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Abstract—Network log message (e.g., syslog) is valuable infor-
mation to detect unexpected or anomalous behavior in a large
scale network. However, pinpointing failures and their causes
is not an easy problem because of a huge amount of system
log data in daily operation. In this study, we propose a method
extracting failures and their causes from network syslog data.
The main idea of the method relies on causal inference that
reconstructs causality of network events from a set of the time
series of events. Causal inference allows us to reduce the number
of correlated events by chance, thus it outputs more plausible
causal events than a traditional cross-correlation based approach.
We apply our method to 15 months network syslog data obtained
in a nation-wide academic network in Japan. Our method
significantly reduces the number of pseudo correlated events
compared with the traditional method. Also, through two case
studies and comparison with trouble ticket data, we demonstrate
the effectiveness of our method for network operation.

I. INTRODUCTION

Maintaining a large-scale network reliably has been a fun-
damental requirement in network management. It is however
not an easy task in reality because of highly distributed,
ever-evolving, and heterogeneous nature of operational net-
works [1]. One of the effective ways to track network status
is to deploy monitoring agents in the network and collect log
information corresponding to a change of status. In operational
networks, syslog [2] is widely used for such purpose. The
detailed log messages allow us to better understand failures
and their causes. Nonetheless, it is usually hard for network
operators to identify them because of a large amount of system
log data produced by a large set of network devices (e.g.,
routers, switches, and servers).

To this end, various approaches have been taken for im-
proving network monitoring and diagnosis with log messages.
A simple approach is clustering log messages related to a
network event (e.g., failure) into a correlated group, and ana-
lyzing the group in detail. This assumes that the network event
can yield a set of messages from some monitored network
functionalists. One of the problems of log analysis is that
co-occurrence of log messages does not always mean causal
relations. Timestamp of messages is helpful in determining the
causality, however, the correctness of the timestamp is an issue
for appropriate analysis. Furthermore, appearance of network
log messages is discrete and sparse; it makes us difficult to
identify causality of events.

In this paper, we intend to extract causal relations beyond
co-occurrences in log messages in order to identify important

network events and their causes. For this, we leverage on a
causal inference algorithm, called PC algorithm [3], [4]. It
outputs directed acyclic graphs (DAGs) that connect events
with causality from a set of network logs. There are some
issues when applying causal inference algorithms to the net-
work logs; (1) A large-scale network is composed of multiple
vendor’s devices, and various types of messages appeared in
the network. (2) Occurrence of messages is discrete and sparse
that is not assumed in causal inference algorithms. (3) All of
the detected causalities are not necessarily important, in the
context of network management.

To overcome these issues, we propose a mining algorithm
built on the causal inference. We apply our proposed algo-
rithm to 15 months long syslog messages (34M in total)
collected from a nation-wide research and education network
in Japan [5]. We obtain a reasonable number of causal edges
with low false positive rates, compared with a traditional cross-
correlation based method. Furthermore, we design simple
heuristics that suppress commonly appeared causality and thus
highlight uncommon causal relationships. Through case stud-
ies and comparison with trouble ticket data, we demonstrate
the effectiveness of our approach.

The contribution of this paper is twofold: First, we introduce
an idea of causal inference to highly complicated network log
data, i.e., a wide variety of log messages sparsely generated by
heterogeneous network devices. Second, our method reports
a small number of meaningful network events with causal
relations from a huge number of log messages; it is useful
for daily network operation.

II. RELATED WORK

Prior literature has been devoted to automated troubleshoot-
ing and diagnosis with system logs. Some works conduct
contextual analysis of log data to retrieve useful information
in troubleshooting. Contextual log analysis can be classified
into 4 groups: model, spatial, relational, and co-operative
approaches.

Model approaches present system changes behind log events
as some models, especially state transition models. Salfner et
al. [6] use hidden semi-Markov model for failure prediction.
Yamanishi et al. [7] analyze system logs with multidimen-
sional hidden Markov model. Beschastnikh et al. [8] generate
finite state machines from execution traces of concurrent
systems to provide insights of the system for developers. Fu



et al. [9] generate decision trees of system state transition
from program logs for distributed debugging. Generally, these
approaches enable us to understand system behaviors and to
predict failures in the near future.

