach is independent
of network protocols or configuration formats.

However, existing frameworks based on config templates
are not reasonable for network configuration. Network con-
figuration depends on various objects that interact with each
other, such as interfaces and connections, and it usually needs
to refer to parameters on the other objects. For this reason,
network configuration requires dynamic templating using sev-
eral control syntax macros such as “for” and “if” as shown
in Figure la [7], [8]. Due to the complicated components of
networks, the control syntax can be nested multiple times,
which is likely to cause descriptive errors in the templates.
To overcome this problem, we need a more reasonable config
templating mechanism for emulation networks with simple and
deterministic (i.e., no control syntax macros) config template
blocks like Figure 1b.

Our goal is to provide a scalable, simple, and effective way
to configure emulation networks on the basis of topology-
driven configuration using a template-based approach. To this
end, we propose a method for generating network configu-
ration files from network topology and generalized config-
urations including templates. It separates the input into a
labeled graph to describe network topologies and the label
definitions to define the roles and behaviors corresponding
to the labels, and generates configuration files from them.
The method relies on a new data model to describe network
configuration parameters, which is available with a simplified
deterministic templates.

We implement dot2net, a network configuration platform
based on the proposed template-based approach. It can gen-
erate multiple types of configuration files, such as emu-
lation network configuration of the entire architecture or
application configuration for each device, consistently. For
example, dot2net can automate the deployment of Docker-
based emulation networks with modified configurations by
combining with some existing emulation network platforms
such as Containerlab [9].

Per-device template with control syntax macros

Node config template block

ip forwarding
|

i% for interface in data.interfaces %}
interface {{ interface.id }}
ip address {{ interface.ip }}/{{ interface.plen }}

ip forwarding Config blocks

router ospf

ospf router-id {{ .ip_loopback }}
|

%95 endfor %}
{% if data.ospf.enabled %}

Interface ethO
Interface eth1

Interface config template block

router ospf
ospf router-id {{ data.loopback }}
{% for network in data.ospf.networks %}
network {{ network }} area 0
{% endfor %}
{% endif %}

@ Merge

Configuration
files

interface {{ .name }}

ip address {{ .ip_addr }}/{{ .ip_plen }}
!
router ospf

network {{ .ip_net }} area @
|

(@) Dynamic templating (Conventional approach)

Fig. 1: Difference of templating methods

We evaluate the scalability, simplicity, and efficacy of the
proposed method using dot2net. For scalability, we demon-
strate the processing time and memory consumption to gener-
ate configuration files for large-scale networks. For simplicity,
we compare the differential file size to modify configuration
files for topology changes with and without dot2net. For
efficacy, we present user experiment results and demonstrate
that dot2net allows us to change configuration with high speed
and few configuration errors.

The contribution of this paper is as follows'. (1) We
propose a topology-driven configuration method that gener-
ates network configuration files from a labeled graph of the
network topology and a generalized configuration including
config templates. (2) We propose a new data model for
network parameters that allows us to use simple and deter-
ministic config templates in topology-driven configuration. (3)
We implemented dot2net, a configuration platform for emula-
tion networks, based on the proposed method. We evaluated
dot2net in the terms of scalability, simplicity, and efficacy.

II. RELATED WORK
A. Network emulation

Network emulation is one of the effective methods to verify
network behavior without affecting the service network itself.
There are several types of such methods, including theoret-
ical approach, network simulation, and network emulation.
Theoretical approach abstracts the behavior and properties of
the network systems to the level of mathematical formulas
for efficient computation and modeling. This approach is
highly exhaustive and useful for comprehensive verification
of configuration (i.e., control plane verification [11]) and
packet forwarding behavior (i.e., data plane verification [12]).
Network simulation reproduces the network behavior with
partially simplified functions and properties of the network.
This approach is effective for analyses that can be performed
efficiently by simplification, such as the quantitative nature of
the data [13]. Network emulation deploys virtual networks,

IThis paper is an extended version of the work published in Ref. [10].
The main difference is (2) the proposal of a new data model for deterministic
templating. We also extend (3) the evaluation especially in terms of scalability
and efficacy.

(b) Deterministic templating (Proposed approach)

in conventional and proposed approaches.

imitating the real networks, in a virtual environment using
virtual machines or containers. In this approach, we can use
the same software as the real network except the infrastructure,
such as router applications, so it is effective for debugging
application software, verifying configurations [14], collecting
behavioral data [15], [16], or education [17], [18]. The objects
of network emulation differ depending on their purpose, and
both inter-AS (Internet) emulation [17]-[19] and intra-AS
emulation [14] have been used in past literature.

There are multiple platforms that support the deployment
of emulation networks, such as Netkit [20], Mininet [21],
Kathard [22], TiNET [23], and Containerlab [9]. These plat-
forms automate the configuration of bridges or Linux names-
paces used in virtual networks, and build emulation networks
using virtual machines and containers. However, these plat-
forms do not provide support for efficiently provisioning large
numbers of devices or changing configurations. As a result, it
currently takes nearly as much effort to configure emulation
networks as it does to configure real networks.

B. Configuration synthesis

In the context of configuration automation, configuration
synthesis has been gaining attention in recent years. Config-
uration synthesis generates configuration settings from some
high-level representation of operators’ intent (so called spec-
ifications, requirements, policies, etc. for each paper), which
is more intuitive for operators. There are various approaches,
such as domain-specific languages [24], [25], formal verifica-
tion [26]-[29], and machine learning [30], [31].

The idea of topology-driven configuration, the goal of this
study, is actually different from and independent of configura-
tion synthesis. Configuration synthesis generates configuration
settings from high-level representations of operators’ intent.
In contrast, topology-driven configuration provides generalized
description of configuration settings by abstracting topology-
dependent parameters. With this generalized description, op-
erators can modify the network topology without changing
the fundamental behavior of the network. Thus, configuration
synthesis and topology-driven configuration are independent
actions. It might also be possible to generate generalized set-
tings for topology-driven configuration from high-level repre-

sentations of operators’ intent through configuration synthesis
(out of scope in this study).

C. Configuration generalization

The configuration generalization, providing generalized rep-
resentation of configuration settings, has mainly been de-
veloped as a part of configuration automation technology.
Templating is the most common approach for generalization.
AutoNetkit [7], [8] uses config templates to generate config-
uration files for network emulation. Figure la is based on
the example config template for AutoNetkit, and we can see
that it requires a lot of “for” and “if”” macros as described in
Section I. PRESTO [6] generates configuration files through
a mechanism called configlet, which is an extension of config
template. A configlet is essentially a template in which SQL
is embedded as macros, which is the opposite of our approach
in this paper, simple and deterministic config templates.

The approach using config templates has the advantage of
enabling a wide range of configuration generation consistently,
not just network configuration, because it is simple string
generation. Still, these existing techniques do not achieve
topology-driven configuration in their generalization. The ma-
jor challenge is that the data model does not fit the purpose
of changing the topology. This leads to the complexity of
templates using macros.

In this paper, we use the config template approach in the
configuration generation step for generality to the supported
configuration formats. In addition, we also intend to solve the
problem of complicated config templates with control syntax
macros that exists in existing approaches, by a method based
on a new data model for generating configuration files with
simple and deterministic templates.

III. PROPOSED METHOD
A. Key challenges and ideas

We have two key challenges in designing the proposed
method.

