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Abstract—
Configuring network devices is a main task of network

operators. However, understanding and consistently updating
network configuration files (config) is not an easy task especially
in a large-scale and complicated networks. In this paper, we
propose a semantic approach to provide better understanding of
such config files, different from syntax based approaches. The key
idea of the work is to extract semantics of blocks of the config
files by document embedding techniques in NLP. This extraction
enables us to understand context of config blocks with semantic
similarity metrics instead of syntax similarity ones. Furthermore,
this approach can be naturally extended to additional technical
documents such as vendor’s manual documents to add more
specific information on the semantics of configs. We first discuss
the quality of the obtained semantics for several embedding
techniques, by using clustering evaluations. We next demonstrate
the effectiveness of our approach with two case studies with
real network configs: (1) similar config block detection and (2)
automatic labeling of config block with vendor’s documents.

Index Terms—Network, Configuration, Semantics, Embedding

I. INTRODUCTION

Configuring network devices is one of the main tasks in
network operation. The network devices have multiple service
functions spanning multiple layers and are required to be inter-
connected. Thus, understanding configurations and modify
them as operators intent is critical to provide sustainable
network services. In particular, large-scale networks consist of
multiple different vendor’s equipment. For this issue, several
approaches have been studied in the past literature. One
approach is network verification aiming at automatically inves-
tigating the correctness of network properties (e.g., loop-free,
sink-hole) with help of sophisticated analysis techniques [1]–
[3]. To apply such techniques, extracting feature information
from configs is a required step, and the past works built
custom parsers, which is sometimes difficult to maintain for
format changes by system updates or new network protocols.
Another approach is to understand and compare the structure
of configs. In this approach, config blocks (i.e., small pieces of
configuration files) having similar syntax structure is extracted
and grouped [4], [5]. This approach helps operators better
understand in contents of configs. However, this approach only
focuses on syntax similarities of config blocks. So, it does not
consider higher-level semantics of them (e.g., a set of firewall
rules in a config block).

To overcome this issue, this paper focuses on automatic
extraction of semantics of config blocks in the latter approach
(data-driven config embedding) for precise understanding of
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Figure 1. Overview

network configuration. In other words, we intend to automati-
cally extract semantic information from a set of configuration
instances, beyond syntax similarity. For example, we would
like to find that some config blocks are different in terms of
the syntax, but they are config blocks for the same services.
In particular, this will be important if network operators
handle multiple vendor’s configs. The former approach (config
emulation) cannot process different syntax configs at once due
to dependencies of custom parsers.

The key idea of our approach is to extract semantics of
config blocks by using document embedding techniques pop-
ular in natural languages processing (NLP) (see also Figure 1).
These embedding techniques enable us to compare config
blocks with semantic similarity metrics. A difficulty to apply
NLP techniques to configs is that config blocks include small
number of words compared to other documents and many
of them are variables (e.g., IP address). In order to address
these problems, we discuss and design effective pre-processing
of the configuration instances for the document embedding
(§III-B). We apply several document embedding techniques
to pre-processed config blocks in order to understand more
suitable embedding techniques in our problem (§III-C). Fur-
thermore, we assign topic labels obtained from other technical
documents (i.e., Juniper manual documents) to config blocks
(§III-D). By these methods, we provide the semantic similarity



of config blocks and their meanings.
Our preliminary evaluation result using config files in In-

ternet2 [6] demonstrates that our method successfully obtains
clusters of config blocks sharing the same semantics; they are
not necessary to have the same syntax (§IV-B). Furthermore,
we also explain two case examples to show the effectiveness of
our approach. The first case shows querying config blocks in
semantic similarity (§V). The results show that our embedding
approach can detect semantically relevant, but different syntax
cases. The second case shows the possibility of combining
config blocks with external human-readable data. Although
our case study is preliminary and only use a small number
of dataset, it shows the posibility that our embedding method
helps us automatically assign appropriate topic labels of exter-
nal data (i.e., document of the target system) to config blocks.