Spatial approaches present log events in multidimensional
space and analyze them with classification techniques. Kimura
et al. [10] characterize network faults in terms of log type,
time, and network devices with a tensor analysis of system
logs. Sipos et al. [11] use multi-instance learning approach to
extract system failures from system logs. Fronza et al. [12]
predict system failures by classifying log events based on
support vector machines. These approaches are especially
useful for fault localization.

Relational approaches extract relations of time-series of
events. The detected relations are used for further analyses
like graph approach, and useful especially for fault diagnosis.
Root cause analysis with system logs has also been a hot topic
in the context of network management. A popular approach
is to infer causal relations among events in system logs.
Zheng et al. [13] detect correlated events in system logs
in a supercomputer system and remove pseudo correlations
with conditional independence. Nagaraj et al. [14] generate
dependency networks [15] (similar to Bayesian networks) of
events in system logs. These approaches are not effective for
sparse data, like system logs of network devices, because they
employ a probabilistic method to find conditional indepen-
dence. Mahimkar et al. [16] take an approach to extract fail-
ure causality from correlations. They use multiple regression
coefficient, but this approach requires large processing time
if the system logs include a large number of events. Some
approaches estimate causal relations without causal inference.

There are some other approaches to detect root causes of
troubles in system logs. Tak et al. [17] generate reference
models, explaining dependencies of events, by a heuristic-
based method for cloud system logs. They effectively use
domain knowledge of the cloud system, which is usually
not available for other applications. Lou et al. [18] estimate
causal relations with heuristic-based rules of timestamps and
message variables. They largely rely on heuristics of log event
dependence, which is difficult to generalize.

Co-operative approaches depend on not only system logs
but also other datasets. Yuan et al. [19] pinpoint errors in
source code by matching a function call graph with error log
messages. Scott et al. [20], [21] troubleshoot SDN control
software based on causal relations estimated with external
causing tools. These approaches need the external data to be
available on the systems.

Our work is categorized into the relational approaches based
on causal inference. However, existing works are resource-
expensive to estimate causal relations. Closer to our work,
Chen et al. [22] generate causality graphs for pinpointing the
source of network traffic delay. They employ PC algorithm,
a method to estimate DAGs from statistical data based on
conditional independence. Their target data is not system logs
but some monitored parameters such as RTT and TCP window
size. Again, our aim is to propose an efficient causal inference

algorithm based on graph approaches for system logs.

III. METHODOLOGY

In order to detect root causes of network events in system
logs, we intend to infer causal relations among log events
obtained at an operational network. In this section, we first
provide a basic algorithm, called PC algorithm [3], [4], to infer
causal structure from event time series efficiently. Next, we
propose our data processing method from a set of log messages
to determine the causality of network events. We also describe
our dataset gathered in a Japanese academic network [5].

A. Detecting causality

The key idea of our proposal is to detect causality of
two given events in network logs. The causality is a partial
order relationship different from correlation which is typically
quantified by a correlation coefficient. Using correlation as a
causality yields many false positives. Existence of a positive
correlation between two events does not always imply causal-
ity. Checking timestamps of two correlated events is helpful
in determining causality. The timestamp of system logs is not
always reliable for determining causal directions due to NTP
synchronization error, variation of packet latency (jitter), and
network failure. Thus, we need to estimate causal directions
among events without timestamp, in theory. Such algorithms
have been developed in a field of causal inference. In this
subsection, we introduce a method called PC algorithm to infer
causal relationships from a set of events.

We first introduce a concept of conditional independence.
Assume that there are three events A, B, and C. A and B are
conditionally independent for given C if

P (A,B | C) = P (A | C)P (B | C), (1)

where the events A and B are independent as long as C
appears. If A and B have a causality with C, A and B are
independent because they always occur with C. In other words,
a correlation between A and B disappeared by considering the
related event C. Note that C can represent multiple events.