The first challenge is to separate the network configuration
into network topology graph and generalized configuration, as
explained in Section I. This separation is intended for easier
changes of network topology or configuration. With proper
separation, we can change network topologies by modifying
the network topology using only topology data, and change
detailed settings common to multiple devices by modifying the
generalized configuration. Our key idea for the first challenge
is to use config templates. Configuration templates have an
advantage over existing approaches in terms of versatility;
They can be used to generate a wide range of configuration
settings without relying on network protocols or applications.

The other challenge is to separate the config templates and
their parameter data models. As explained in Figure 1, we
conventionally need to use control syntax macros to template
network configurations in existing platforms. This means that
the config templates and the data models are not sufficiently
separated to avoid embedding procedures that refer to the
architecture of the data models in the config templates. In
other words, the config templates depend on the dynamic

Topology

as labeled graph Parameter data model

Configuration files

—
(1) @
) Data model Config
Generalized generation generation
configuration
CC definitions

— % oo
] options

—A

- H

Fig. 2: Overview of the proposed method.

Config
templates

Emulation networks

parameter reference with the embedded procedure. To make
the parameter reference deterministic, we need to rethink the
design of the data model architecture for templating network
configurations.

In summary, our key idea is twofold: (1) Template-based
approach for separating network topology and configuration.
(2) New parameter data model architecture to separate config
templates and data models.

B. System overview

Figure 2 shows an overview of the proposed method.
There are two inputs for the proposed method: network
topology graph and generalized configuration. The network
topology graph represents the relationships between network
components (e.g., an interface of node A and an interface
of node B are connected by a link). The graph basically
describes Layer 2 level connection links, but it can also include
logical relationships with different levels of abstraction, such
as tunneling and overlay networks.

In addition, a network topology graph is a labeled graph
to represent the role of each component in the network
configuration with labels. The definitions of the labels are
described as the generalized configuration, the other input.
Generalized configurations include settings and config tem-
plates, which are required for generating parameter data model
and configuration files.

There are two steps to automatically generate configuration
files: data model generation and config generation as shown in
Figure 2. The data model generation part constructs a param-
eter data model containing parameters to be embedded in the
config templates. The config generation part generates config
blocks with the config template blocks and the parameter data
model, and output configuration files by merging the config
blocks.

C. Data model

1) Requirements: Before explaining the steps to generate
configuration files, we explain the design of the proposed data
models.

There are two requirements for the parameter data model
that allows deterministic parameter references. First, the data

Parameters with symmet
i 2 Generated configuration

name = etho
d 11
22 € g5000 router bgp 65000
---- ip_addr 192.0.2.5 > neighbor 192.0.2.10 remote-as 65001

opp_as 65001 !
opp_ip_addr = 192.0.2.10

etho
rt2

name
node
--=-4as 65001

ip_addr 192.0.2.10 ,

opp_as = 65000 :

opp_ip_addr = 192.0.2.5 :
router bgp {{ .as }}

neighbor {{ .opp_ip_addr }} remote-as {{ .opp_as }}
!

router bgp 65001
neighbor 192.0.2.5 remote-as 65005

Config template

Fig. 3: Parameter symmetry required for deterministic refer-
ence in templating.

model needs to satisfy the symmetry of the parameters.
Figure 3 shows an example of config generation with a
template and two interfaces. The config generation is achieved
without control syntax macros because the parameters satisfy
a symmetry (i.e., same locations with different parameters for
each interface. The conventional data model has a limitation in
satisfying this symmetry; It has a top-down structure starting
from the entire network or a device, and the network com-
ponents are organized based on the ownership. In the model,
the granularity of symmetry is limited to large objects such as
entire networks or devices.

To satisfy this parameter symmetry, the config templates
should not be prepared per device as in the conventional
tools, but on a per object basis, such as the interfaces in
Figure 3 as the unit of parameter symmetry. We call the config
templates with finer granularity as config template blocks, and
the configuration settings generated by the config blocks.

Second, the data model needs to completely cover the
parameters required for templating. In network configuration,
devices often need to use parameters from different devices,
for example, to specify network connections and routes. The
parameters must always be included in the symmetric data
model for each network component.

We generate a parameter namespace for each network
component to satisfy both the symmetry and completeness.

2) Design: We start with the design of components in
the network data model. We call the network components
“objects”, and abstract them using a two-level object-oriented
paradigm. One level is Architecture Class (AC), which repre-
sents the feature of components on the network topology. For
example, ACs include entire networks, nodes (i.e., devices), in-
terfaces, and connections (links). They have role-independent
ownerships, and they form a conventional top-down data
model as shown in Figure 4. The other level is Configuration
Class (CC), which defines the role and behavior of network
components. Each object belonging to the same CC generates
a config block based on the same config templates. This means
that the object needs to have a parameter namespace that
contains the required parameters for templating.

The ACs are defined in the platform (or additional modules),
and the CCs can be defined by the users manually. An object
belongs to only one AC, and it can belong to multiple CCs.

AC and CC correspond to the two inputs of the system: the
network topology graph represents at the AC level, and the
generalized configurations as the definitions of graph labels
correspond to the CC definition by the users.

The parameter data model for templating consists of the
objects represented by some ACs and CCs, as shown in
Figure 4. The basic architecture of the data model is the same
as the conventional top-down model based on the AC-level
ownerships. This is because the top-down model is useful for
aggregating configurations or calculating the relationships of
the objects. Each object in the data model has a parameter
namespace. The parameter namespace is based on a CC-level
model, which is a bottom-up model for representing object
relationships. The CC-level model is converted to a namespace
so that it satisfies the symmetry of the parameters.

3) Iteration: Since the proposed method does not use
control syntax macros, we need an alternative method for
them. As for the “if” syntax, it can basically be replaced by
giving options to the CCs to control whether the corresponding
config template block is generated or not. On the other hand,
for the “for” syntax, the proposed method needs to provide an
alternative configuration iteration method. In the above model,
we can aggregate multiple config blocks based on the top-
down AC model of ownership. However, we cannot describe
iterative configuration with the model alone when the target
objects are based on relative relationships such as Layer 3
adjacency.

As an alternative method, the proposed method has a feature
of referential child objects. It generates child objects for the
number of targets when generating config blocks for multiple
targets, excluding those based on the ownership relationships
already including in the top-down model. The namespaces
of these generated child objects are based on the parent
object, and additionally have the parameters of the existing
corresponding objects. To avoid namespace bloat, the proposed
method generates the child objects only for the parent objects
that specify as such in their CCs. The config blocks of these
parent objects will include the config blocks of their child
objects. With this feature, we can generate iterative config-
urations of multiple relative objects without control syntax
macros.

In this paper, we refer to the ACs of objects specified in
the input topology graphs as substantial ACs, and those gen-
erated as child objects for iterative config block generation as
referential ACs. The examples of these ACs are demonstrated
in Subsection IV-C.

4) Layering: To describe complicated network structures,
we introduce the idea of protocol layers into the proposed
method. The layers are not specified by separating the input
graphs, but by indirectly specifying the graph labels (i.e.,
CCs) corresponding to the layers. This design is effective in
reducing the number of graphs that the users need to edit
for topology changes. If there are multiple input graphs per
layer, the users need to edit multiple or all the graphs when
changing the topology, leading to problems of unintentionally
omitting changes (Figure 5a). In comparison, if the input is a
labeled graph, the users can change the topology by modifying
only one labeled graph (Figure 5b). For example, the users

Topology AC-level model

CcC

loopback:
198.51.100.5
networks | | enabled: true

192.0.2.0/24

interfaces

id: eth0
ip: 192.0.2.5
plen: 24

| Interface |

| Interface r’

definitions
CC-level relationships Parameter namespace
J name = ethO
4 Parent Opposite node = rt1
node parent ip_addr = 192.0.2.5
node ip_loopback = 198.51.100.5
f / opp_name = eth1

opp_node = rt2
opp_ip_addr = 192.0.2.10

| self |—>| opposite |

(@) Conventional data model (per node)

opp_ip_loopback = 198.51.100.10

(b) Proposed data model

Fig. 4: Comparison of parameter data models.

