
A Quantitative Causal Analysis
for Network Log Data

Richard Jarry
Grenoble INP Ensimag

richard.jarry@grenoble-inp.org

Satoru Kobayashi
NII

sat@nii.ac.jp

Kensuke Fukuda
NII/Sokendai

kensuke@nii.ac.jp

Abstract—Data logs from network devices are primary data to
understand the current status of operational networks. However,
since many and heterogeneous devices generate network logs,
extracting information on the network status from such logs
is not an easy task in network operation, e.g., root cause
analysis of network events. Though multi-variate time-series
based log analyses extract correlation structure of the logs,
identifying causality of the network logs is still a complex and
challenging problem. The state of the art algorithm called the
PC algorithm had been applied to network log analysis, but it
has two fundamental limitations; (1) Generated graphs still have
many undirected edges, and (2) Edges have no weight (whether
plausible causality or not). To overcome these two limitations, in
this paper, we rely on MixedLiNGAM to network log analysis;
This algorithm produces weighted DAGs from a set of multi-
variate log time series. In order to show the effectiveness of the
proposed method, we apply MixedLiNGAM to a set of syslog
data collected at a research and education network in Japan, and
then compare output causal graphs generated by MixedLiNGAM
and the PC algorithm. Our result demonstrates that obtained
weighted directional edges help better understand the root cause
of the network events.

Index Terms—Log analysis, Network logs, Causal inference

I. INTRODUCTION

Network log analysis is a fundamental and crucial task for
network operation. However, a huge number and wide variety
of log data can make log analysis difficult. For automating the
network log analysis in this context, several topics have been
well-studied such as anomaly detection [1, 2, 3, 4] and root-
cause analysis [5, 6, 7] with mathematical/statistic methods.

To apply the mathematical methods, we need to convert raw
log data into a set of event time-series per device per log type
(i.e., log template) (Figure 1). Template generation algorithms
extract log templates from raw log data. After matching the
raw log data with the templates, we aggregate the number of
log template appearances in a given time bin, and then obtain
a log time-series per device per log template. Once generating
a set of time-series, we can apply sophisticated mathematical
methods.

One of the crucial properties in root cause analysis is
causality of network events; it intuitively means whether log
A causes log B. A straightforward approach to extract the
causality is to use timestamp information in logs and domain
knowledge. Decision tree-based approach is also applied in
order to find temporal relations. Furthermore, several methods
discover the causality from a set of time-series data with

statistical metrics (e.g., Pearson correlation, confidence score,
transfer entropy). However, these approaches have a common
flaw; they cannot distinguish causality from co-occurrence
(i.e., correlation) in a theoretical sense; thus they may produce
spurious causal edges.

For solving this problem, causal inference techniques have
been studied in several research fields [8]. Kobayashi et al. [5]
apply a causal inference algorithm called PC algorithm [9] to
network log data for the root cause analysis. The PC algorithm
generates directed acyclic graphs (DAG) where a node is a
log event, and an edge is the causality of log events. They
demonstrate how the causal inference helps in detecting root
causes of network trouble events. However, the PC algorithm
has two significant drawbacks to apply to network log data.
(1) The number of directed edges is relatively small due to a
heuristic edge decision algorithm. In other words, the ability
to discover causality is not so high in the PC algorithm. (2)
Directed edges are unweighted; thus it is hard to discuss the
likelihood of causal impact.

In this paper, we leverage a more sophisticated causal
inference algorithm called MixedLiNGAM [10] for the net-
work log data to overcome these limitations. MixedLiNGAM
is based on skew-acyclic causal discovery methods, using
data distribution shapes in order to infer causal directions
(§ III). The advantage of this algorithm is that output DAG is
fundamentally all directed, which enables us to weight edges
in the DAGs. Thus, the result is more reliable and comparative
than that in the PC algorithm. We apply MixedLiNGAM to
a set of log data measured at a nationwide academic network
in Japan (SINET) [11] to compare the effectiveness of two
causal inference algorithms for network log analysis.

The main findings of the paper are as follows: (1)
MixedLiNGAM discovers 10 times more causal edges than the
PC algorithm (§ IV-B). Obtained weight values are high (ave
0.8), meaning that MixedLiNGAM discovers more reliable
causal edges. (2) Our case study shows a weighted causal
graph provides a more natural interpretation of the root cause
that happened in the network (§ IV-C). (3) The overhead of
processing time and memory usage is acceptable, compared
with the benefits of the weighted DAG (§ IV-D).