PC algorithm [3], [4] is a graph-based method to reconstruct
causal relationships among nodes with conditional indepen-
dence. It assumes a direct acyclic graph (DAG) of events
corresponding to the causality of events; it does not allow any
loops. PC algorithm consists of four steps (see also Figure 1).

1) Construct a complete (i.e., fully-connected) undirected
graph from nodes (events).

2) Detect and remove edges without causality by checking
conditional independence.

3) Determine edge direction based on V-structure.
4) Determine edge direction with orientation rule.
For testing conditional independence in step 2, we first cut

edges (say A−B) whose nodes are conditional independence
without another node., i.e., this is a special case of Eq. 1
similar to the usual correlation coefficient. We then check the
remaining edges (A − B) by conditional independence with
additional nodes (C) that connect to the two nodes (A and
B) using Eq. 1. We remove the edge if at least one of the
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other nodes holds the conditional independence. In step 3, V-
structure is a condition to decide on a direction of edge. Let
three nodes (events) U , V , W be a part of a graph U−V −W ;
U and V are correlated and V and W are correlated. One
obtains a causal relationship U → V ← W if U and W are
not conditionally independent for V . This V-structure is a rule
to infer causality (arrow) in an undirected graph. In step 4,
Orientation rule is a rule to prevent making a loop among
events by the definition of DAG [23]. Some edges can be
undirected even after applying PC algorithm if one does not
have enough information to decide edge directions.

B. Algorithm

This section provides the processing flow of our log mining
algorithm (see also Figure 2).

1) Pre-processing: As an input of PC algorithm, we con-
struct a set of time series corresponding to each event from
the original log messages obtained from one network device.
First, we extract log templates from the original log messages.
The log template is a log format whose variables (e.g.,
timestamp, IP address, port) are replaced by wild card (*);
thus it is a standard (i.e., comparative) format of log messages.
There are many log template generation algorithms from log
messages [24]–[26]. Here, employing a supervised learning-
based log template generation algorithm [27], we extracted

1414 templates from 35M log messages in our dataset (see
also § III-C). Examples of log templates are shown in Figure 7
and Figure 9.

Next, we construct a set of event time series generated by
each log template per device (router or switch) from the all
log data. In other words, each time series contains the number
of appearances of one log template from one device in a time
bin (size b). We then remove a large number of unrelated
event time series indicating strong temporal periodicity. Such a
periodic log template represents daily regular events and would
be a source of misdetection of the causality. To track the
periodicity, we simply calculate the self-correlation coefficient
with lag τ for the event time series (x(t)):

ρ(τ) =

∑
t (x(t)− x̄)(x(t+ τ)− x̄)√∑

t (x(t)− x̄)2
√∑

t (x(t+ τ)− x̄)2
. (2)

We identify the maximum value of ρ(τ) for τ > 0, and we
discard the periodic event time series with ρ(τ) > 0.9.

2) Calculation of conditional independence: Furthermore,
we apply PC algorithm in § III-A to a set of event time series
to generate causality graphs. For evaluating the conditional
independence of nodes X and Y with another node Z, we
perform a statistical test called G-square test [28], a natural
extension of Chi-square test. The G-square statistic is defined
as:

G2 = 2mCE(X,Y | Z), (3)

where m is the data length and CE(X,Y | Z) is a conditional
cross entropy of event time series X , Y , and Z (x(t), y(t), and
z(t), respectively). We check a p-value of the null hypothesis
of the test with a threshold value of 0.01. It is noted that
event time series should be binary time series for calculating
the cross entropy, thus we use a binary event time series
(consisting of zero and one) generated from the original event
time series by converting each value for x(t) > 1 to x(t) = 1.
We discuss the parameter dependency of bin size b for the
edge detection in § IV-A.

3) Post-processing: The output of PC algorithm is a set
of causalities. However, PC algorithm does not provide any
information on the importance of events. Thus, we require
a further step to filter commonly detected (or uninterested)
causality. In this study, we simply count the number of ap-
pearances of frequently appeared edges. This happens because
same edges appear in many devices over time. Thus, we
remove frequently appeared edges with a threshold for easily
identifying unusual important causality. We discuss the effect
of the post-processing in § V-C.