Labeled
Graph

To edit

@ CCon layer A&B
@ CC on layer B

LayerB i : j

b) Labeled graph corresponding to layers

Layer A i:i
Layer B : Layer A

(a) Separated input graphs with layers

Fig. 5: Comparison of layering approaches for the network
topology graphs.

can easily add a device that has roles on multiple layers by
imitating the descriptions for similar devices with the same
label in the graph input.

The layers are used as a flags and used in the definition of
CCs. They separate the calculation of object relationships at
the CC level. This feature allows us to describe complicated
networks such as IPv4-IPv6 dualstack or overlay protocols
(e.g., Enable multiplexed IP address assignment by separately
calculating the Layer 3 connection relationship for IPv4 and
IPv6).

D. Generation process

1) Data model generation: Here, we explain the procedure
to generate the parameter data model based on the input,
the network topology graph and generalized configurations.
The system first creates a set of objects at the AC level of
abstraction from the network topology graph and constructs a
top-down model of the objects. For example, we first create
the root object of the entire network. It then adds node objects
corresponding to graph nodes, and connections between node
objects corresponding to graph edges. For each connection,
it also adds interface objects to the both end nodes of the
corresponding connection. It also performs automatic naming
for nodes and interfaces that do not have names specified in
the graph.

Next, it calculates the relationships between the objects. The
calculation is based on the top-down model and its CC-level
behavior. An example is the Layer 3 level subnet separation.
It can be simulated based on the Layer 2 connectivity and
IP awareness of interfaces (i.e., an interface is a bridge or
a router interface with an IP address), where the process
is explained in the previous work [10]. If the CCs have

layer flags, the calculation is separated for each layer. The
calculated relationships are distinguished from the ownership
relationships that comprise the top-down model, and are kept
as the references to other objects or additional objects of
referential ACs in the model.

After the calculation, the system constructs parameter
namespaces for the objects. A parameter namespace is ini-
tialized with the parameters in the object itself. It then adds a
set of relative parameters (i.e., parameters in related objects)
from the other initialized namespaces. The relative parame-
ters are based on the object relationships obtained from the
above processes, such as parent-child relationships, opposing
interfaces, or Layer 3 adjacency, to satisfy the coverage of
parameters. The relative parameters are also intended to satisfy
the symmetry of parameters in namespaces using the relative
names starting from the object. Therefore, the namespaces in
the parameter data models will satisfy both the symmetry and
coverage of parameters.

2) Configuration generation: The proposed system finally
generates configuration files based on the config templates
specified in the CCs and the parameter data models. This
step uses existing template engines, such as Jinja [32], and
it uses only parameter embedding features without control
syntax macros (However, this does not preclude the use of
macros in the future). The config blocks corresponding to
the objects are generated in the order from bottom to top in
the top-down model. This is because of the nested templates:
config templates that embed config blocks of child objects as
parameters. The config blocks should have inclusion relation-
ships corresponding to object ownership, such as the interface-
related configuration included in the node configuration.

There are multiple types of configuration files with different
setting scope: configuration files for the while network such
as network emulation configuration files, and configuration
files for each node such as application configuration files. By
manipulating the inclusion relationships of config blocks, the
system can generate any of these configuration files.

IV. IMPLEMENTATION
A. Design principles

Based on the proposed method, we implemented dot2net,
a configuration platform for emulation networks. Dot2net is
implemented in the Go language and is publicly available as
an open source software [33]. At present, dot2net is imple-
mented for use in conjunction with existing emulation network

platforms such as Containerlab [9] and TiNET [23]. We have
established the following design principles on dot2net.

Declarative description style: Dot2net uses a declarative
style of description rather than a procedural style because it
focuses on what to configure rather than how to configure [34].

Minimal manual parameter assignment: As explained
in Subsection III-D1, dot2net can automatically assign param-
eters to the objects during the parameter model generation
process. It supports automatic assignment of parameters such
as IP addresses, numeric values or names containing them.
In addition, we can also specify parameters manually by
describing them as labels in the input graph. The automatic pa-
rameter assignment of dot2net can take the manually specified
parameters into account by avoiding parameter duplication and
competition. With this mechanism, dot2net can generate con-
figuration files with minimal manual parameter assignments.

Modular extension of data models: We will make
dot2net modular design in terms of extending data models for
advanced network protocols or configurations. These modules
will extend AC definitions (including relationships to other
ACs), the calculation process of object relationships and
automatic parameter assignments, and the definitions of object
relationships to relative namespaces. Currently, dot2net does
not satisfy this principle, but it will be supported in the near
future.

B. Graph labels

There are several types of graph labels. The labels can
be specified in combination in multiple numbers and types
for a single object. The most common is the class label,
which specifies the CCs that correspond to the objects (Sub-
section [TI-C2). Dot2net uses the names of the CCs as class
labels.

In addition, several label formats are provided for manual
parameter assignment and relative parameter referencing. For
manual parameter assignment, we can use the value label. It
specifies the parameter of the target object, described such as
[ip_addr=192.0.2.5]. In addition to manually specify-
ing the parameters to be automatically assigned in advance, it
can also extend the namespace by specifying unique parameter
names. This label allows us to intuitively manage the manual
parameters on the topology graph.

For relative parameter referencing, there are two types of
labels, place label and meta value label. Place label defines
object names that can be relatively referenced from any object,
which expands the namespace from the perspective of the
relative relationships of objects. For example, by assigning a
label of [@n2] to a node, the node’s ip_addr parameter of
the node can be referenced by any device on the network using
a placeholder such as {{.n2_ip_addr}}. Meta value label
is a kind of alias for the place labels. For example, if there is a
placeholder {{.target_name}} in a config template block,
it refers to the parameter corresponding to {{.n2_name}} in
the node specified by [@target=n2] and {{.n3_name}}
in the node specified by [@target=n3]. Since the extension
of the relative relationships of objects usually depends on the
network topology, the meta value label is useful for controlling

TABLE I: Dot2net standard architecture classes (ACs)

Name Configuration =~ Owner Category

Network Network - Substantial
Node Node Network Substantial
Interface Interface Node Substantial
Connection | Interface Network Substantial
Group Group Network Substantial
Neighbor Neighbor Interface Referential
Member Member any? Referential

the extension in the topology graph rather than in the config
templates.

C. Architecture classes

Table I shows the list of standard ACs in dot2net. As
explained in Subsection III-C3, there are two types of ACs:
substantial ACs and referential ACs. Substantial ACs describe
the behavior of objects corresponding to the components of
the input graph. These substantial ACs form a top-down model
with Network, corresponding to the entire network, at the top
(Figure 4). Group is represented as clusters in the topology
graphs and is used, for example, for areas or ASes. Referential
ACs have no corresponding components in the graph, but are
generated by CCs to avoid using “for” macros to generate
config blocks for multiple target objects. Neighbor generates
config blocks for multiple Layer 3 adjacent interfaces, and
Member generates config blocks for all objects belonging to
the same specified CC.