II. RELATED WORKS

Root cause analysis for network events has been intensively
studied in the past. The past literature can be broadly classified

DAGsEvent
time-series

causal
discovery

Log data

template
generation match

0.5

0.4
0.1

0.3 0.9

0.6

Fig. 1. Overview of causal inference in network log analysis

into three approaches.
a) rule-based approach: is based on heuristic rules

based on operators’ domain knowledge. Timestamps and some
important variables in log messages are used in building
heuristic rules in Hadoop [12], Spark [13, 14], or cloud [15]
environments. This approach is effective in a relatively small
system (i.e., Hadoop), but it is difficult to generalize to
other systems like heterogeneous network environments. Also,
the accuracy of timestamps are not guaranteed in distributed
systems, so detected causality may include pseudo causality
(i.e., correlation).

b) decision-tree-based approach: mines relationships of
multiple logs for the pinpoint root cause of events. Several
decision-tree-based algorithms are applied to construct depen-
dency graphs to find causality in log messages[16, 17, 18].
The main drawback of this approach is that large-scale log
data is required to mine dependencies.

c) relation-mining approach: characterizes relationship
between two log time series with statistical metrics, e.g.,
Pearson correlation [19], confidence score [20], transfer en-
tropy [21]. This approach prunes unrelated edges in the
initial complete graph depending on the value of the metrics.
However, these methods may detect spurious causality because
the metrics do not consider causality in a theoretical sense.

Ref. [5] and this work are categorized into the relation-
mining approach. The advantage of the causal approach is to
rely on a theoretical causality metric rather than the spurious
ones, thus the causal approach could naturally remove the
effect of correlation or co-occurrence.

III. METHODOLOGY

The overview of causal analysis is shown in Figure 1. This
analysis flow basically follows that of Kobayashi et al. [5].

The input data is a set of syslog-like log messages for a time
period (one day in this paper), including timestamp, source
hostname, and free-format message. First, we generate log
templates of the log messages with some template generation
algorithms to aggregate the messages into a set of event time-
series in a time bin (we use 60 seconds). We define a node of
causal discovery as an event time-series, which corresponds
to one per device per log type (log template). We also apply a
time-series preprocessing to remove periodicity and regularity
that causes detecting much false causality [5]. Finally, we
conduct causal discovery with the event time-series input.

PC algorithm

Proposed
method

Skeleton
estimation

Orientation
rule

Skeleton
estimation

0.9

0.5

0.3

MixedLiNGAM Regression(A) (B) (C)

Fig. 2. Proposed method

The causal discovery process of the proposed method is
illustrated in Figure 2. This method consists of three steps:
partially using PC algorithm to determine graph skeleton (i.e.,
no directions of the causal edges), estimating causal structure
(i.e., directions) with MixedLiNGAM, and calculating the
causal effect (i.e., weight) of the edges.

A. PC algorithm

Here, we introduce the PC algorithm [9], a constraint-
based causal discovery algorithm. This algorithm starts with
a complete graph of all nodes, and estimates the causal graph
with following two steps (shown in Figure 2). First, the PC
algorithm estimates graph skeleton by pruning non-causal
edges on the basis of conditional independence [8]. Some
conditional independence tests are used in this step (we use G
square test [22]). Next, the PC algorithm determines directions
of edges in the graph skeleton with orientation rule [23].

The orientation rule has a problem that not all edges can
be directed with it because it works as trying to satisfy the
definition of DAG. The output of the PC algorithm is in
distinction with complete DAG and called CPDAG (completed
partially DAG). This problem prevents us from calculating the
causal effect of edges (details in § III-C).

B. MixedLiNGAM

To overcome this issue, we use MixedLiNGAM [10] to de-
termine directions of edges. MixedLiNGAM is a hybrid causal
model designed for processing both continuous and discrete
data at the same time. The main idea behind MixedLiNGAM
resolution algorithm is (1) to generate candidate DAGs and
(2) to select the highest scored DAG from them.

