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Latent Variable Based Anomaly Detection in Network System Logs∗

Kazuki OTOMO†a), Satoru KOBAYASHI††b), Nonmembers, Kensuke FUKUDA††,†††c),
and Hiroshi ESAKI†d), Members

SUMMARY System logs are useful to understand the status of and de-
tect faults in large scale networks. However, due to their diversity and
volume of these logs, log analysis requires much time and effort. In this
paper, we propose a log event anomaly detection method for large-scale
networks without pre-processing and feature extraction. The key idea is
to embed a large amount of diverse data into hidden states by using latent
variables. We evaluate our method with 12 months of system logs obtained
from a nation-wide academic network in Japan. Through comparisons with
Kleinberg’s univariate burst detection and a traditional multivariate analy-
sis (i.e., PCA), we demonstrate that our proposed method achieves 14.5%
higher recall and 3% higher precision than PCA. A case study shows de-
tected anomalies are effective information for troubleshooting of network
system faults.
key words: network operation, system logs, syslog, anomaly detection,
latent variable analysis, variational autoencoder

1. Introduction

System logs are one of the most useful sources to understand
the state of a network. In an operational network, syslog
is widely used for collecting network logs and allows one
to gather logs from all devices at one server. In network
operation, appearing unusual logs is a signal for strange or
unexpected behavior. Thus, we consider such appearance of
the unexpected logs as an anomaly. For example, if one finds
a large number of BGP status change logs for a particular AS
in a day, compared to those in the past days, one interprets
this as instability of the route to that AS.

However, it is not easy for network operators to inves-
tigate the details of network problems with the logs because
of their diverse and massive nature. Many log analysis meth-
ods for finding anomalies and their root causes have been
proposed to overcome this problem [2]–[7]. In many cases,
one first classifies the logs by their message type (i.e., log
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template) then treats them as statistical time series to be later
processed through statistical analysis. System logs have an
intrinsic nature that makes automatic analysis very difficult;
their time series show a variety of characteristics such as pe-
riodicity, burstiness, randomness, and sparseness, compared
with other time series data. Most studies have been devoted
to developing effective pre-processing methods (e.g., filter-
ing, smoothing, denoising) and appropriate discriminative
log time series features for analyzing their own data. Ap-
plying statistical algorithms with these features, they detect
anomalies (e.g., burstiness, change points) in log time se-
ries. However, these existing approaches have two limita-
tions. First, we require enough domain knowledge about
the underlying networks for optimizing the analysis meth-
ods. Second, we need to rely on predefined thresholds for
using predefined features even though behavior of log time
series is various and different for each dataset.

To detect anomalies (i.e., unexpected behavior in log
time series), we propose a robust statistical method that han-
dles complicated system log time series, without any spe-
cific (case-by-case) preprocessing (e.g., filtering, smooth-
ing, auto-regression) for log anomaly detection. The key
idea of our approach is to embed a large amount of diverse
data into hidden states by using latent variables and detect
anomalies in latent space (as shown in Fig. 1). A latent
variable analysis is also known as topic modeling or Latent
Dirichlet Allocation (LDA) often used in natural language
processing. A topic model discovers topics as latent vari-
ables from a collection of documents. We borrow the idea
of this approach: We first translate raw log messages into log

Fig. 1 Key idea of our proposed framework
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Fig. 2 Methodology overview

time series for each type of logs (step (1) in Fig. 1). Next,
log time series are mapped into latent variables per day per
type of logs (step (2) in Fig. 1). In the latent space, values
of latent variables represent the trend of the corresponding
time series. After that, we apply a clustering method to la-
tent variables and detect deviations from detected clusters
in the latent space (step (3) in Fig. 1). We consider clusters
in the latent space are groups of normal trend time series in
the real log time series. On the other hand, deviations from
clusters in the latent space are interpreted as anomalies be-
cause the deviation in the latent space means deviated time
series trend in the real log time series. Thus, with latent vari-
ables, time series can be represented by their trend without
any domain knowledge or preprocessings to real log time
series.