Note that Connection is a special AC. In network config-
uration, we usually describe config blocks not for connec-
tion links, but for the both ends of interfaces. In dot2net,
Connection objects are used as a link during the calculation
of relationships, but the parameter namespaces and config
templates are used to generate config blocks of the both ends
of interfaces.

V. EVALUATION

We demonstrate that dot2net based on the proposed method
is scalable, simple, and efficient for emulation network con-
figurations.

Scalability: We measure the processing time and memory
consumption for generating configuration files of emulation
networks. We compare them by changing the size of two target
network topologies in order to demonstrate the effectiveness
in generating configuration files for large-scale emulation
networks.

Simplicity: We compare the input file size for emulation
networks with and without dot2net. The target emulation
networks are from multiple test networks for FRRouting
(FRR) [35], an open source router software.

Efficacy: We confirm the efficacy of dot2net in changing
emulation network topologies through user experiments. The
experiments are intended to reveal the work time and number
of builds by the users in correctly modifying the configuration
files.

TABLE II: Topologies of large-scale clos networks.

Name Nodes Links
Tier 1 Tier 2 Tier 3 Total

Clos100 64 32 4 100 2,176
Clos200 128 64 8 200 8,704
Clos300 192 96 12 300 19,584
Clos500 320 160 20 500 54,400
Clos1000 640 320 40 1,000 217,600
Clos2000 1,280 640 80 2,000 870,400
Clos3000 1,920 960 120 3,000 | 1,958,400
Clos5000 3,200 1,600 200 5,000 | 5,440,000

A. Scalability evaluation

We use the following two basic network topologies to
evaluate the scalability of dot2net. For each basic topology,
we change the number of routers (n) to scale the topology. (1)
Ring topology (Ring): We connect n routers in a circle. The
number of connection links is equal to n. We performed the
measurements while changing » from 100 to 1,000,000. (2)
3-tier clos topology (Clos): We divide the n routers into three
stages. Each pair of adjacent stages (e.g., Tier 1 and Tier 2)
forms a complete bipartite graph with the connection links.
We used eight clos topologies with different n as shown in
Table II. The scenarios are described to deploy the emulation
networks with Containerlab.

These two topologies differ mainly in the number of con-
tained components; The Ring topology has relatively more
nodes, while the Clos topology has more connection links.
By using both of them in the scalability evaluation, we can
confirm the bottlenecks in scaling the target topologies. For
each topology, we generate a set of configuration files for
BGP-based clos networks using IPv6 and 4-byte AS numbers
for scaling.

In the following experiments, we use an Ubuntu 22.04
server (x86_64) equipped with an AMD Ryzen 7 7700X and
64 GB of memory.

Figure 6 shows the measurement results. The x-axes show
the number of nodes for Ring and the number of connections
for Clos, where the number of nodes for Clos is also shown
next to the measurement point. In the Ring topologies, we
can see that the processing time (Figure 6a) and memory
consumption (Figure 6b) are linearly dependent on the number
of nodes. The change is gradual when the number of nodes
is small because the general processing, which is independent
of the size of the topology, has a relatively large impact. In
Clos topologies, the processing time (Figure 6¢) and memory
consumption (Figure 6d) depend linearly on the number of
connections. This is because dot2net includes operations that
depend on the number of connections, such as searching for
subnets and generating a config block for each interface.

The processing time of dot2net is small enough for the use
in automating emulation network configuration. For example,
Containerlab (version 0.55.1) needs 30 seconds to build the
Ring topology network with » = 100 and 18 seconds to
delete it on the same measurement environment. In the case
of the Clos topology network with n = 100 (Clos100), dot2net
needs 383 seconds to build it and 21 seconds to delete it. In

2Member can be a child of any objects.

TABLE III: Network topology scenarios for evaluation.

Network scenario Base topology

Source Name Nodes Links

FRR topotests rip_topol 9+ 83
FRR topotests ospf_topol 10 9
FRR topotests ospf6_topol 10(+3)3 9@+4)3
FRR topotests bgp_features 15 15
FRR topotests bgp_evpn_vxlan_topol 5 9
TiNET examples basic_clos 14 16

contrast, the processing time to generate the configuration files
is less than 0.1 seconds for both of them. When we combine
dot2net and Containerlab for automating emulation network
deployment, the processing time of dot2net is sufficiently
small compared to that for the build.

In a general environment for network emulations, the bot-
tleneck would be memory consumption. In both basic topolo-
gies, the memory consumption approached the limit of the
measurement environment’s memory at a processing time of
about 100 seconds. The increase in memory consumption is
mainly due to the expansion of the target configuration files
and the increase in the number of namespaces associated with
the increase in the number of objects (i.e., interfaces).

In summary, dot2net can generate configuration files for
emulation networks with millions of devices or links in a small
processing time and with a reasonable memory consumption.
By comparison, existing frameworks used smaller networks
for evaluation. For example, AutoNetKit [7] uses up to 100
routers, and Propane [24] evaluates configuration generation
using several thousand routers. This demonstrates that dot2net
has sufficient scalability, surpassing existing methods, for the
large-scale network emulation.

B. Simplicity evaluation

We use six network topology scenarios in dot2net for
the simplicity evaluation. Table III lists the scenarios and
their scale. Five of them are from FRR topotests 4 a suite
of topology tests on mininet. The tests are described in
Python scripts, so we generate equivalent configuration files
for Containerlab and TiNET using dot2net. There is another
scenario “basic_clos” from TiNET examples 5 which is the
basic scenario used in the scalability evaluation.

We use dot2net version v0.3.5 for the following evaluation.
The scenarios are available in public as a part of examples in
dot2net [33].

Table IV lists the comparison of input file size to configure
the six scenarios with or without dot2net. In this table, we
generate config files for Containerlab and TiNET with dot2net
and compare their total file size (bytes) with the dot2net
input. Dot2net reduces the file size by half to a third in every
scenario. This is due to the reduction of duplicate descriptions
by templates and the simplified template description without
macros.

3The number in parentheses indicates the number of virtual objects that do
not generate configuration settings but are used only for parameter assignment
and calculation for relationships.

“https://github.com/FRRouting/frr/tree/master/tests/topotests

Shttps://github.com/tinynetwork/tinet/tree/master/examples

https://github.com/FRRouting/frr/tree/master/tests/topotests
https://github.com/tinynetwork/tinet/tree/master/examples

100 |- B
)
[0}
K23
o 10 f
£
2 1F .
[/2]
[72]
3
e} 0.1 R
o
0.01 I T T BTN I
10° 10° 10* 10° 108
Number of nodes
(a) Processing time with Ring topologies.
T T T “56(‘)6“
100 .
)
[0}
“o
o 10 f
£
2 1 .
[2]
[72]
3
o 0.1 R
o
0.01 | | | | B
10° 104 10° 108 107

Number of links

(c) Processing time with Clos topologies.

108 | E
107 3 5

10° | E

Maximum resident set size (kB)

10* E

| il L il L il |
102 10° 10* 10°
Number of nodes

10°

(b) Memory consumption with Ring topologies.

108 ! ‘ 5666%
107 |

108 3

Maximum resident set size (kB)

| L
10°
Number of links

10°

4 I | A -
10
10% 10’

(d) Memory consumption with Clos topologies.

Fig. 6: Scalability evaluation of dot2net.