The first step, generating candidate DAGs, relies on the
concept of Markov equivalence classes. Markov equivalence
classes are lists of equivalent DAGs having the same constraint
(i.e., satisfying input graph structure). For example, if a graph
skeleton is given as the input of MixedLiNGAM, the Markov
equivalence classes are the possible combinations of directions
of edges in the skeleton.

The next step, scoring DAGs, depends on the input data
format (i.e., continuous or discrete). MixedLiNGAM uses
the Bayesian information criterion (BIC) score [24], which
represents the local log-likelihood of the causal structure. If
the input data is continuous, the score is calculated on the
basis of LiNGAM [25], a causal inference method for non-
Gaussian data. If the input is discrete, the score is calculated
with logistic regression.

Finally, we obtain the appropriate DAG structure with the
highest score. All of the edges in the obtained DAG are
directed by MixedLiNGAM.

To adapt the MixedLiNGAM to the network log data,
we further extend the original MixedLiNGAM as follows:
(1) To reduce the processing time for MixedLiNGAM, we
separately apply MixedLiNGAM to the connected subgraphs
in our implementation. This step would not change the com-
bined results, but decrease the number of candidate DAGs
(i.e., combinations of edge directions). (2) Theoretically,
MixedLiNGAM can also start with CPDAG estimated by the
full PC algorithm with orientation rule. This change will be
a trade-off of improved processing time and lower reliability;
the partially directed input will decrease the processing time
of MixedLiNGAM, but the edge directions estimated with
orientation rule is less reliable than that with MixedLiNGAM.
In this paper, we do not use the orientation rule before
MixedLiNGAM because the processing time is still reasonable
without it (see § IV-D).

C. Regression

For calculating the weight of edges in a causal graph, the
edges need to be all directed. The reason can be explained
with the idea of Backdoor criterion [8]; a regression of causal
effect (i.e., the weight of edges) should be calculated with
an objective variable of a node and explanatory variables of
the parent nodes, and no other nodes (e.g., child nodes) should
not be included in the explanatory variables. If the explanatory
variables include extra nodes, it causes false confounding and
derives the wrong calculation of causal effect. Undirected
edges in CPDAG prevent us from determining the parent
nodes for regression. Therefore, we need all directed DAG
for weighting the causal graph, and in our proposed method
it is achieved with MixedLiNGAM.

MixedLiNGAM has two available regression methods in
this step. For continuous input, it simply uses linear regression.
However, for discrete (or binary) input, linear regression is
not effective because it cannot consider probabilistic relations.
Instead, MixedLiNGAM uses logistic regression for discrete
(or binary) input. In the both cases, the calculated weight
(regression coefficient) w represents the amount of dependency
(e.g, if w = 0.8 on time-series events, an event occurrence in-
creases the appearance of another event 0.8 times in average).
MixedLiNGAM selects one of these regression methods for
this step depending on the input data. The evaluation in § IV
focuses on discrete input case.

D. Dataset

To show the effectiveness of MixedLiNGAM for network
log data, we use a set of syslog data collected at a research and
education network in Japan (SINET4) [11]. SINET4 connects
over 800 universities/colleges/laboratories in Japan, and its
backbone consists of 8 core routers and over 100 L2 switches.
The raw data is 35M lines long and spans over 456 days from
2012 to 2013. Similar to the past literature [5], we construct
log template time-series from raw log data using a supervised

log template generation method (CRF). In the end, we pick
up 30 days of data consisting of 8,605 time-series (i.e., nodes)
from 128 devices for applying MixedLiNGAM in this paper.

IV. ANALYSIS RESULTS

We first investigate the validity of MixedLiNGAM with
synthetic time series data. Next, we focus on the effectiveness
of the proposed approach in the log analysis by comparing
macroscopic graph structures (especially, direction and weight
of edges) generated by MixedLiNGAM and the PC algorithm
(core algorithm of the state-of-the-art log causal analysis
methods [5, 26]). Then, we demonstrate one case study to
show how MixedLiNGAM works more intuitively than the PC
algorithm in the context of network log analysis. Finally, we
discuss the scalability of our MixedLiNGAM implementation
by evaluating the processing time and memory usage.

A. Validation with synthetic data

Though the original MixedLiNGAM paper [10] evalu-
ated their method with synthetic data based on the logistic
model for discrete-continuous mixed data, our log time-series
data does not clearly follow this model. Here, we validate
MixedLiNGAM with more realistic synthetic data closer to
real network log data.