Our proposed method consists of two phases (see also
Fig. 2): (1) The training phase embeds log time series char-
acteristics into latent variables by using Conditional Vari-
ational Autoencoder (CVAE). To mitigate the difficulty in
handling various time series from many devices together, we
provide CVAE with type of log messages as a conditional la-
bel. (2) The detection phase highlights anomalies deviating
from the distribution of the latent variables with clustering
algorithms.

Using syslog data collected in a nation-wide academic
network in Japan (SINET4), we confirm through evaluation
that CVAE has higher discriminative power for analyzing
complex time series than Kleinberg’s univariate burst de-
tection [8] and a traditional multivariate analysis (Principal
Component Analysis; PCA). With a case study, we demon-
strate that our method is useful in troubleshooting network
system faults.

The contribution of this paper is twofold. We first pro-
pose our latent variable-based method for highly diverse
log time series data without any data-specific preprocess-
ing. Next, we discuss the effectiveness of the method when
we applied it to real network syslog data.

2. Related Work

Many studies have been conducted for finding anomalies
and their root causes [2], [4], [5] in log data. Zhong et al. [3]
proposed an anomaly detection method for both device and
network errors with fine log time series feature creation.
Kimura et al. [9] introduced an online failure prediction
method based on log time series features. Lu et al. [6] fo-
cused on the task duration time and proposed root cause
analysis methods with distributed computing system logs.
As these methods are based on data specific feature creation,
they perform well in each considered environment. How-
ever, to apply these methods to other network systems, we
have to re-define features to optimize these methods. This
requires deep domain knowledge of the underlying network
systems to make efficient use of these methods. In addition,
these methods miss unknown or new anomalies, which are
not captured by the pre-defined features. Instead, we fo-
cus on an approach that does not require pre-definition of
anomalies but learns the normal state of the system from log
data.

There are methods of giving new insights for operators
with knowledge mining from log data [10], [11]. Kobayashi
et al. [7] proposed a time series causal inference method in
network logs. Hacker et al. [12] introduced a log classifi-
cation method based on the severity of network operation.
These methods do not require predefined features because
the features characterizing the data can be obtained through
learning. However, in contrast with our method, they do not
aim at anomaly detection but knowledge mining.

Recently, some studies have applied deep learning
techniques to anomaly detection in logs [13]–[16]. Du
et al. [17] proposed a log anomaly detection method by us-
ing Long-Short Term Memory (LSTM). They built LSTM
models for each type of logs and whole log time series in ap-
plication level logs (OpenStack and HDFS logs). However,
we have to handle network logs which are larger amount
and more diverse than application level logs. Therefore, we
circumvent anomaly detection directly from dataset but try
to reduce the dimension of input dataset by latent variable
analysis.

We focus on anomaly detection without specific feature
creation for more general analysis of logs. PCA is a standard
algorithm of learning or obtaining time series features from
data. Lakhina et al. [18] proposed a general traffic analysis
method based on feature learning with PCA. They success-
fully detected traffic anomalies without specific definitions
of those anomalies. However, as log data are highly sparse
and discrete, which differ with traffic data, it is not enough to
learn features with such a naive approach (i.e., PCA). Thus,
we use CVAE, which is based on a higher assumption that
observed data are subject to latent variables. We choose a
PCA based method as a baseline algorithm and aim to out-
perform it with our proposed method.
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3. Methodology

3.1 Overview

The key idea of our proposed method is to model log time
series characteristics based on the latent variables. Latent
variable analysis is conducted to attempts to explain observ-
able data by unobservable (i.e., latent) variables. In our
context, as the observable data are log time series, we in-
tend to represent the characteristics of observable log time
series, such as periodicity, frequency, burstiness, by latent
variables. By applying a clustering algorithm or anomaly
detection method to the latent variables, we can distinguish
anomalous behavior of log time series from the normal be-
havior. Formally, as it is difficult to compute latent variables
directly, we have to estimate them by assuming certain sta-
tistical models. In this study, we rely on Conditional Varia-
tional Autoencoder (CVAE) for estimating latent variables.

An overview of the proposed method is illustrated in
Fig. 2. First, we construct the time series of the number of
log appearances per device per template for one day. We
call it a data point. Next, with CVAE, we reduce the dimen-
sions of the original vectors by using CVAE. We call such
a reduced vector a latent variable. We train CVAE model
so that the latent variable effectively represents the potential
behavior of log time series. Then, each data point is embed-
ded into a latent variable. After that, we apply a clustering
algorithm to the latent variables and finally detect outliers in
log time series as anomalies.