In addition, we extend the network topologies (shown in
Table IIT) by adding one router and one connection (“+1” in
Table IV) to the simplicity of dot2net in extending network
topologies. In dot2net, expanding the topology only increases
the size of the topology (DOT). The difference in config file
size is less than 10% in every scenario. Therefore, we can
confirm that dot2net effectively shrinks the required changes
for emulation network configurations.

C. Efficacy evaluation

We conducted user experiments to evaluate the efficacy
in changing the topologies of emulation networks. For the
experiment, the users need to understand how to describe the
router configurations, test the network, and debug the behavior,
which prevents us from collecting a sufficient number of target
users locally. Therefore, we conducted online experiments with
students as the users.

The target users are undergraduate and graduate students,
ranging from 4th year undergraduates to 3rd year Ph.D.
students, with basic knowledge of network configurations .

The target users joined the experiments remotely on demand,
used their own computers to work on the given tasks, and
reported the results via email. We have obtained informed
consent from the target users to participate in this experiment
and to use the data obtained. This experiment was reviewed
and approved by the Research Ethics Committee of the
Graduate School of Environmental, Life, Natural Science and
Technology, Okayama University (No. 2023-10).

The experiment consists of four assignments to try config-
uration changes of emulation networks. The participants are
divided into two groups, Group A and Group B, in advance.
They first read a tutorial on configuration changes and emu-
lation network deployment using dot2net and Containerlab.
After that, they try out the assignments using the method
specified for each group, Containerlab only (Clab) or dot2net
with Containerlab (dot2net). In order to reduce the impact of
learning effects during the assignments, the method specified
for each group is alternated for each assignment, with a total of
two questions for each method. Each assignment has a set of

6Students from Okayama Univ., Hiroshima Univ., Sokendai, Grenoble INP,
and Sorbonne Univ.

TABLE IV: Comparison of configuration file size (bytes).

dot2net Containerlab TiNET

Scenario (Expansion) | Topology (diff) | Config (diff) Total (diff) (diff) (diff)
rip_topol 536 3,221 3,757 6,650 7,786

rip_topol +1) 591 (+55) 3,221 (+0) | 3,812 (+55) 8,249 (+1,599) 9,665 (+1,879)
ospf_topol 539 3,097 3,636 10,611 12,218

ospf_topol +1) 582 (+43) 3,097 (£0) | 3,679 (+43) | 12,538 (+1,927) | 14475 (4+2,257)
ospf6_topol 982 2,933 3915 9,392 10,853

ospf6_topol (+1) 1,026 (+44) 2,933 (0) | 3,959 (+44) | 11,082 (+1,690) | 12,833 (+1,980)
bgp_features 1,037 6,472 7,509 17,889 20,205

bgp_features (+1) 1,122 (+85) 6,472 (0) | 7,594 (+85) | 20,523 (+2,634) | 23,181 (+2,976)
bgp_evpn_vxlan_topol 7717 4,220 4,997 11,662 13,513

bgp_evpn_vxlan_topol +1) 862 (+85) 4,220 (+0) | 5,082 (+85) | 12,605 (+943) | 14,848 (+1,335)
basic_clos 858 1,396 2,254 9,300 10,275

basic_clos (+1) 909 (+51) 1,396 (0) | 2,305 (+51) 9,932 (+632) | 10,970 (+695)

TABLE V: Average working time and number of builds in the
user experiments (Group A in purple and Group B in green).

Containerlab only | dot2net + Containerlab

Assignments | Time #Builds | Time #Builds
Assignment 1 259 2.8 8.6 1.7
Assignment 2 28.6 3.0 6.8 1.1
Assignment 3 42.1 4.1 21.9 2.4
Assignment 4 27.7 23 14.6 1.6

basic network configuration files corresponding to the original
configuration. They make specified changes (e.g., add a router
and a switch to the specified locations) to the basic network.
They finally try to build the network with Containerlab and
confirm that the tests specified in the assignment pass. During
the assignments, users are not allowed to consult with other
users, except for tutorials. The content of the assignments is
published on GitHub 7.

For each assignment, users report the work time and the
number of builds before completing the assignment. The
number of builds is equivalent to the number of failures plus
one to describe correct settings, which allows us to assess
the likelihood of configuration errors. In addition, to reduce
the burden on the participants, they can leave the task before
completing it if it takes more than 60 minutes (we will count
this as 60 minutes in the compiled results).

Table V shows the average work time and number of builds
for each assignment. Note that the specified method is different
for each group in order to reduce the impact of learning
effects, so the populations of each item are not consistent
(instead, the items are colored according to the groups). Based
on the comparison of the two methods, it can be confirmed
that the working time and the number of builds have been
greatly reduced to about 1/3 to 1/2 by using dot2net in all of
the assignments. From this, we can say that dot2net greatly
improves the efficiency of topology changes in emulation
network configurations.

Figure 7 shows the distribution of work time and number
of builds for each participant. In all assignments, the work
time for Clab varies greatly depending on the skill of the
participant. On the other hand, for dot2net, the variation
between participants is small, which means that even users
with less ability can efficiently change the configuration files.
There are outliers in all of the assignments (especially on As-

7https://github.com/cpflat/dot2net-evaluation/

signment 3), regardless of the method used, which is because
the work time includes not only the configuration change,
but also the build and test, and there are cases where the
assignments cannot be completed due to problems unrelated to
the configuration changes (e.g., Some students had difficulty
appropriately testing Assignment 3).

Looking at the individual assignment, there is more varia-
tion in Assignment 1 (Figure 7a) for both methods than for
the other tasks. This is because the participants approach the
tutorial differently, and there are differences in the amount of
time to learn the usage of the required tools or to download
the container image. In contrast, for the other assignments,
the processing time and the number of builds for dot2net are
relatively stable.

VI. DISCUSSION
A. Robustness of description

We demonstrate the robustness of the proposed method in
describing network configurations through the description of
multiple test networks performed to evaluate the simplicity of
dot2net (Subsection V-B). In terms of network protocols, the
CC layering feature of dot2net (Subsection III-D1) allows us
to successfully describe some advanced network protocols. For
example, the “ospf_topol” scenario describes a network routed
with OSPFv2 for IPv4 and OSPFv3 for IPv6 in parallel. The
IP dualstack for this scenario is enabled with the CC layering
explained in Subsection III-D1. The “bgp_evpn_vxlan_topol”
scenario relies on VXLAN, one of the overlay networking
technologies. It can be described with two layers, one for the
provider network (with tunneling) and one for the customer
network (bridged with VXLAN).

In addition, dot2net’s parameter assignment is flexible and
efficient, with the automated parameter assignment feature
compatible with the standard ACs (Subsection IV-A). The
“bgp_features” scenario is a BGP-based network that includes
non-BGP routers (routed with OSPF) and L2 switches. The
BGP neighbor router parameters are automatically assigned
with the Neighbor objects explained in Subsection IV-C
(i.e., add BGP neighbor settings for each Layer 3 neighbor
router with the corresponding label). The “rip_topol” and
“ospf6_topol” scenarios involve mixed routing policies: dy-
namic routing and static routing. The static routing policies
can be described and modified in the topology graph using
place labels and meta value labels to relatively specify the

https://github.com/cpflat/dot2net-evaluation/

50

40

Time to answer (min)
w
o
T
|

20 B
[]
L9 °
10 * s GroupA (Clab) e
0 ° ‘ ‘GroupB (dot2net)‘ °
0 2 4 6 8 10
Number of builds
(a) Assignment 1.
60 F T ® ® ® ® B
— 50 |- R
£
S
‘,q_’)’ 40 ° R
=
2 30| ¢ .
©
o °
> 20 °]
£
TV S
° GroupA (Clab) e
0 H | GroupB (dot2net) e

0 2 4 6 8 10
Number of builds

(c) Assignment 3.