Suppose that event occurrence can be approximated by
Poisson processes. We consider causality as a probabilistic
state transition; if A has a causality to B with w = 0.8, it
means event A has 80% chance of triggering event B. Under
this assumption, we generate a random causal DAG and its
corresponding synthetic data that follows causal relations in
the DAG. As in the evaluation parameters in the original
MixedLiNGAM paper, the generated DAG consists of four
data nodes, and there are 50% chances of causal edge existence
between each node pairs. In the DAG, the causality weight
w is a uniform random number where 0.5 ≤ w < 1.0. We
generated a set of synthetic time-series data of 1-day or 7-
days length with 1-minute bins (i.e., data size is 1,440 and
10,800, respectively) that follows the generated causality of the
DAG. The generated time-series of an event is the mixture of
two components; individual component of Poisson processes
(control parameter λ, indicating how many times the events
appear in one day on average) and external component of
direct probabilistic causal effects from other connected nodes
in the DAG. These validation settings can be reproduced with
our open-source Python library causaltestdata [27].

With the random graphs and their synthetic time-series, we
compared the accuracy of the two methods for restoring the
causal structure. Table I shows the average accuracy of the
methods with 100 different random DAGs. There are three
metrics in the table: Skeleton accuracy is the accuracy in
detecting correct skeleton edges (i.e., node pairs with some
causality), Direction ratio is the ratio of correctly directed
edges in the correct skeleton edges, and Weight diff. is the
average difference of edge weight values in the correctly
directed edges. Skeleton accuracy values of the PC algo-
rithm and MixedLiNGAM are always the same because our

TABLE I
ACCURACY COMPARISON OF ESTIMATED CAUSALITY WITH PSEUDO DATA.

Method Data model Skeleton Direction Weight
Size λ accuracy ratio diff.

PC algorithm 1,440 10 0.878 0.170 –
1,440 100 0.980 0.272 –
1,440 1,000 0.993 0.211 –

10,800 10 0.973 0.271 –
10,800 100 0.993 0.270 –
10,800 1,000 0.957 0.283 –

MixedLiNGAM 1,440 10 0.878 0.704 0.198
1,440 100 0.980 0.651 0.124
1,440 1,000 0.993 0.296 0.080

10,800 10 0.973 0.768 0.087
10,800 100 0.993 0.682 0.097
10,800 1,000 0.957 0.240 0.242

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Number of daily event appearance

count
binarized

Fig. 3. Cumulative distribution of event appearance in case study data

MixedLiNGAM uses the PC algorithm to estimate the skeleton
graph. In the evaluation of the original MixedLiNGAM pa-
per [10], the Skeleton accuracy of the PC algorithm is always
lower than 80% in the logistic model data. In contrast, the
PC algorithm is more accurate for time-series data in our
results. One possible reason is the difference in Conditional
Independence tests used in the PC algorithm: original paper
uses Fisher-Z test, and we use G square test. We had already
confirmed that G square test is more appropriate than Fisher-Z
test at least for network log analysis [5].

In Table I, the Direction ratio of MixedLiNGAM is larger
than that of the PC algorithm. The direction ratio of the
PC algorithm is lower than 0.3, which is not reliable for
further analysis. This is because the PC algorithm cannot
determine directions of all edges (see § III-A). In comparison,
the direction ratio of MixedLiNGAM is improved to about 0.7
for most models. However, MixedLiNGAM is not accurate
for the model with λ = 1000 (1,000 times per day). This
inaccuracy comes from the LiNGAM’s assumption: the data
is non-Gaussian. If the time-series is too dense, the distribution
gets close to Gaussian, causing accuracy degradation. Still, in
the log analysis, the important log events (especially errors and
warnings) are not so frequently appeared. Figure 3 shows the

distribution of event appearance counts per day in the 1-day
log data used in case study (§ IV-C). The PC algorithm uses
binarized data, and MixedLiNGAM (i.e., direction part) uses
the original count data. More than 90% of log events appeared
less than 100 times per day (i.e., λ ≤ 100). The mean of the
counts per day is 79.4, and the median is 3 in this data. For
all of the dataset explained in § III-D, the average of means
is 70.8 and that of medians is 2.7. Therefore, our real case
study data is slightly dense but does not largely differ from
other days in our whole dataset.