3.2 Training Phase

We briefly explain CVAE, a variation of the Variational
Autoencoder (VAE). The VAE [19] is a stochastic varia-
tional inference method based on the variational Bayesian
approach. Since this is an unsupervised method, annotations
for logs are not necessary.

Let us consider one-day long log time series x gener-
ated by a random process based on invisible continuous ran-
dom variable z. This z is also subject to a prior distribution
pθ(z). Thus, x is subject to a conditional distribution pθ(x|z).
The goal is to obtain latent variables z from input x. In or-
der to get the latent variables, we estimate the distribution
pθ(z|x) with Bayes’ theorem and approximate distribution
qφ(z|x). Now, the objective is to maximize the marginal like-
lihood (MLH) log pθ(x) = DKL(qφ(z|x)‖pθ(z|x))+L(θ, φ, x).
This equation is rearranged as follows (details are given in
[19], [20]).

log pθ(x) ≥ L(θ, φ, x), (1)

L(θ, φ, x) = −DKL(qφ(z|x)‖pθ(z))

+ Eqφ(z|x)[log pθ(x|z)]. (2)

We train the model that generates qφ(z|x) from input x
by optimizing the lower bound L(θ, φ, x). The training pro-
cess is as follows. First, we consider the prior distribution as

a Gaussian pθ(z) = N(z; 0, I) and let qφ(z|x) be a multivari-
ate Gaussian. Next, we estimate the parameters (φ) of the
posterior distribution (qφ(z|x)) with a fully connected neu-
ral network (encoder). Then, we acquire the distribution of
the latent variable qφ(z|x), and through the sampling pro-
cess from it, we obtain the latent variable z. Finally the de-
coder neural network reconstructs x̂ from the latent variable
z, and we feedback the loss values in Eq. (2). Reviewing
Eq. (2), we can consider the first term (Kullback-Leibler di-
vergence, KLD) as the distance between estimated distribu-
tions qφ(z|x) and pθ(z), and the second term (Marginal Like-
lihood, MLH) as the reconstruction error between x and x̂.
Through these processes, we can compute Eq. (2) and pro-
ceed with the training of the encoder and decoder neural
networks.

The CVAE [20] is a variation of the VAE. CVAE uses
label information when generating the latent variable z and
reconstructing x̂. We define the conditional label as the
event that is an index of a unique combination of devices
and log templates.

3.3 Detection Phase

After applying CVAE to log time series data, we obtain the
latent variables for each data. Now, as the latent variables
well-describe time series trends, the goal of this phase is to
build upon the time series description by latent variables to
find the deviation from “normal” states.

Some latent analysis methods define the anomaly level
based on reconstruction errors [18], [21]. In our case, we can
use MLH for reconstruction errors. However, there are two
problems with using MLH. (1) The reconstruction process is
stochastic and MLH values follow a Gaussian distribution.
(2) MLH is biased by the intensity of the original data.

To solve these problems, we rely on the distance be-
tween latent variable distribution (qφ(z|x)) and the assumed
prior distribution (pθ(z)) by computing DKL(qφ(z|x)‖pθ(z))
in Eq. (2). After training, the learned model generates the
distribution of the latent variable (qφ(z|x)) from input data
x as the output in a hidden layer (shown at the bottom of
Fig. 2). We use this distribution qθ(z|x) for detection, not the
sampled value z. Then, we deterministically compute the
KLD (DKL(qφ(z|x)‖pθ(z))). The KLD represents the trend in
the input time series x. Thus, input data with similar KLD
value belong to the same trend. Therefore, we can obtain
reference behavior by clustering KLD values. Note that the
KLD value is not an anomaly level but a state of input time
series. Thus, we consider the data whose KLD value devi-
ates from others as an anomaly regardless of the magnitude
of numeric value of the KLD.