50 ° a

40 -

Time to answer (min)
w
o
T
|

10 +

GroupA (dot2net) e
0 ‘ ‘ Group‘B(CIab)‘ °

0 2 4 6 8 10
Number of builds

(b) Assignment 2.

60 @ e E
—~ 50 | R
=
S
‘q;)’ 40 ° ° R
5
c 30 8
©
o [)
© 20 f i
£ . .
l_ | []

10 : GroupA (dot2net) e

° GrougB (Clab) e

0 | I
0 2 4 6 8 10

Number of builds

(d) Assignment 4.

Fig. 7: Distribution of response status of participants in the user experiment.

destination nodes. If there are out-of-emulation (stub) nodes
and subnets in the static routing policies, they can be described
using manual parameter assignment with value labels or using
virtual objects (objects that do not generate configuration files).
By distinguishing and reconciling these static routing policies
with dynamic routing policies using CCs, we can describe
these scenarios in a consistent and natural way.

B. Application

Although this paper focuses on the emulation network
configurations, the proposed method can be useful in other
network applications because it is independent of the nature
of emulation networks. Since it also does not depend on any
specific protocol, the proposed method can generate wide
variety of output file formats. It is expected to contribute
to the automation of network configuration in conjunction
with remote configuration (e.g., netconf [36]) or configuration
distribution methods (e.g., ansible [37]).

We believe that network configuration automation based
on the proposed method will increase the efficiency of net-
work configurations, especially when configuration changes
are made frequently.

C. Limitation

Limitations in proposed method: The proposed method
does not efficiently describe any configurations that can be
expressed in the conventional approach using control syntax
macros. Instead of “for” syntax, the proposed method needs
to generate multiple objects of referential ACs. In a scenario
where the “for” syntax is nested in the conventional templates,
the referential AC also becomes multi-layered with the pro-
posed method, and the class structure becomes more complex
instead of a template. In this case, even if the configuration
change is easy, the initial class design is not easy for the users.

Also, instead of “if”” syntax, the proposed method depends
on the flags in CC definitions. The flag items are built in the
platform or additional modules, so users cannot freely define
conditions for items that are not provided in them.

Limitations in implementation: Dot2net depends on DOT
as the input topology graph. This means that it is difficult
to efficiently represent information that cannot be expressed
by DOT. An example is source routing. Since DOT cannot
represent paths in the graphs, the entire routing paths cannot
be managed on the topology graphs and must be configured as

the behavior of individual routers. For such issues, we need to
provide extension modules in the future, e.g., using external
files of individual format.

Limitations in practical use: The proposed method is
effective at changing the network topologies, as demonstrated
in Subsection V-B and Subsection V-C, but it requires the same
or more effort than normal configuration when creating label
definitions during initial network construction. As explained
in Subsection II-B, template generation may be automated
in the future using configuration synthesis technology. For
instance, Liu et al. [38] use machine learning-based configu-
ration synthesis to generate config templates. Combining such
technology with topology-driven configuration could facilitate
the construction and operation of emulation networks in the
future.

VII. CONCLUSION

In this paper, we proposed a scalable, simple, and effective
way to configure emulation networks using config templates.
The proposed method is based on Topology-driven configura-
tion, the idea of separating network configuration into topology
and generalized configuration. In the method, we proposed a
new data model of network parameters to achieve a simple
config template description with template blocks of appro-
priate granularity and without using control syntax macros.
Based on the proposed method, we developed dot2net, a con-
figuration platform for emulation networks. Dot2net allows us
to automate the process from configuration to deployment of
Docker-based emulation networks in conjunction with network
emulation platforms such as Containerlab.

We evaluated the proposed method using dot2net from
three perspectives, scalability, simplicity, and efficacy. First,
for scalability, we measured the processing time and memory
consumption for large-scale emulation networks and showed
that dot2net can generate configuration files in a short process-
ing time compared to the build step with a generally acceptable
memory consumption. Next, for simplicity, we confirmed that
dot2net can change the network topologies of six test network
scenarios with a change of less than 10% of the file size than
without dot2net. Finally, for efficacy, we demonstrated that
users can change emulation network topologies in about 1/2
to 1/3 of the work time and with fewer configuration errors
than without dot2net.

In future work, we will investigate the potential applications
of dot2net, including those other than emulation networks. We
will also continue to enhance the required functionality for the
applications as dot2net modules.

ACKNOWLEDGEMENTS

This work is partially supported by JSPS KAKENHI Grant
Number JP25K15079 and JP22K17886.

REFERENCES

[11 A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” IEEE Access, vol. 8, pp.
108 952-108 971, 2020.

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, “Digital twin for
5G and beyond,” IEEE Communications Magazine, vol. 59, no. 2, pp.
10-15, 2021.

R. Alimi, Y. Wang, and Y. R. Yang, “Shadow configuration as a network
management primitive,” in Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication (SIGCOMM’0S8), 2008, pp. 111-
122.

H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “CrystalNet: Faithfully Emulating
Large Production Networks,” in Proceedings of the 26th ACM Sympo-
sium on Operating Systems Principles (SOSP’17), 2017, pp. 599-613.
R. Emiliano and M. Antunes, “Automatic network configuration in virtu-
alized environment using gns3,” in Proceedings of the 10th International
Conference on Computer Science & Education (ICCSE’15), 2015, pp.
25-30.

W. Enck, T. Moyer, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Green-
berg, Y.-W. E. Sung, S. Rao, and W. Aiello, “Configuration management
at massive scale: system design and experience,” IEEE Journal on
Selected Areas in Communications, vol. 27, no. 3, pp. 323-335, 2009.
H. Nguyen, M. Roughan, S. Knight, N. Falkner, O. Maennel, and
R. Bush, “How to Build Complex, Large-Scale Emulated Networks,” in
Proceedings of the International Conference on Testbeds and Research
Infrastructures (TridentCom’11), vol. 46, 2011, pp. 1-16.

S. Knight, H. Nguyen, O. Maennel, 1. Phillips, N. Falkner, R. Bush,
and M. Roughan, “An automated system for emulated network experi-
mentation,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies (CoONEXT’13), 2013, pp. 235-
246.

Nokia, “Containerlab,” https://containerlab.dev/, 2021.

S. Kobayashi, R. Shiiba, R. Miura, S. Miwa, T. Miyachi, and K. Fukuda,
“dot2net: A labeled graph approach for template-based configuration of
emulation networks,” in Proceedings of the 19th International Confer-
ence on Network and Service Management (CNSM’23), 2023, pp. 319-
327.

R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in Proceedings of the ACM
SIGCOMM 2017 Conference (SIGCOMM’17), 2017, pp. 155-168.

D. Guo, S. Chen, K. Gao, Q. Xiang, Y. Zhang, and Y. R. Yang,
“Flash: fast, consistent data plane verification for large-scale network
settings,” in Proceedings of the ACM SIGCOMM 2022 Conference
(SIGCOMM’21), 2022, pp. 314-335.

Q. Zhang, K. K. W. Ng, C. W. Kazer, S. Yan, J. Sedoc, and V. Liu,
“MimicNet: Fast Performance Estimates for Data Center Networks
with Machine Learning,” in Proceedings of the ACM SIGCOMM 2021
Conference (SIGCOMM’21), 2021, pp. 287-304.