B. Macroscopic analysis

TABLE II
MACROSCOPIC RESULTS (30 DAYS, 8605 NODES IN TOTAL)

Algorithm #edges #directed edges ave. weight stdev
Original PC 1289 121 – –

MixedLingam 1289 1240 0.856 0.248

Here, we focus on the macroscopic graph structures ob-
tained by the PC algorithm and MixedLiNGAM.

Table II lists the characteristics of the output graphs by
the two algorithms. The graphs consist of 1075 non-isolated
nodes and 1289 edges. Most of the nodes have no edges (i.e.,
isolated) after the edge pruning process. This is not surprising
because those logs often indicate warnings or non-fatal errors,
and therefore may not propagate. The numbers of nodes and
edges are the same for the two algorithms because the edge
pruning process is commonly applied.

Same as the validation results with synthetic data (§ IV-A),
MixedLiNGAM determines much more directions of edges
than the PC algorithm. The missing 49 edges in the
MixedLiNGAM result are due to direction flapping, which is
uncertainty in the most likely direction. This flapping happens
rarely, generally in the smallest graphs when there are not
enough variables for MixedLiNGAM to get conclusive results.

Furthermore, focusing on the average value of the weight
w, we find that the obtained directed edges indicate significant
confidence (e.g., close to 1.0). Thus, the causality of the output
directed edges are more reliable than that obtained from the
PC algorithm. Figure 4 represents the cumulative distribution
of weight value of edges in MixedLiNGAM. We confirm
that many of the edges have a high value of weight; For
example, 60% of the edges for w = 1.0, 90% of the edges
for w ≤ 0.5. Thus, we conclude that MixedLiNGAM reliably
and effectively extracts causal impacts in the network logs.

C. Case study

Next, we illustrate the usefulness of MixedLiNGAM output
for network operation. We focus on one case study related
to a link failure involving two connected devices (Router
1 and Switch 1). To discover the causality in this event,
the PC algorithm output five nodes and four undirected and
unweighted edges as shown in Figure 5 (a). Actual log
messages corresponding to the IDs are listed in Table III with
the timestamp. In this example, we see the templates related to

TABLE III
CAUSAL LOGS DURING LINKDOWN EVENT

TID Timestamp Log
43 16:22:04 R1: bgp send: sending 21 bytes to 10.0.0.1 blocked: Resource temporarily unavailable
55 09:01:04 R1: bgp hold timeout:3814: NOTIFICATION sent to 10.0.0.1 (External AS X): code 4 (Hold Timer Expired Error: holdtime expired)
56 09:01:09 R1: RPD BGP NEIGHBOR STATE CHANGED: BGP peer changed state from Established to Idle

107 15:16:10 S1: EVT E4 PORT GigabitEthernet4/1 25011001 1350:AAAA Port up.
108 09:00:53 S1: EVT E4 PORT GigabitEthernet4/1 25011101 1350:AAAA Error detected on the port.

 0.001

 0.01

 0.1

 1

-0.2 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Weight value

Fig. 4. Cumulative distribution of weight of edges

107
port up

108
IF error

56
BGP change

55
BGP timeout

43
BGP error

Router 1 Switch 1

107
port up

108
IF error

56
BGP change

55
BGP timeout

43
BGP error

Router 1 Switch 1

0.60

0.60 0.74

0.83

(a) PC algorithm (b) MixedLiNGAM

Fig. 5. Case study: Link down between two devices

interface and BGP. However, it is difficult to find any causality
from this graph because no directed edges are discovered. This
is consistent with the result on a few directed edges with the
PC algorithm in the previous macroscopic characteristics.

On the other hand, Figure 5 (b) represents the graph
structure obtained by MixedLiNGAM. It is clearly more
informative and valuable for better understanding due to its
directed and weighted edges. Furthermore, the edge direction
is intuitively realistic; An interface error (ID 108) at Switch
1 triggers BGP state change (ID 56) at Router 1. Then, BGP
process is timeout (ID 55) due to the link down. Furthermore,
this BGP state change (ID 56) finally relates to port up
(ID 107) at Switch 1 when the link is up again. Checking the
timestamps in Table III, we notice that the link down and state
change happen within 15 seconds, but the state change and port
up are 6 hours apart. Thus, the causal inference algorithms are
robust against two logs even temporally far from each other.