Figure 3 shows an example of the KLD and MLH val-
ues of the dataset. The horizontal axis shows data points in
descending order of the number of log appearances, and the
vertical axis shows the KLD (top) and MLH (bottom) val-
ues. In particular, the gray marks indicate days without any
log appearances (i.e., 1,440-long zero vector), and the blue
ones show more than equal to one log appearances on that
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day. Even if we input no log appearances data (i.e., gray
marks in the Figure) to CVAE, KLD values are different for
each event thanks to the weight of the conditional label (i.e.,
event ID). It enables such data points to belong to appro-
priate clusters depending on the behavior of the event. As
shown in the figure, the MLH values are more spread and
biased by the number of log appearances. In addition, they
increase along with the number of log appearances. On the
other hand, the KLD values are not biased by the number
of log appearances and are more stable than MLH values.
Therefore, we use the KLD as an indicator of time series
trend.

Figure 4 is a cumulative distribution of normalized
KLD values (blue curve) and normalized MLH values (or-
ange curve). Red lines show 99% points in KLD and MLH.
As shown in this figure, KLD requires the range from 10−7

to 10−2 to represent 99% of data points. However, MLH
needs 10 times wider range than KLD (from 10−7 to 10−1).
Thus, KLD is more suitable for the indicator of time series
trend because dense data is easier to handle than sparse data.

Once latent variable distribution is obtained and the
KLD is computed one can choose any clustering method
for anomaly detection. In this study, we used a well-
known density-based clustering algorithm, Density-Based
Algorithm for Discovering Clusters (DBSCAN) [22]. By

Fig. 3 Kullback Leibler divergence and Marginal Likelihood

Fig. 4 Kullback Leibler divergence and Marginal Likelihood (CDF)

applying DBSCAN to the KLD time series for each event,
we detect clusters of KLD (i.e., normal state of that type of
log) and anomalies that do not belong to any clusters.

4. Dataset and Comparison Algorithms

4.1 Dataset

We use a set of network logs collected at SINET [23], a
Japanese research and education network. This network
connects over 800 academic organizations in Japan and con-
sists of eight core routers, 50 edge routers, and 100 layer-2
switches. We selected a part of 365 days data from 2012/4/1
to 2013/3/31 gathered from commodity L2 switches and L3
routers. Table 2 lists well-known services working in this
network.

As log messages are string data, statistical techniques
cannot be applied directly. Thus, we generate log templates
from raw log messages with the supervised learning ap-
proach proposed by Kobayashi et al. [7]. Log templates are
log messages without variables (e.g., IP address), as shown
in Fig. 5. We then classify logs into log templates and extract
time series data from their time stamps for each template per
device. We thus generate 1,789 unique log templates from
the whole dataset. We define an event as 365 of 1-day log
time series, which have the same log template in one device.
For our analysis, we manually selected 120 events and ap-
plied CVAE to them (shown in Table 1) to make sure that the
dataset has several anomalies and the diversity of the time
series. We confirm that these selected events include a large
variety of time series trends such as periodicity, burstiness,
and sparseness as well as diverse categories of log templates
shown in Fig. 6.

We construct log time series of the number of log

Table 1 SINET4 Dataset
Training Testing

logs 174,623 284,317
devices 24 24

templates 33 33
events 120 120

data points 21,960 21,840
start ’12/04/01 ’12/10/01
end ’12/09/30 ’13/03/31

Table 2 Examples of network services in SINET4

Routing BGP, OSPF
Management ssh
Monitor SNMP, ARP
Network LACP, MTU, TCP
Service NTP
VPN L2VC, MPLS

Fig. 5 An example of log templates
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Fig. 6 Number of Detected Anomalies and Their Precision Per Log Cat-
egory

appearances for each minute per event per day (i.e., data
point). The processing flow is as follows: After we classi-
fied raw log data into the type of logs per device, one event
(for example, “ssh login at device 1”) has 365 days long log
entries. We first count the number of log appearances for
each minute. Then, we split them for each days. We now
have 365 data points of event “ssh login at device 1”. In
other words, each data point consists of one time series; It
has 1,440 minute-length as X-axis and the number of log ap-
pearances as Y-axis (shown as x1 and x2 time series graphs
in Fig. 2). We also use conditional labels built on event la-
bels concatenating log time series. To input event labels into
CVAE, we first assign unique IDs to all the events and then
encode them to one-hot vectors. If the “ssh login at device
1” event has ID i, the conditional label is a 120 long vec-
tor and values are zero except index i. The value of index
i is one. Then, the conditional label has 120 dimensions.
After repeating the same process to all the 120 events, we fi-
nally obtain 120× 365 = 43,800 data points and conditional
labels.