C. Dataset

To evaluate the effectiveness of our approach, we use a
set of backbone network logs obtained at a Japanese research
and education network (SINET4 [5]) that connects over 800
academic organizations in Japan. The nation-wide network
consists of eight core routers, 50 edge routers, and 100
layer-2 switches composed of multiple vendors. A centralized
database stores all syslog messages generated by the network



TABLE I
CLASSIFICATION OF LOG MESSAGES

Type #messages #processed #templates
System 3,012,500 994,125 801

Network 123,988 123,988 119
Access 5,489,262 6,792 88

Operation 15,737,987 8,275 70
Cron 10,799,133 20 9
NTP 224,654 224,654 21

SNMP 74,029 74,029 45
BGP 28,017 28,017 55

MPLS 18,524 18,524 85
OSPF 4,184 4,184 11
Other 847 847 110
Total 35,513,125 1,483,455 1,414

devices, though some of the messages can be lost in the case
of link failures. Each message contains additional information
such as timestamp and source device name (or IP address)
based on syslog protocol. We analyze 456 day-long consecu-
tive logs composed of 35M log messages in 2012-2013.

To easily understand log messages for pinpointing events
and its root causes, we manually label event types to the
generated log templates as listed in Table I. System logs
from network devices are classified into four groups: system,
network, access, and operation. The group System shows
internal processes of devices. The group Network is linked
to protocols and devices for communications. The group
Access appears if one intends to communicate with devices
for management purposes. The group Operation corresponds
to configuration changes by operators. Also, we separately
introduce some external groups that are related to frequently
used services.

In the table, the column “#messages” represents the number
of raw log messages, “#processed” is the number of processed
messages (after the pre-processing), and “#template” is the
number of identified log templates. We confirm that the group
cron is mostly removed by pre-processing, due to periodic be-
havior of the events. Similarly, the groups Operation, Access,
and System are suppressed largely. In total, 4% of the number
of log messages are used as an input of PC algorithm. Also, the
template generation algorithm outputs 1, 414 log templates.

In addition, we check a set of trouble tickets issued by
SINET network operators. This data consists of a date and
a summary of an event, though it only covers large network
events. We use this data for evaluating the detection capability
of our proposed algorithm (§ V-E).

The network consists of a large number of network devices,
so we divide the data into eight subsets corresponding to a
sub network with one core router, edge routers and switches
that connected to the core router. We also analyze one-day-
long log data because we target short-term causality instead
of long-term one. In other words, we generate 3,648 DAGs
(456 days and 8 devices) from the entire dataset.

TABLE II
DEPENDENCY OF BIN SIZE ON THE NUMBER OF EDGES

Bin Directed edges Undirected edges All edges
(Diff. device) (Diff. device)

300s 1,373 489 4,810 1,120 6,183
180s 1,804 686 5,503 1,259 7,307
60s 2,623 827 5,990 1,022 8,613
30s 3,046 821 6,224 1,132 9,270
10s 3,369 721 5,555 863 8,924

TABLE III
RATIO OF OVERLAPS IN DETECTED EDGE SETS FOR DIFFERENT BINS

Compared Directed edges Undirected edges All
bin sizes (Diff. device) (Diff. device) edges

300s-180s 0.70 0.44 0.83 0.60 0.80
180s-60s 0.71 0.43 0.80 0.46 0.78
60s-30s 0.79 0.52 0.87 0.62 0.85
30s-10s 0.67 0.36 0.73 0.54 0.71

IV. VALIDATION

A. Bin size dependency

In the previous section, we explained the basic flow of
the processing. However, the performances of the algorithm
depend on the parameter setting. The most important param-
eter in the algorithm is the time bin size b for aggregating
events. Intuitively, larger b detects more false positive edges
in causality graph because unrelated events can be co-located
in the same bin. Similarly, smaller b makes it difficult to
detect a causality between two events with a certain delay.
To investigate the dependency of the bin size b on the number
of detected edges, we carefully observe the outputs of PC
algorithm for different bin sizes from 10s to 300s.