II. RELATED WORK

Analyzing config files of network equipment has been
widely studied. The main direction of the analysis is ex-
tracting abstracted information (such as network topology,
network policies, etc.) with a parser which precisely split
configuration files along with the vendor specific format. Fogel
et al. proposed Batfish [1], a network validation tool based
on a general parser of configuration files. Several improved
methods are proposed for flexible verification [2] and partially
automated verification [3] on the basis of Batfish. These
works are focusing on reconstructing operational model from
configuration files. These parser-based analyses have a general
weakness: They require precise and strict parsers for all
supported vendors and systems. We have to keep refining
the parsers in order to adapt configuration format changes on
system updates of the network devices. In contrast, this paper
focuses on a data-driven approach that do not depend on the
vendors and systems.

Mining raw configuration data have been also conducted in
some past works [4], [5]. These works focus on finding in-
sights from the changes of configuration files. However, these
works only see changed lines (i.e., configuration commands)
and do not consider structure or semantics of whole configura-
tion file. In our analysis, we use the structure and semantics in
the network configuration files to obtain vendor-independent
knowledge of network configurations automatically.

In network log analysis, there are several works using
semantic approaches [7], [8]. They focus on extracting se-
mantics by using the NLP techniques (document clustering or
word embedding). The nature of dataset is similar between
configuration files and log data (e.g., short size text, domain
specific representations, etc.). Thus, we expect that similar
approach works also in configuration file analysis.

III. SEMANTICS EXTRACTION FROM NETWORK CONFIGS

A. Methodology overview

In this section, we introduce our config embedding method.
The config embedding consists of three processes: parsing,
normalizing, and embedding as shown in Figure 1. First of all,
we pre-process configuration files, more specifically splitting
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Figure 2. An example of splitting and normalizing a config file

them into config blocks and normalization of appeared words
in the block (§ III-B). Next, we apply word embedding meth-
ods to obtain corresponding document vector representations
(§ III-C). Furthermore, we obtain the vector representation of
external documents such as technical documents to assign the
topic labeling in the documents to the config blocks (§ III-D).

B. Pre-processing

The pre-processing step consists of two sub steps: split and
normalization.

First, in order to build a document dataset, we split a raw
config file into config blocks. The key concept of our approach
is roughly splitting a config file to pieces of config blocks and
obtaining semantic information without customized parsers.
Thus, the granularity of config blocks can be determined
arbitrarily. Our preliminary experiment shows following intu-
itive trends; finer granularity of the config blocks yields more
pinpointing semantic information (and vice versa).

In splitting config files, the boundary of the blocks depends
on vendors. Some vendors use blank line(s) as the separator,
others use a more structured style such as brackets, or json-
like formats. We assume the bracket-based separation in this
work due to our dataset format (see § IV-A). Note that any
separation rule can be selected depending on the structure of
the target data. We split configs by the pairs of curly braces
with four indentations as shown in Figure 2. After that, we
use a config block as a document, and a raw config file is
now considered as several documents (i.e., config blocks).

Then, we normalize words in parsed config blocks. Word
normalization is a very basic preprocessing in NLP. We first
split words by blank for each config block. Then, we remove
symbols, lemmatize words, etc (this process is based on [7]).
In particular in network configurations, a lot of variables (e.g.,
IP address, interface name, port number, etc.) appear. In this
work, our strategy is to keep variables as much as possible
in order to gain semantic information of the configuration
file unlike our original parsing [7]. For example, interface



names or port numbers (such as well-known ports) would have
important semantics in network domain. However, IP address
are masked due to its large diversity.

Figure 2 shows an example of block parsing word normal-
ization. “Raw config file” describes a part of the input config
file. As shown in red color, config file consists of some blocks
enclosed in curly braces. As mentioned above, we use curly
braces with four indentation as boundaries to split. In the block
parsing, we empirically remove the outermost pairs of curly
braces and its title because the blocks by the outermost pairs
are too coarse to compare the semantics in our dataset. In
addition, we make the split config file flatten and normalize
each word in the block. Now we have lists of normalized
words, and we call it as a normalized config block. One input
for following embedding method is a normalized config block.