In the end, we explain training and testing data for our
analysis. The first three months of the data include a lot
of unusual behavior because this period was the migration
and beginning of network operation in SINET4. Thus, we
exclude the data in the first three months (10,920 data points
in total) and use the rest of 43,800 data points. Then, we
split this dataset into training dataset and testing dataset (see
also Table 1). The training dataset is the first half of dataset
(21,960 data points, that is from 2012/4/1 to 2012/9/30) and
the testing dataset is the second one (21,840 data points, that
is from 2012/10/1 to 2013/03/31).

4.2 Baseline Algorithms

To understand the effectiveness of CVAE for log anomaly
detection, we compare it to two traditional baseline algo-
rithms: Kleinberg’s burst detection [8] and PCA. The three
algorithms are summarized in Table 3.

4.2.1 Burst Detection

Otomo et al. [24] conducted log analysis focusing on the

Table 3 Comparison of methods

name multivariate determin. linear trans.
burst detection no yes -

PCA yes yes yes
CVAE yes no no

burstiness and causality of log time series. They first re-
moved trivial logs (e.g., periodic and very frequent logs)
to prevent detecting trivial bursts then detected log bursts
with Kleinberg’s burst detection [8]. Applying the same al-
gorithm to our dataset, we confirm 188 log bursts out of all
21,840 data points. In the following comparison, we use
these bursts as a part of reference of log anomalies.

4.2.2 PCA

To detect traffic anomalies, Principal Component Analysis
(PCA) is a well-studied algorithm [18], [21]. It translates
a set of input traffic time series data into main and resid-
ual subspaces with a linear transformation. This algorithm
is similar to CVAE mapping raw data to the latent space,
though CVAE is a non-linear transformation. We imple-
ment a PCA-based anomaly detector. Applying PCA to a
set of log time series, we obtain principal components of
the input dataset and separate them into main and residual
principal components with a threshold based on their vari-
ance coverage. We then reconstruct each time series with
the main components and compute the reconstruction errors
with the original data. Finally, we apply a clustering method
(DBSCAN) to these reconstruction errors and obtain
anomalies.

5. Evaluation

In this section, we discuss the evaluation of our method. We
use 365 day-long system log data obtained from SINET4
and detect anomalies per day. First, we compare the per-
formance of our method with PCA and burst detection tech-
nique using 6 month-long training dataset and 6 month-long
testing dataset. Next, we evaluate dependency of training
data set size on the accuracy of anomaly detection. Finally,
we present a case study that demonstrates the effectiveness
of our method for network troubleshooting.

5.1 Parameter Tuning

We first briefly describe the parameter tunings of CVAE. En-
coder and decoder networks in CVAE each have four hidden
layers. The input layer has 1,560 dimensions (1,440 dimen-
sion of time series and 120 dimension of label data). The
encoding neural network has four layers, and each layer has
512, 256, 128 and 64 units in order from the input layer. We
set the latent variables dimensions to 10. The decoding neu-
ral network has the opposite structure of the encoder, but the
output size is 1,440 so that the output is a reconstructed time
series. To avoid over fitting, we dropout 30% of units for
each layer during training. During training, we empirically
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set the number of epochs to 50 based on test trial results.
We confirm that loss values converge after training. Next,
we compute KLD for each time series using the learned en-
coder network and apply DBSCAN to KLD for each event.
We tune DBSCAN parameters for each event so that a size
of cluster is longer than a week. As the training process is
stochastic, the results are not the same even if the loss val-
ues are converged. To mitigate this uncertainty, we train the
model ten times and adopt anomalies detected in majority
votes.

We use a commodity computer (Xeon CPU and GTX-
1080 GPU) for processing. One training takes 489.5s on
average of 10 trials. The detection phase requires 45.1s on
average to calculate KLD and conduct DBSCAN.