D. Performance evaluation

Finally, we evaluate the performance of the PC algorithm
and our MixedLiNGAM implementation in processing time
and memory usage. For the evaluation, we use a commodity
computer (CPU: Intel Xeon E5-2680, Memory: 30GB).

Figure 6 displays the processing time overhead for the
PC algorithm and MixedLiNGAM. The x-axis indicates the
number of non-isolated nodes in the skeleton graph, and the
y-axis is the total processing time in second. We confirm that
the PC algorithm shows a low overhead due to the simplicity
of the orientation rules. On the other hand, MixedLiNGAM is
2.4 times slower in maximum than the PC algorithm. However,
considering the benefit of weighted directed graph output, we
believe that this overhead is acceptable.

Figure 7 represents the memory usage of the two algorithms
for different numbers of non-isolated nodes. We see that the
overhead of the MixedLiNGAM and regression process is
limited, compared with the edge pruning process.

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

Number of nodes

PC algorithm
MixedLiNGAM

Fig. 6. Processing time overhead

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a causal inference algorithm for
network log analysis. The key feature of the algorithm called
MixedLiNGAM is to output weighted directed graphs from
input log time-series data, though prior PC-algorithm based
algorithms treat unweighted graphs. This weighted graph is ex-
pected to be more helpful in network root cause analysis. Our
preliminary evaluation of MixedLiNGAM with actual network
log data obtained at the nation-wide research and education
network in Japan demonstrates that MixedLiNGAM outputs
ten times more directed edges than the PC algorithm, and

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

A
v
e

ra
g

e
 p

ro
c
e

s
s
 s

iz
e

 (
M

B
)

Number of nodes

PC algorithm
MixedLinGAM

Fig. 7. Memory usage

the distribution of their weights indicates that MixedLiNGAM
successfully extracts more reliable causal effects in the log
analysis. Our primary contribution is to provide new insight
into quantitative network root cause analysis.

We will investigate more characteristics of obtained
weighted graphs toward more quantitative root cause analyses.
We also intend to study more performance improvement of
MixedLiNGAM to apply it to large-scale network data.

ACKNOWLEDGEMENTS

The authors thank Shohei Shimizu for providing us the
original MixedLiNGAM implementation. This work is sup-
ported by the NII internship program and the MIC/SCOPE
#191603009.

REFERENCES

[1] K. Otomo, S. Kobayashi, K. Fukuda, and H. Esaki, “Latent
variable based anomaly detection in network system logs,”
IEICE Transactions on Information and Systems, vol. E102.D,
no. 9, pp. 1644–1652, 2019.

[2] T. Kimura, A. Watanabe, T. Toyono, and K. Ishibashi, “Proac-
tive Failure Detection Learning Generation Patterns of Large-
scale Network Logs,” in Proceedings of IFIP/IEEE CNSM’15,
2015, pp. 8–14.

[3] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learn-
ing,” in Proceedings of the ACM SIGSAC CCS ’17, 2017, pp.
1285–1298.

[4] N. Aussel, Y. Petetin, and S. Chabridon, “Improving perfor-
mances of log mining for anomaly prediction through NLP-
based log parsing,” in Proceedings of IEEE MASCOTS ’18,
2018, pp. 237–243.

[5] S. Kobayashi, K. Otomo, K. Fukuda, and H. Esaki, “Mining
Causality of Network Events in Log Data,” IEEE Transactions
on Network and Service Management, vol. 15, no. 1, pp. 53–67,
Mar. 2018.

[6] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-Dimensional root
cause diagnosis via co-analysis,” in Proceedings of the 9th
international conference on Autonomic computing - ICAC ’12.
New York, New York, USA: ACM Press, 2012, pp. 181–190.

[7] A. Messager, G. Parisis, I. Z. Kiss, R. Harper, P. Tee, and
L. Berthouze, “Inferring Functional Connectivity From Time-
Series of Events in Large Scale Network Deployments,” IEEE

Transactions on Network and Service Management, vol. 16,
no. 3, pp. 857–870, 2019.

[8] J. Pearl, Causality: Models, Reasoning, and Inference, 2nd ed.
Cambridge Press, 2009.