Table II lists the total number of detected directed and
undirected edges from the dataset. The column (Diff. device)
represents the edges between two different devices. First of
all, we can see that the number of detected edges is smaller
for larger b. This result looks differently from our intuition
that larger b detects more false positive edges. As described
in § III-B, cross entropy affects the result of the conditional
independence test. Larger b makes the total number of bins in a
time-series smaller because the dataset size is fixed to one day.
The small number of bins decreases information gain, which
yields a small cross-entropy value. Also, the information on
the number of same log templates is not considered in our
binary time series. Thus the value of the cross entropy becomes
smaller for larger b, resulting more rejections of the statistical
test. Note that the reduction of edges with larger b does not
mean a higher accuracy of detected edges. Next, we confirm
a decrease in the number of detected edges with smaller b. In
particular, the decrease in the number of edges between two
different devices is clear. This result is consistent with our
intuition, because the edges between different devices usually
have a larger delay than others because of the network latency.

Table III shows the ratio of overlapped edges between
neighboring bin size settings (e.g., 300s vs 180s). The ratio
of overlap is defined as |Ei∩Ej |

min(|Ei|,|Ej |) , where Ei (resp. Ej)
is a set of detected edges obtained by bin size i (resp. j).
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Higher overlap indicates less dependency on the detected
edges. From the result, we see that any listed combinations
of bin sizes in this table have about 20% of differences.
this difference indicates that some edges can be detected
only for a particular bin size, caused by two events with a
certain time lag. Similarly, the ratio between different devices
is smaller because associated log messages across different
devices usually have a certain time lag.

Next, we examine the size of DAGs produced by PC
algorithm. We focus on connected subgraphs, i.e., consisting
of at least two nodes. Figure 3 shows the distribution of size
of DAGs found in all log data; as expected, most DAGs are
small and a few are large. We also confirm that smaller b
generates more connected subgraphs. It is consistent with the
previous result that a larger number of edges are detected for
smaller b. Further investigations on detected large subgraphs
identify two typical behaviors: One is an event that causes
multiple devices to have similar events. For example, if a NTP
server has a failure on its service, all devices output similar
log messages about NTP synchronization error. These events
appear at the same time, and construct a large subgraph. In
this case, the subgraph is reasonable as the causal relations in
the system logs. The other behavior is that multiple unrelated
events have a common connected event. Such connected event
appears frequently and its causality is false positive.

From these analysis results, we conclude that a setting with
more edges is helpful in further investigation even if it may
contain more false positives. Thus, we empirically employ b =
60s for further analysis. In terms of processing time, it takes
about four hours to generate all causality graphs from the 15
months data on a commodity computer.

B. False positives

Here, we investigate a possibility that two events are acci-
dentally connected by an edge in PC algorithm. For synthetic
multiple random events without causality, any detected edges
are clear false positives by chance.

We prepare 10 (also 100 and 500) unique events and
generate these events whose occurrence follows a Poisson
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Fig. 4. The number of false positive edges in a Poisson arrival process

process with different arrival rates. Applying our method to
these surrogate time series (b = 60s), we count the number of
detected edges. These edges are considered as false positives.
For 10 unique events (also 100 and 500), the maximum
number of detected edges among nodes is 45 (4, 950 and
124, 750), i.e., the worst case.

Figure 4 illustrates the number of falsely detected edges for
different event arrival rates. We can confirm that the number of
false positives are small and fairly stable over different arrival
rates. The false positive ratios are 1.9% for the 10 unique
events, 1% for the 100 events, and 0.3% for the 500 events.
Thus, we may at least find about 1% of false edges in a given
dataset, in principle.

V. RESULTS

In the previous section, we analyzed the parameter depen-
dency of the algorithm on the number of detected causality.
This section highlights the effectiveness of the proposed algo-
rithm in the view point of network operation.