C. Embedding split config files

Next, we apply sentence embedding methods to normal-
ized config blocks. In this work, we compare four well-
known methods: Latent Dirichlet Allocation (LDA) [9],
word2vec [10], Smooth Inverse Frequency (SIF) [11], and
Top2Vec [12]. These embeddings assign vector representations
to config blocks on the basis of their semantics. Thus, they
enable us to quantitatively compare config blocks.

LDA is the most widely used method of topic modeling.
Topic modeling assumes that every document is probabilis-
tically generated from latent topics. LDA estimates word
probability for each topics and topic probability in given
dataset. An input of LDA is a config block and an output
is a distribution of topics. We use the output distribution as
an embedding of config block. Thus, we are able to measure
semantic similarity by comparing topic distributions.

Word2vec is a basic method of embedding word represen-
tation. By training word2vec with config blocks, each word
has one distributed representation (i.e., vector). We use a mean
distribution of words as a distributed representation of a config
block.

SIF is a simple but strong method to embed sentences with
pre-trained distributed representations of words. A distributed
representation of sentence by SIF is weighted average of word
distribution, minus the principal component. In this work,
we use word2vec as pre-trained distributed representations of
words.

Top2Vec extracts topics from document and word vectors
in jointly embedding space. Top2Vec consists of four parts:
document embedding by doc2vec [13], UMAP [14] embed-
ding, and HDBSCAN [15] clustering, calculates topic vector
in UMAP-reduced space and finds topic words from detected
clusters. In this work, we use doc2vec embeddings and their
UMAP-reduction as embeddings of config blocks.

Now, config blocks have distributed vector representations
for each method. By querying a config block, we can find other
similar config blocks by calculating similarity of distributed
representations. In this work, we adopt the cosine similarity
as the similarity metric.

Table I
MANUAL CLASSIFICATION OF CONFIG BLOCKS

#blocks Classes
102 policy-statement

79 prefix
45 interface

9 routing
3 class, msdp
2 radius, scheduler
1 aggregation, alias, auth, bfd, bgp, cps, ddos,

dns, fpc, igmp, isis, ldp, load-balance, mld,
mpls, multicast, ntp, pim, port, redundancy,
rewrite-rule, rsvp, ssh, syslog, transit

D. Assigning topics to config blocks

By using external data that describes the target system of
a config file, such as the manual, references, etc, we assign
labels to the config blocks, by matching config blocks and the
external documents. The crucial point of this method is that
we do not need to prepare appropriate keywords in advance
(by human labeling).

In this work, we first train a LDA model with external
data, and then, we estimate topics of config blocks with
learned LDA model. We use Juniper manual documents [16]
as training dataset of LDA due to the constraint of the config
dataset. A topic of Juniper manual documents is assigned to
each config blocks. Each topic has representative keywords,
thus these words can be considered as labels/annotations to
the config blocks. We believe that this automatic labeling is
beneficial to discuss similar config blocks in multiple vendors.

IV. EVALUATION

Now, we evaluate whether our proposed method success-
fully extracts the semantics of config blocks. In particular,
we show the difference of embedding methods discussed in
§ III-C in terms of clustering performance (§ IV-B).

A. Dataset

For the evaluation, we use a publicly available configura-
tion files of network equipment [6]. As shown in [17], the
configuration files are of Internet2 network from May 2015.
This data consists of 10 router config files. In this work, we
use one router config file. The config file has 271 blocks and
8,296 lines. The contents of the config file are mainly routing,
filtering, and interface descriptions.

B. Comparison of embedding methods for config block clus-
tering

With the embedding techniques introduced in § III-C, the
config blocks can be represented as multi-dimensional vec-
tors. It means we can compare config blocks based on their
semantic similarity. Clustering config blocks is one of the
effective applications of the semantic representation: it enables
network operators to recognize blocks of related objects and
thus decrease operational failures. Here, we compare the four
embedding methods in the clustering use.