[9] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction
and Search. The MIT Press, 1996.

[10] C. Li and S. Shimizu, “Combining Linear Non-Gaussian
Acyclic Model with Logistic Regression Model for Estimating
Causal Structure from Mixed Continuous and Discrete Data,”
arXiv, Feb. 2018, ref: 1802.05889. [Online]. Available:
http://arxiv.org/abs/1802.05889

[11] S. Urushidani, M. Aoki, K. Fukuda, S. Abe, M. Nakamura,
M. Koibuchi, Y. Ji, and S. Yamada, “Highly available network
design and resource management of sinet4,” Telecomm. Systems,
vol. 56, pp. 33–47, 2014.

[12] J.-G. Lou, Q. Fu, Y. Wang, and J. Li, “Mining dependency in
distributed systems through unstructured logs analysis,” in ACM
SIGOPS Operating Systems Review, vol. 44, 2010, p. 91.

[13] S. Lu, B. B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang, “Log-
based Abnormal Task Detection and Root Cause Analysis for
Spark,” in Proceedings of IEEE ICWS 2017, 2017, pp. 389–396.

[14] Z. Jia, C. Shen, X. Yi, Y. Chen, T. Yu, and X. Guan, “Big-data
analysis of multi-source logs for anomaly detection on network-
based system,” in IEEE CASE 2018, 2018, pp. 1136–1141.

[15] B. C. Tak, S. Tao, L. Yang, C. Zhu, and Y. Ruan, “LOGAN:
Problem Diagnosis in the Cloud Using Log-Based Reference
Models,” in Proceedings of IEEE IC2E’16, 2016, pp. 62–67.

[16] K. Nagaraj, C. Killian, and J. Neville, “Structured Comparative
Analysis of Systems Logs to Diagnose Performance Problems,”
in Proceedings of NSDI’12, 2012, pp. 1–14.

[17] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates, “G-
RCA: A generic root cause analysis platform for service quality
management in large IP networks,” IEEE/ACM Transactions on
Networking, vol. 20, no. 6, pp. 1734–1747, 2012.

[18] J. Manuel, N. González, J. A. Jiménez, J. Carlos, D. López,
and H. A. P. G, “Root Cause Analysis of Network Failures
Using Machine Learning and Summarization Techniques,” IEEE
Communications Magazine, pp. 126–131, September 2017.

[19] E. Chuah, S.-h. Kuo, P. Hiew, W.-c. Tjhi, G. Lee, J. Hammond,
M. T. Michalewicz, T. Hung, and J. C. Browne, “Diagnosing
the Root-Causes of Failures from Cluster Log Files,” in IEEE
HiPC 2010, 2010, pp. 1–10.

[20] S. E. Solmaz, Bugra Gedik, H. Ferhatosmanoglu, S. Sözüer,
E. Zeydan, and C. Ö. Etemoglu, “ALACA : A platform for
dynamic alarm collection and alert,” International Journal of
Network Management, pp. 1–17, March 2017.

[21] V. Rodrigo, M. Chioua, T. Hagglund, and M. Hollender, “Causal
analysis for alarm flood reduction,” IFAC-PapersOnLine,
vol. 49, no. 7, pp. 723–728, 2016.

[22] R. Neapolitan, Learning Bayesian Networks. Northeastern
Illinois Universitya, 2004.

[23] T. Verma and P. Judea, “An Algorithm for Deciding if a
Set of Observed Independencies Has a Causal Explanation,”
in Proceedings of the Eighth Conference on Uncertainty in
Artificial Intelligence, 1992, pp. 323–330.

[24] G. Schwarz, “Estimating the dimension of a model,” The Annals
of Statistics, no. 2, pp. 461–464, 1978.

[25] S. Shimizu, P. O. Hoyer, A. Hyvarinen, and A. Kerminen, “A
Linear Non-Gaussian Acyclic Model for Causal Discovery,”
Journal of Machine Learning Research, p. 28, 2006.

[26] S. Kobayashi, K. Otomo, and K. Fukuda, “Causal analysis of
network logs with layered protocols and topology knowledge,”
in Proceedings of CNSM’19, 2019, pp. 1–9.

[27] “causaltestdata,” https://github.com/cpflat/causaltestdata.