H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “CrystalNet: Faithfully Emulating
Large Production Networks,” in Proceedings of the 26th ACM Sympo-
sium on Operating Systems Principles (SOSP’17), 2017, pp. 599-613.
M. Landauer, F. Skopik, M. Wurzenberger, W. Hotwagner, and
A. Rauber, “Have it your way: Generating customized log datasets with
a model-driven simulation testbed,” IEEE Transactions on Reliability,
vol. 70, no. 1, pp. 402415, 2021.

C. Regal-Mezin, S. Kobayashi, and T. Yamauchi, “netroub: Towards an
emulation platform for network trouble scenarios,” in Proceedings of the
CoNEXT Student Workshop 2023 (CoNEXT-SW’23), 2023, p. 17-18.
T. Holterbach, T. Bii, T. Rellstab, and L. Vanbever, “An Open Platform to
Teach How the Internet Practically Works,” ACM SIGCOMM Computer
Communication Review, vol. 50, no. 2, pp. 45-52, May 2020.

W. Du, H. Zeng, and K. Won, “SEED Emulator: An Internet Emulator
for Research and Education,” in Proceedings of the 21th ACM SIG-
COMM Workshop on Hot Topics in Networks (HotNets’22), 2022, p. 7.
M. GroBmann and S. J. A. Schuberth, “Auto-Mininet : Assessing the
Internet Topology Zoo in a Software-Defined Network Emulator,” in
Proceedings of the GIITG-Workshop MMBNet 2013, 2013, pp. 1-10.
M. Pizzonia and M. Rimondini, “Netkit: network emulation for educa-
tion,” Software: Practice and Experience, vol. 46, no. 2, pp. 133-165,
2016.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets’10),
2010, pp. 1-6.

G. Bonofiglio, V. Iovinella, G. Lospoto, and G. Di Battista, “Kathara:
A container-based framework for implementing network function virtu-
alization and software defined networks,” in Proceedings of IEEE/IFIP
Network Operations and Management Symposium (NOMS’18), 2018,

pp- 1-9.

https://containerlab.dev/

eth0 [bgp] rt2 [router]

ethO [bgp] eth0 eth1

rt1 [router] sw1 [switch] sv1 [server]

Fig. 8: A tiny example network topology that requires control
syntax macros in existing approaches.

(23]
[24]

tinynetwork, “tinet,” https://github.com/tinynetwork/tinet/, 2019.

R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-level
configurations,” in Proceedings of the ACM SIGCOMM 2016 Conference
(SIGCOMM’16), 2016, pp. 328-341.

S. Ramanathan, Y. Zhang, M. Gawish, Y. Mundada, Z. Wang, S. Yun,
E. Lippert, W. Taha, M. Yu, and J. Mirkovic, “Practical Intent-
driven Routing Configuration Synthesis,” in Proceedings of the 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI'23), 2023, pp. 629-644.

R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Net-
work configuration synthesis with abstract topologies,” ACM SIGPLAN
Notices, vol. 52, no. 6, pp. 437-451, 2017.

A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “NetComplete:
Practical Network-Wide configuration synthesis with autocompletion,”
in Proceedings of the 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’18), 2018, pp. 579-594.

A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “AED: Incre-
mentally synthesizing policy-compliant and manageable configurations,”
in Proceedings of the 16th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT’20), 2020, pp.
483-495.

T. Schneider and L. Vanbever, “Snowcap: Synthesizing Network-Wide
Configuration Updates,” in Proceedings of the ACM SIGCOMM 2021
Conference (SIGCOMM’21), 2021, pp. 33-49.

Y. Dai, H. Zhang, J. Wang, J. Liao, and P. Zhang, “INCS: Intent-
driven network-wide configuration synthesis based on deep reinforce-
ment learning,” Computer Networks, vol. 251, p. 110640, 2024.

Z. Guo, FE Li, J. Shen, T. Xie, S. Jiang, and X. Wang, “Configreco:
Network configuration recommendation with graph neural networks,”
IEEE Network: The Magazine of Global Internetworking, vol. 38, no. 1,
p. 7-14, 2024.

Pallets, “Jinja,” https://palletsprojects.com/p/jinja/.

S. Kobayashi, “dot2net,” https://github.com/cpflat/dot2net/, 2023.

T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Computing Surveys, vol. 47, no. 4, 2015.

FRRouting Project, “Frrouting,” https://frrouting.org/, 2017.

T. Anderson, “Local-Use IPv4/IPv6 Translation Prefix,” RFC 8215,
Aug. 2017. [Online]. Available: https:/rfc-editor.org/rfc/rfc8215.txt
[37] Ansible Inc., “Ansible,” https://www.ansible.com/, 2012.

[38] J. Liu, L. Chen, D. Li, and Y. Miao, “CEGS: Configuration Example
Generalizing Synthesizer,” in Proceedings of the 22nd USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’25),
2025, pp. 1327-1347.

[25]

[26]

[27]

[28]

[29]

[30]

[32]
[33]
[34]

(35]
[36]

APPENDIX A
EXAMPLE TO REPLACE CONTROL SYNTAX MACROS

We demonstrate how the proposed method can describe net-
work configurations, where existing approaches require control
syntax macros, such as “for” and “if”, with referential ACs
explained in Subsection III-C3. We use an example network
topology shown in Figure 8. This network has three routers
(rtl, 1t2, and rt3) and a server (sv1l), connected to a Layer 2
switch (swl). In this network, the interface ethO of router rtl
(henceforce rtl.eth0) has three Layer 3 neighboring interfaces:

I I I [I I

Node Node Node Node Node Conn.
rt1 2 3 svi swi rt1.ethO-
[| I | | sw1.ethQ
Interface e "' .
rt1.ethO name = eth0 . :
node = rt1 ubstantia
II I II node_as = 65001
Neiah Neiah ip_addr = 192.0.2.1
Neigh. eigh. eigh. L= n_name = eth0 i
n_node = rt3 Referential
svieth0 r2.eth0 r3.ethd — |nrode=rs
n_ip_addr = 192.0.2.3

Fig. 9: A parameter data model for example network topology.

rt2.eth0, rt3.ethO, and svl.eth0. When we want to describe
a config block about the BGP neighbors (Layer 3 adjacent
interfaces of BGP routers) of rtl.ethO, we need to generate
a config block using the parameters of each BGP neighbor
(e.g., AS numbers) with the given template. Conventional
models require control syntax macros, “for” to iterate Layer-3
neighboring interfaces and “if”” to check whether the interface
is of a BGP router or not.

The proposed method can generate this config block using
Neighbor objects belonging to one of the referential ACs.
Figure 9 shows an abstracted parameter data model generated
by the proposed method. In the model, the substantial ACs
(Network, Node, Interface, and Connection) form a top-down
model based on the ownership described in the input graph
(Figure 8, excluding automatically named interface names).
There are also Neighbor objects under each Interface object,
corresponding to the Layer 3 neighbor interfaces. The names-
paces of these Neighbor objects are based on the parameters of
the parent object (substantial parameters) and additionally con-
tain the parameters of the corresponding objects (referential
parameters). Therefore, the template block used in a Neighbor
object can use both the parameters of the parent object and
the corresponding object.