Table II
CONFIG BLOCK CLUSTERING RESULTS

LDA word2vec SIF Top2Vec
ARI 0.525±0.105 0.813±0.019 0.717±0.051 0.240±0.134
#clusters 5.9 ± 0.9 4.0 ± 0.0 7.3 ± 0.8 4.1 ± 1.5
coverage 55.9% ± 3.5 51.3% ± 1.8 48.6% ± 1.4 94.1% ± 3.4

As a ground truth of config block clustering, we manually
assign 33 classification labels, representing functions or key
words, to each config block. The classification labels and the
number of config blocks for each class are shown in Table I.
Note that here our task is not labeling but clustering, so the
ground truth is just the clusters of blocks by the classes (i.e.,
without labels) in this evaluation. In this work, we empirically
adopt HDBSCAN [15] for clustering. HDBSCAN provides
clusters based on data density, and it can leave some data
points as outliers that do not belong to any clusters (i.e., no
other similar data points).

As the task is not labeling but clustering, we cannot use
standard precision-recall evaluation. Instead, we use Adjusted
rand index (ARI) [18], a widely used evaluation metric for
clustering. It checks whether each pair of data points be-
longs to the same cluster or not in terms of predictions
and annotations. Higher ARI indicates that obtained clusters
are more similar clusters to annotated ones. Still, we cannot
discuss the quality of clusters only with ARI because there are
predominant classes and they extremely affect the metric. So,
we also compare the number of clusters and coverage (i.e.,
ratio of classified blocks except outliers). A large number of
clusters means that the model finds many semantic groups
of config blocks. Furthermore, large coverage means that the
model classifies many config blocks. Note that small coverage
does not always mean negative results, because our ground
truth has many classes with only 1 config blocks that should
not form clusters.

Table II shows the clustering results for the four embed-
ding methods. We repeat the experiment 10 times for each
method. The table shows the average values and their standard
deviations. We see that word2vec and SIF achieve the better
performance among them. The ARI of word2vec is the best
(0.813) and stable (0.019 standard deviations). The ARI of
SIF is the second (0.717) and the number of detected clusters
is the highest (7.3 clusters). The ARI of Top2Vec is worst
(0.240) but the coverage is the largest (94.1%). We confirmed
that LDA, most widely used in other data, is an not effective
method for config analysis.

In these results, word2vec is the most accurate embedding
method. However, word2vec is not always the best method
for further analysis. As described above, ARI can be largely
affected by predominant classes. In our manual inspection,
word2vec accurately extracts four clusters of predominant
classes (such as policy-statement and prefix) but no other
meaningful clusters of minor classes. In comparison, although
SIF includes some failure in the predominant classes, it detects
more clusters of minor classes which is appropriate in our
manual investigation (see also § V). On the other hands,

Top2Vec has a large coverage but it comes from the clusters
that includes many config blocks of clearly unrelated classes.
Therefore, we conclude that word2vec is the best method
if one needs to classify major config blocks, and SIF is a
well-balanced method if one needs to extract various semantic
clusters.

In the case study, we use SIF as the embedding method so
that we can focus on interesting behavior of semantic analysis.

V. CASE STUDY

Here, we provide two case studies to demonstrate the
effectiveness of our semantic approach.

A. Detecting similar config blocks

The first case study demonstrates the ability of detecting
similar semantic config blocks (as shown in query similar
blocks parts in Figure 1).

We make a simple question answering system that returns
similar config blocks to input blocks (query blocks) by fol-
lowing steps. First, we embed all the config blocks by SIF
(§ III-C). Then, any words or sentences in the vocabulary of
config blocks can be represented in a SIF embedding space
(as shown in Figure 1). When we choose a config block as
the input query from all the config blocks, the system finds
similar config blocks by comparing cosine similarity of SIF
embeddings. The results of the query are config blocks which
potentially share the same semantics of the querying config
block.