A. Detected edges

We first list the classification of detected edges (Table IV)
from the pre-processed log messages (Table I) by PC algo-
rithm. This table presents the number of neighbor nodes (i.e.,
events) for detected edges, because some edges connect two
different classification types of events.

Major types are System, Network, NTP and BGP. Events
of System and Network are related to external changes, which
generate causal relations. NTP events often generate large
causal graphs because an NTP server error affects all related
network devices. Our causal analysis is beneficial for BGP
analysis due to its frequent reporting on BGP state changes.

In addition, we show the number of neighbor nodes of edges
between nodes belonging to the same type. Most of edges in
BGP and MPLS are closed inside own type (i.e., inner-types).
The processes of network protocols are usually independent
of other processes in normal operation, and synchronized to
other ends. Most edges in Operation are also closed inside
own type (i.e., inner-types). This is mainly because a change



TABLE IV
CLASSIFICATION OF NEIGHBOR EVENTS OF DETECTED EDGES: THE PERCENTAGE SHOWS THE RATIO TO ALL EDGES. THE COLUMN OF DIRECTED SHOWS

ONLY THE NEIGHBOR EVENTS OF DIRECTED EDGES.

Type All Edges Edges of Inner-types Important Edges
(Directed) (Directed) (Directed)

System 5,058 1,153 3,074 (61%) 558 1,202 ( 24%) 436
Network 2,530 592 2,026 (80%) 380 491 ( 19%) 193

Access 911 160 602 (66%) 54 218 ( 24%) 57
Operation 1,529 233 1,320 (86%) 146 184 ( 12%) 72

NTP 3,018 1,108 1,312 (43%) 594 254 ( 8%) 132
SNMP 295 94 60 (20%) 22 176 ( 60%) 67

BGP 2,660 1,141 2,370 (89%) 1,290 314 ( 11%) 170
MPLS 1,189 459 1,142 (96%) 434 221 ( 19%) 81
OSPF 31 2 18 (58%) 0 31 (100%) 2
Other 5 4 0 ( 0%) 0 5 (100%) 4
Total 17,226 4,964 11,924 (69%) 3,478 3,096 (20%) 1,232

of configuration produces multiple log messages; These events
are classified as Operation type, and their edges are the
majority of this type. In contrast, most edges in SNMP
are connected to other types (i.e., inter-types). SNMP events
appear mainly with events of System types, which is consistent
with the role of SNMP.

We also show the number of neighbor nodes of edges that
is estimated as important information for operators in post-
processing step. SNMP events are likely to provide meaningful
information than other types. This is not against our intuition,
because SNMP events appear with some unexpected behaviors
of devices.

B. Comparison with cross-correlation method

Here, we compare the performance of our method to a
conventional correlation-based method. Cross-correlation is
the most popular method to analyze system logs in terms of
co-occurrence. Let two events X and Y appear x(t) and y(t)
in time t. Cross-correlation ρ is defined as:

ρ =

∑
t (x(t)− x̄)(y(t)− ȳ)√∑

t (x(t)− x̄)2
√∑

t (y(t)− ȳ)2
. (4)

If ρ close to 1, X and Y are positively correlated; but X and
Y are not correlated for ρ = 0. We judge the co-occurrence
between two events with a threshold ρt for ρ.

We compare the number of detected edges in the proposed
PC algorithm to that in the cross-correlation based method
with different thresholds ρt. Figure 5 shows a sensitivity
analysis of the cross-correlation method on the number of
detected edges. We use 60s bin size for constructing event
time series. We observe that the number of detected edges in
the cross-correlation method decreases for high ρt. However,
the number of detected edges in the cross-correlation method
is 20 times larger than ours. Thus, the simple correlation-based
method cannot remove suspicious correlation, which results in
more edges; If some events appear at the same time, the cross-
correlation generates a complete graph. On the other hand, our
approach detects more reasonable edges thanks to conditional
independence.
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C. Post-processing

As describe in § III-B3, the detected edges contain no infor-
mation on importance of the causality which may help network
operators. Some edges can appear frequently in the dataset for
two reasons: one on different days and the other on different
pair of network devices. Figure 6 represents the rank of edges
and the number of such edges appeared. The number of edges
produced by PC algorithm is 8, 613 edges (= 19 edges/day).
We see that the top 10% of edges accounted for 80% of the
number of edge appearances. Manually observing such edges,
we confirm that they are mostly edges showing a causality
between an input command and its acknowledgement. Thus,
we filter them (with a threshold; 10%) and concentrate on the
rest of them (1, 722 edges = 3.8 edges/day).