The template of an object has several options, one of which
is to output the config block only if the corresponding object
(in this case the Interface corresponding to the Neighbor
object) belongs to a specified CC. With this option, the
proposed method can generate a set of config blocks only for
the interfaces of BGP routers (equivalent to “if””). Also, by
merging the generated config blocks of Neighbor objects on
the parent Interface object, the proposed method can generate
a config block including settings for all the BGP neighbors
(equivalent to “for”). In this way, the proposed method realizes
conditional branching of config block generation using the CC
options and iteration of config blocks using the objects of
Referential ACs.

APPENDIX B
EXAMPLE OF DOT2NET INPUT
There are two dot2net input files for generating configu-

ration files: a topology graph (DOT) and a label definition
file (YAML). Figure 10 and Figure 11 demonstrate examples

https://github.com/tinynetwork/tinet/
https://palletsprojects.com/p/jinja/
https://github.com/cpflat/dot2net/
https://frrouting.org/
https://rfc-editor.org/rfc/rfc8215.txt
https://www.ansible.com/

Fig. 10: Example topology graph (a DOT file and its visual-

digraph {

© N U AW —

rl[class="router"];
r2[class="router"];
r3[class="router"];

rl->r2[dir=none];
r2->r3[dir=none];

ization).

layer:

policy:

nodeclass:

tinet:

clab:
kind:

policy:
config:

policy:
config:

- name: ip
default_connect: true

image:

image:

- name: ip
range: 10.0.0.0/16
prefix: 24

— name: lo
type: loopback
range: 10.0.255.0/24

— name: router
primary:

true
quay.io/frrouting/frr:8.5.0
linux

quay.io/frrouting/frr:8.5.0
[lo]

- file: daemons
sourcefile:

- file: vtysh.conf
sourcefile:

- file: frr.conf
template:

. /daemons

./vtysh.conf

"ip forwarding"

win

"router ospf"

" ospf router-id {{.ip_loopback}}"

interfaceclass:
— name: default
primary:

true
[ip]

- file: frr.conf
template:

"interface {{.name}}"

" ip address {{.ip_addr}}/{{.ip_plen}}"
win

"router ospf"

" network {{.ip_net}} area O"

Fig. 11: An excerpt of example label definitions (YAML).

1 rl {{ .ip_loopback }} = 10.0.255.1

2 rl {{ .name }} = rl

3 rl.net0 {{ .ip_addr }} = 10.0.0.1

4| rl.net0 {{ .ip_net }} = 10.0.0.0/24

5 rl.net0 {{ .ip_plen }} = 24

6 | rl.net0 {{ .name }} = netO

7 rl.net0 {{ .node_ip_loopback }} = 10.0.255.1
8 rl.net0 {{ .node_name }} = rl

9 rl.net0 {{ .opp_ip_addr }} = 10.0.0.2

10 | rl.net0 {{ .opp_ip_net }} = 10.0.0.0/24

11 rl.net0 {{ .opp_ip_plen }} = 24

12 rl.net0 {{ .opp_name }} = netO

13 rl.net0 {{ .opp_node_ip_loopback }} = 10.0.255.2
14 | rl.net0 {{ .opp_node_name }} = r2

15| r2 {{ .ip_loopback }} = 10.0.255.2

16 | r2 {{ .name }} = r2

17 r2.net0 {{ .ip_addr }} = 10.0.0.2

18 r2.net0 {{ .ip_net }} = 10.0.0.0/24

19 r2.net0 {{ .ip_plen }} = 24

20 | r2.net0 {{ .name }} = netO

21 r2.net0 {{ .node_ip_loopback }} = 10.0.255.2
22 r2.net0 {{ .node_name }} = r2

23 r2.net0 {{ .opp_ip_addr }} = 10.0.0.1

24 | r2.net0 {{
25 | r2.net0 {{

.opp_ip_net }} = 10.0.0.0/24
.opp_ip_plen }} = 24

26 r2.net0 {{ .opp_name }} = netO
27 r2.net0 {{ .opp_node_ip_loopback }} = 10.0.255.1
28 r2.net0 {{ .opp_node_name }} = rl

Fig. 12: An excerpt of parameters in example namespaces. A
line consists of target object, parameter name (replacer), and
the corresponding parameter value.

of each file (dot2net version v0.3.5). Note that the network
topology and configurations assumed here differ from those
used in Appendix A.

Figure 10 shows three defined nodes, rl, r2, and r3, with
the class attributes ‘“router”, meaning these nodes belong
to the Node CC named “router”. If required, we can also
specify multiple labels by separating them with “;” in the
class attribute strings. Also, the two connections do not have
any class label specification. If defined, the interfaces belong
to “default” classes. The two classes, “router’” Node CC and
“default” Interface CC are included in the label definitions in
Figure 11.

This label definition also defines one layer and two IP
address auto-assignment policies. Each assignment policy is
specified for each CC, which means that IP addresses are as-
signed to objects with those labels according to their respective
policies.

Figure 12 shows a part of the namespaces generated by
dot2net based on the input files. The namespace includes
automatically assigned parameters and relative names for
referencing them from different objects. Using these names in
the template allows us to embed parameters of different objects
into the configuration settings of an object (although this is
not included in the simple example template in Figure 11).
In this way, the final configuration settings are generated by
embedding the namespace parameters into the templates in the
label definitions.

Satoru Kobayashi is an Assistant Professor at
Faculty of Environmental, Life, Natural Science
and Technology, Okayama University. He received
his Ph.D. in Information Science and Technology
from the University of Tokyo in 2018. His research
interests are network management and data mining.

Ryusei Shiiba is a Ph.D. candidate at Department
of Informatics, School of Multidisciplinary Sciences,
The Graduate University for Advanced Studies (SO-
KENDALI). His research interests are network veri-
fication and testing.

Shinsuke Miwa is a Chief Senior Researcher at
StarBED Technology Center, Testbed Research, De-
velopment and Operations Laboratory, National In-
stitute of Information and Communications Technol-
ogy (NICT). He received his Ph.D in 1999 from
Japan Advanced Institute of Science and Technology
(JAIST). His research interests are network emula-
tion and evaluation.

Toshiyuki Miyachi is a Chief Planning Manager
at the Strategic Planning Office, Strategic Planning
Department, National Institute of Information and
Communications Technology (NICT). He received
his Ph.D. in Information Science from the Japan Ad-
vanced Institute of Science and Technology (JAIST)
in 2007. His research interests include network
testbeds and large-scale network technology valida-
tion.

Kensuke Fukuda is a Professor at Information Sys-
tems Architecture Research Division, National Insti-
tute of Informatics and Department of Informatics,
School of Multidisciplinary Sciences, The Graduate
University for Advanced Studies (SOKENDAI). He
received his Ph.D. in 1999 from Keio University.
His research interests span Internet traffic analyses,
anomaly detection, modeling networks and QoS over
the Internet.

14

	Introduction
	Related work
	Network emulation
	Configuration synthesis
	Configuration generalization

	Proposed method
	Key challenges and ideas
	System overview
	Data model
	Requirements
	Design
	Iteration
	Layering

	Generation process
	Data model generation
	Configuration generation

	Implementation
	Design principles
	Graph labels
	Architecture classes

	Evaluation
	Scalability evaluation
	Simplicity evaluation
	Efficacy evaluation

	Discussion
	Robustness of description
	Application
	Limitation

	Conclusion
	References
	Appendix A: Example to replace control syntax macros
	Appendix B: Example of dot2net input
	Biographies
	Satoru Kobayashi
	Ryusei Shiiba
	Shinsuke Miwa
	Toshiyuki Miyachi
	Kensuke Fukuda