5.2 Result Overview

For better understanding detected anomalies in network
management, we manually inspected all the test data points
and annotated them as anomaly or normal based on the
SINET4 trouble ticket data and our domain knowledge for
network management; For example, “ssh login” logs have
periodic appearance in our data because they are generated
by a CRON process including hourly remote ssh access. In
this case, we consider periodic appearance as “normal” and
lack of periodicity as “anomaly”. We use these annotations
as ground truth.

We first show that CVAE outperforms PCA (Table 4).
Note that CVAE’s results are averages of 6 trials because our
proposed method is stochastic. CVAE detects more number
of anomalies with higher accuracy than PCA; 1,215 anoma-
lies with CVAE and 1,044 with PCA. CVAE’s recall is about
14.5% higher than PCA’s recall and CVAE’s precision is
about 3% higher than PCA’s one. The number of overlap
anomaly was 898.

We also confirm that CVAE and PCA detected ≈ 90%
of the bursts detected by Kleinberg’s burst detection algo-
rithm as shown in the last row in Table 4. By inspecting
missing bursts, we find two parameter tuning issues:

Table 4 Summary of results

PCA CVAE
Data 21,840 21,840

Anomalies 1,044 1,215
Precision 88.4% 91.5%

Recall 59.4% 74.0%
#Bursts 169 (89.9%) 170 (90.0%)

Fig. 7 Performance dependency on different training data size: Precision, Recall, #True positive and
#False positive, from left to right, respectively.

(1) When similar burst patterns last for a few days,
DBSCAN extracts them as a cluster, not outliers. The algo-
rithm thus does not detect these bursts as anomalies. (2) In-
tensive bursts cause CVAE and PCA to detect a relatively
small burst as a normal.

Figure 6 is a histogram of detected anomalies per log
category. Orange bars indicate true positive anomalies de-
tected with CVAE, white ones with PCA, and gray ones
with burst detection. Orange line shows CVAE precision
and white one shows PCA precision. In most cases, we
find that CVAE correctly detects anomalies such as bursti-
ness and lack of periodicity. Focusing on the case in
which PCA detects more true positive anomalies than CVAE
(e.g., interface(agg)), we find CVAE has a higher precision
than PCA thanks to the CVAE’s robustness against noise
(see § 5.4 (2)). On the other hand, when CVAE detects
more true positive anomalies than PCA (e.g., VPN(MPLS),
monitor(SNMP), EGP(BGP)), we find that they still keep
high precision thanks to its robustness against outliers (see
§ 5.4 (3)). Therefore, our proposed method is better bal-
anced between the number of detected anomalies and pre-
cision than the traditional PCA-based method. Note that a
detected anomaly means time series behavior deviating from
the normal state as defined in §1.

5.3 Dependency of Training Data Size

We also evaluate the performance of our proposed method
using different training data size: 1 - 6 month-long. As
shown in Table 1, we have 6 month-long training dataset
and 6 month-long testing dataset, which are continuous in
time series. We use different size of training dataset in the
order of newest date: 1 month-long dataset is from ’12/9/1 to
’12/9/30, 2 month-long dataset is from ’12/8/1 to ’12/9/30,
and so forth. Figure 7 shows detailed results for each size
of training data. Blue lines are CVAE’s results and orange
ones are PCA’s results. CVAE’s results are averages of 3
trials in this figure. As shown in Fig. 7, CVAE’s precision
and recall outperform PCA’s for each training data size. Fo-
cusing on the number of false positives (shown on the right
in the figure), CVAE’s one increases in less than 3 month-
long training data. In the worst case, the number of false
positives is larger than PCA’s one in 1 month-long training
data. Thus, we conclude that CVAE requires 3 month or
more training data for obtaining appropriate results.
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Fig. 8 Comparison between KLD (CVAE), reconstruction errors (PCA)
and burst detection results

5.4 Detailed Comparison

(1) Anomalies hidden in periodicity:

Figure 8 shows the detailed results of periodic remote ac-
cess logs for 182 days. The top graph shows KLD computed
with CVAE and the bottom graph illustrates reconstruction
errors obtained with PCA. Red dotted lines indicate anoma-
lies detected by burst detection. These logs appear once per
hour due to an automated remote monitoring script. We con-
firm significant outliers in the figure due to missing periodic
logs (label (a)). As non-periodic anomalies represent fail-
ures of automatic remote access login, we intend to detect
these non-periodic anomalies in addition to burst anomalies.
As expected, the burst detection finds only burst anomalies.
As shown in this figure, CVAE and PCA correctly detect
these two type of anomalous data from others. Thus, CVAE
and PCA correctly learn event-wise features (in this case,
periodic appearance) thanks to their discriminative power.