D. Case studies

To show the effectiveness of the proposed algorithm, we
provide two case studies.

1) Broadcast storm: The first case is regarding broadcast
storms in some period. During this period, we find two
broadcast storm related log templates; one for detection, the
other for recovery. We also notice SSH login failure events
triggered by a monitoring script in the storms. The monitoring
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650 (EVT ** ** ** ACCESS ** ** Login incorrect **.)
685 (EVT ** ** ** PORT ** ** ** NIF ** Port ** storm detected.)
684 (EVT ** ** ** PORT ** ** ** NIF ** Port ** storm recovered.)

Fig. 7. Detected log templates (broadcast storm)

script fails to re-establish a SSH connection to a target device
due to the storm. The detected log templates by the proposed
algorithm are shown in Figure 7. The first one (Template ID:
650) is the failure of SSH login, and the rest of two (ID: 684
and 685) are related to broadcast storm events. In our data,
we observe four events on SSH login failure and a series of
events repeatedly detecting and recovering broadcast storm.
These are all found on the same device.

Figure 8 shows detected causality graphs and its manually
inferred plausible causality (a) (ground truth). PC algorithm
with 60s bin generates a DAG shown in (b). Compared to the
ground truth, PC algorithm reasonably detects causal relations
except causal directions.

Visually checking DAGs for different bin size, we confirm
that the SSH event (a dotted rectangle) is missed for a smaller
bin size (b < 60s) as shown in (c). This is due to a time lag
between the SSH event and the detection of a broadcast storm.

Furthermore, we investigate the result achieved by the cross-
correlation method. There are no nodes appeared for a high
threshold (ρt > 0.7). The three nodes appeared similar to
(b) in a limited range of the threshold (0.1 < ρt < 0.2) but
no direction. Otherwise, we observe the case (c) or a fully
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679 (EVT ** ** ** PORT ** ** ** Port up.)
687 (EVT ** ** ** PORT ** ** ** Error detected on the port.)
850 (RPD_BGP_NEIGHBOR_STATE_CHANGED: BGP peer ** (** AS **)

changed state from ** to ** (event **))
1134 (bgp_hold_timeout:**: NOTIFICATION sent to ** (** AS **):

code ** (Hold Timer Expired Error), Reason: holdtime expired
for ** (** AS **), socket buffer sndcc: ** rcvcc: ** TCP
state: **, snd_una: ** snd_nxt: ** snd_wnd: **
rcv_nxt: ** rcv_adv: **, hold timer **)

1173 (bgp_send: sending ** bytes to ** (** AS **) blocked
(no spooling requested): Resource temporarily unavailable)

1274 (last message repeated ** times)
91 (** (** AS **): reseting pending active connection)

Fig. 9. Detected log templates (BGP)
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Fig. 10. Ground truth and detected causalities (BGP)

connected case shown in (d). This result indicates that the
parameter tuning of the cross-correlation based method is not
straightforward; a higher threshold misses important edges,
and a lower one detect a large number of edges by chance.

2) BGP state initialization: Here, we introduce a more
complicated failure spanning to two devices; An interface error
on a router yields repeated BGP peering connections.

Figure 9 indicates the detected log templates in this failure.
There are two log templates for one router and five templates
for the other. Template IDs 679 and 687 show the network
interface error, and appear in turns. ID 850 is a report of
BGP state change at the counterpart caused by the network
error. ID 1134 is a process of resetting BGP connection,
which repeats with some unknown causes. ID 1173 shows
BGP connection resetting failure, which appears sporadically
on BGP connection resetting process. IDs 1274 and 91 are
deriving events with BGP connection resetting, whose appear-
ance is largely different from others. The root cause of BGP
connection resetting does not appear in the system logs.