Figure 3 shows two results of finding similar config by
querying two BGP-related config blocks. The query A is a
partial policy-statement block (diminished due to the block
parsing, see § III-B) and the result is also a policy-statement
block. Although these blocks have different length and the
query A loses the ”policy-statement” word, we succeed to
detect these blocks of same semantics. The query B is a small
block of describing BGP, and the result is of policy-statement.
Unlike the query A result, the format of the query B is not
similar to policy-statement, but our system appropriately detect
a similar config block in terms of BGP, which is a broader
semantics than policy-statement. Thus, this result shows that
our method successfully extracts semantics of config blocks,
not syntax.

In summary, we confirm that the SIF-based embedding can
recognize appropriate semantics to find similar config blocks
even if the querying config blocks are short and roughly parse.
This tolerance is a large advantage to apply our method for
multi-vendor config analysis in the future.

B. Labeling config blocks by external documents

The second case study shows the power of semantics
extraction in config analysis. Here, we focus on the automatic
labeling of config blocks with external documents. More
specifically, we label config blocks by learned LDA of Juniper
documents. Thus, we can assign the semantic label by the
external document to config blocks.

We first scraped Juniper documents [16] on the web and find
36,596 sections. Each section mentions a topic of configuration



Table III
LABELING CONFIG BLOCKS BY TOPIC WORDS OF JUNIPER DOCUMENTS

Manual annotation Topic words Config block

policy statement
protocol, BGP, route, OSPF,

filter, term, peer, IPv6

policy-statement ISP-V6-IN {
term allow {

from protocol bgp;
to rib inet6.0;
then {

community add COMMERCIAL-PEER;
accept;

}
}
term reject {

then reject;
}

}

interface
vlan, dhcp, subscriber,

dynamic, access, profile

ge-10/2/8 {
description ”nms-octr Pheobus Copper”;
vlan-tagging;
mtu 9192;
encapsulation flexible-ethernet-services;
unit 1201 {

description ”[RE]Phoebus port 2”;
vlan-id 1201;
family inet {

mtu 9000;
filter {

output obs-out;
}
address 64.57.19.101/30;

}
}

}

of Juniper equipment. We train a LDA model by using all
the Juniper documents. The number of topics is empirically
selected to 20. With the trained LDA model, we assign a topic
of a config block in order to automatically labeling the config
blocks based on semantics.

Table III shows two results of Juniper document labeling;
The right column is a target config block. The middle column
is representative words of predicted Juniper document topic.
Manual annotation indicates our manual labeling mainly based
on the format of config block. As shown in the table, assigned
topics of the top one properly mention about IPv6 routing
(BGP). Assigned topics of the bottom one mention about
VLAN. Note that our method automatically generate keyword
lists; it does not require keywords list by human. This result
demonstrates a possibility that we could label appropriate
topics to all the config files even for different vendors if an
enough number of external documents are available.

In summary, our embedding method enables us to extract
semantic information of given config blocks, and then to
automatically assign appropriate topic labels to them.

VI. CONCLUSION

In this work, we apply semantic analysis to network config-
uration files. We confirmed that with our method it is possible
to learn distributed representation based on semantics from
coarsely parsed configurations unlike the ordinal parser based
analysis. We conducted two experimental analysis: clustering
config blocks and labeling config blocks by external data.
Clustering config blocks by distributed representation achieved
almost 50% ARI score comparing with manual classification.
In our evaluation, word2vec and SIF worked better than other
methods. We also confirmed that the LDA model trained by
Juniper manual data can assign semantically related words.
These results show the possibility of using semantic analysis

in parser-independent way. Note that our semantics approach
is complementary with parser-based approaches in the further
usages: For example, configuration files can be precisely
parsed with the parser-based approaches in a device, and
obtain broader associations of configurations in related proto-
cols or different vendor devices with our semantic approach.
Our future work has two directions; analyzing multi-vendor
configuration files at once by our embedding approach, and
labeling more human-readable annotations for config blocks
by connecting config blocks and external information sources
(such as user manuals).
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