Causal Analysis of Network Log Events

Satoru Kobayashi Project Researcher, NII Feb 18, 2020

Outline

- Background
- Approach: Causal analysis
- Challenges and Solutions
 - Generating time-series from log data
 - Decreasing false edges
 - Improving processing time
- Evaluation with SINET data
- Conclusion

Difficulty of leveraging system log in network management

- Huge dataset
 - Large scale and complicated systems
 - 150,000 lines / day in SINET 5
 - Automated analysis required

- Difficulty in automated analysis
 - Free-format and sparse data
 - Contextual information required for troubleshooting

Automated analysis of system log

- Usage of log data in existing automated analysis
 - 1. Anomaly detection
 - 2. Fault localization
 - 3. Root cause analysis
- Analyzing log data is more effective for root cause analysis than other data
 - Contextual information in time-series
 - Semantic information in log statements

Root cause analysis with log data

- Traditional correlation-based approaches

 Enormous false positives of spurious correlation
- Existing causal approaches [1,2]
 - Only considering logs close to troubles
- Graph-based causal analysis approach
 - Efficient analysis
 - Exploratory approach for all notable events

[2] A. Mahimkar et al. "Towards automated performance diagnosis in a large iptv network," in ACM SIGCOMM, 2009, pp. 231–242.

Satoru Kobayashi

^[1] Z. Zheng et al. "3-Dimensional root cause diagnosis via co-analysis," in ACM ICAC, 2012, pp. 181.

Goal

- Extract contextual information as causal relations among network events in log data
 - Time series analysis + Causal inference
 - Exploratory approach with wide-range data
 - Available in large-scale network
- Support troubleshooting of system failures
 - Operators can understand system behavior easily

Dataset

- SINET4
 - (https://www.sinet.ad.jp/en/top-en)
 - A nation-wide R&E network in Japan
 - 8 core routers and 100 over L2 switches
 - 15 months syslog data
 - 3.5 million lines to analyze
 - 12 months trouble ticket
 - For evaluations

Causal Inference

- Conditional Independence
 - A and B are independent if the effect of confounder C is excluded
 - A and B are conditionally independent given C
- PC algorithm [3]
 - Directed acyclic graph (DAG)
 - Explore conditional independence and remove false edges

[3] P. Spirtes et al. "An algorithm for fast recovery of sparse causal graphs", Social science computer review, vol. 9, pp. 62–72, 1991.

Satoru Kobayashi

JFLI workshop 2020

P(A|C)P(B|C) = P(A, B|C)

Flow of PC algorithm

[4] R. E. Neapolitan. "Learning Bayesian Networks." Prentice Hall Upper Saddle River, 2004.
[5] T. Verma, et al. "An algorithm for deciding if a set of observed independencies has a causal explanation". In Proceedings of UAI'92, pp. 323–330, 1992.

Log analysis and causal inference

Feb 18 17:00:00 routerA System shutdown by rootFeb 18 17:00:05 switchB Error detected on eth0Feb 18 17:00:15 routerC BGP state changed from Established to IdleFeb 18 17:00:15 routerD SNMP trap sent to routerA

.

[6] S. Kobayashi et al. "Mining causality of network events in log data", IEEE TNSM, vol. 15, no.1, pp. 53–67, 2018. Satoru Kobayashi JFLI workshop 2020

Causal analysis with network logs

Challenges for causal log analysis

- 3 main challenges
 - 1. How to generate time-series from log data?
 - Generate log templates as event classifier [7]
 - 2. How to decrease false positive edges?
 - Preprocessing periodic time series [6]
 - 3. How to obtain causality in reasonable time?
 ➢ Use network domain knowledge for pruning [8]

[7] S. Kobayashi et al. "Towards an NLP-based Log Template Generation Algorithm for System Log Analysis", CFI, 2014.
[6] S. Kobayashi et al. "Mining causality of network events in log data", IEEE TNSM, vol. 15, no.1, pp. 53–67, 2018.
[8] S. Kobayashi et al. "Causal analysis of network logs with layered protocols and topology knowledge", CNSM, 2019

1. Log template generation

- Existing approaches [9,10]
 - Clustering log messages
 - Largely depends on log appearance distribution
 - Fails in minor log events (i.e., troubles and anomalies)
- Proposed method [7]
 - Supervised learning of log template structure with Conditional Random Fields (CRF)

[7] S. Kobayashi et al. "Towards an NLP-based Log Template Generation Algorithm for System Log Analysis", CFI, 2014.
[9] R. Vaarandi. "A data clustering algorithm for mining patterns from event logs". In IEEE IPOM , pp.119-126, 2003.
[10] M. Mizutani. "Incremental mining of system log format". In IEEE SCC'13, pp. 595–602, 2013.

CRF-based log template estimation

Satoru Kobayashi

2. Time-series preprocessing

- Periodic time-series (e.g., CRON log) cause spurious correlation that cannot be removed with conditional independence
 - Events with same interval <- All correlated</p>
- Extract aperiodic components from periodic time-series
 - Focus on irregular behaviors
 - Use Fourier analysis

Satoru Kobayashi

JFLI workshop 2020

3. Graph pruning with network domain knowledge

- Causal analysis takes large processing time
 Combination explosion of confounders
- Pruning causal edge candidates that is clearly not causality according to domain knowledge

Satoru Kobayashi

Difficulty in pruning

- Unobserved events mediate causality
 - Pruning mediated causality breaks causal flow
- -> How to determine the criteria?

Root

cause

Failure

Unobserved

Proposed method of edge pruning

- 2 hueristic rules for edge pruning
 - 1. Caused events are in same device, or in same functional layer and in connected devices
 - 2. 1 (or 0) unobserved event can mediate causality

Satoru Kobayashi

19

Causal analysis with network logs

Evaluation

- 15 months log data for causal analysis
 3.5 million lines (1,789 Log templates, 131 hosts)
- Generate causal DAG for every 1-day data
 ▶27,668 causal edges in total^[8]
- Investigate detected causal edges
 - Case study
 - Comparison with trouble ticket

[8] S. Kobayashi et al. "Causal analysis of network logs with layered protocols and topology knowledge", CNSM, 2019

Example of detected DAGs

Comparison with trouble tickets

• Detectability of causality related to tickets

Conclusion

- Causation mining in network logs
 - Estimate causal DAG with PC algorithm
 - Consider 3 challenges of log causal analysis
- Evaluation with large-scale network logs
 - Detect useful information for troubleshooting
- Future works

Consider semantic information in log messages

<u>https://github.com/cpflat/logdag</u>