(2) Robustness against noisy logs:

If there are noisy logs without outliers, PCA yields many
false anomalies due to its noise-sensitivity. However, as
CVAE is stochastic and merges the multiple results, we can
mitigate the effect of noises. Figure 9 (interface aggregate
warning event) shows an example of this case. The top
graph shows KLD in CVAE, and the bottom graph shows
the reconstruction errors in PCA. The solid blue circles
are normal points and the crosses are anomalies based on
DBSCAN clustering. The orange triangles are true anoma-
lies. This event has discreteness in the number of log appear-
ance because its logs always appear with multiple lines (i.e.,
#network interfaces in its device). As shown in the figure,
PCA is affected by this trend and also shows discreteness in
reconstruction error. This trend makes anomaly detection or
clustering difficult because errors spread with constant in-
terval. With CVAE, however, the KLD values are relatively
spread compared with reconstruction errors, and DBSCAN
detects other anomalies.

Fig. 9 Robustness of CVAE against noisy logs

Fig. 10 Robustness of CVAE against large outliers

(3) Robustness against outliers:

KLD is robust against the intensity (i.e., number of log ap-
pearances) of the original data, as shown in Fig. 3. On the
other hand, we confirm that PCA’s reconstruction errors (not
shown in the figure) are also biased to the intensity, similar
to the case with MLH.

Figure 10 (MPLS path down event) shows an example
of CVAE’s sensitivity to a small number of log appearances.
The top graph shows KLD with CVAE, and the bottom
graph shows the reconstruction errors with PCA. The solid
blue circles are normal points and the crosses are anomalies
based on DBSCAN clustering. Note that anomalies in the
top graph are clustering results after merging ten trials, but
the KLD values are a result of one trial. These data have one
large outlier (around day 71; label (a)) which has a larger
number of log appearances than other days. As shown in
the figure, PCA is affected by this outlier, and many anoma-
lous points are not detected. With CVAE, however, the KLD
values are relatively spread compared with reconstruction
errors, and DBSCAN detects other anomalies. However, we
also confirm that less than 1% of the data have high KLD
values (> 10−4), as shown in Fig. 3. It is still possible that
the clustering process may miss small KLD value changes
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Fig. 11 Case study: BGP neighbor state change logs

due to these high values. We will work to improve this issue
by tuning the clustering process as future work.

Therefore, CVAE exhibits better robustness to outliers
and noises than PCA.

5.5 Case Study: BGP State Change

We now discuss anomaly examples detected from our pro-
posed method in Fig. 11. In this figure, each mark shows the
KLD of the BGP state change logs from a router per day.
Almost all days have a baseline (≈ 2.35 × 10−2). Checking
the raw logs around the 25th day (a red area labeled (a) in
the figure), we find that a connection with one particular AS
suddenly became unstable. These failures had been also re-
ported in a trouble ticket. Thus, they are useful information
for network operators or troubleshooting. As shown in the
bottom figure, PCA fails to detect most of these anomalies
due to a larger outlier. CVAE, on the other hand, success-
fully discovered them.

6. Conclusion

We proposed a log analysis method based on the latent vari-
able model to detect network system anomalies. We used
Conditional Variational Autoencoder (CVAE) and applied a
clustering algorithm to log time series with KL-divergence
of the latent variable distribution. We confirmed that this
method works well for highly sparse and diverse time series
through comparison with Kleinberg’s burst detection and a
traditional PCA-based method. Our method achieved 14.5%
higher recall and 3% higher precision than a PCA-based
method. We also evaluated performance dependency of dif-
ferent training data size and concluded 3 month or larger
size of training data is sufficient for our proposed method. In
addition, our case study showed that some detected anoma-
lies are helpful in finding network troubles. Towards the
deployment of our method to real network management, we
will work on addressing how to update the trained model
with upcoming syslog data.
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