Figure 10 shows a plausible ground truth of this failure
(a) and generated causality graphs with PC algorithm (b) and
cross-correlation based method (c). We again confirm that the
result of our method is closer to the ground truth than the best



TABLE V
FAILURE EVENTS REPORTED IN TROUBLE TICKETS AND THE NUMBER OF

DETECTED EDGES IN OUR ALGORITHM

Event Description #edges
T1 Disconnected device 3
T2 Disconnected device 2
T3 FPC failure 2
T4 PIO error log 0

case of the cross-correlation based method even in the event
spread between two devices.

Through the two case studies, our proposed method nat-
urally extracted the important causal relations better than the
traditional cross-correlation based method. One may think that
graphs detected by the correlation method are still reasonable
as shown in the figures, however, finding appropriate graphs
by the correlation method is a needle in a haystack due to the
sensitivity of the parameter tuning, in reality.

E. Comparison with trouble tickets

Finally, we compare detected events by the proposed algo-
rithm to our trouble tickets data consisting of spatio-temporal
information on failure events. The granularity of the events in
the tickets is much larger than that of the syslog data. The
ticket data contains 15 failure events for a month. The number
of the syslog messages is 10, 348, 224 in this period, and the
number of detected edges is 554 before the post-processing
and 61 after the post-processing. We do not find any raw log
messages regarding 11 failures out of 15 failures.

Table V lists brief descriptions of the four failures in the
trouble tickets and the number of edges detected by our
method. We have managed to detect related log information
for three failures; a disconnected network device from the
backbone (T1 and T2), and a hardware failure of FPC (Flexible
PIC concentrator) module in a router (T3). For the first case
(T1 and T2), detected events belong to BGP (BGP state
change and network interface updown), similar to the previous
case study. For the second case (T3), the failure yields a
causality in SNMP trap and FRU (Field-Replaceable Unit)
state change. However, we fail to detect information about
T4 (a PIC error). Log messages related to T4 appear only
once without following events, which makes it impossible to
investigate relations based on co-occurrence.

In summary, our proposed method reasonably managed to
detect large events recorded in the trouble tickets if the related
log messages are successfully recorded. However, it failed for
finding an isolated event; this is also due to the lack of enough
information for the inference, in principle.

VI. DISCUSSION

We demonstrate the effectiveness of our proposed approach
to detect the causality of failure events. Compared to the cross-
correlation method, PC algorithm extracts a smaller num-
ber of meaningful logs, thanks to conditional independence.
However, as shown in § V-D, we observe a case when the
edge direction is different from our intuition. For obtaining

more appropriate results, we would additionally use timestamp
information in the original data. However, we should carefully
treat two events from different devices.

Comparing the detected results to the trouble tickets, we
confirm that both results have a small overlap. However, our
method missed some of the large events in trouble tickets
because of the lack of related messages. Besides, the proposed
algorithm detected small or medium size of failures while the
trouble tickets mainly include serious failures directly affecting
users. Thus, our method is useful in improving the daily
network operation. In fact, it is not easy for network operators
to identify the cause of login failures shown in the case studies.

Pre-processing before applying PC algorithm is an impor-
tant step for getting appropriate results. 96% of the orig-
inal messages are not adequate for the analysis because
of their periodicity. Similarly, we divided original messages
into temporal-spatial subsets to avoid detecting false causal
relations. In fact, we confirm that there are no network-wide
failures over a long time even in a large disaster case [29].
Similarly, recent literature points out that failures are isolated
in time and space for many cases in a world scale network [1].

Post-processing is also a crucial step to pinpoint the target
events, because PC algorithm detects causality but do not pro-
vide any importance on network operation. In our study, we
rely on the simple heuristics to remove frequently appearing
edges. However, as causal inference and anomaly detection
are orthogonal, we plan to introduce or combine the current
heuristics with a more sophisticated method to highlight the
important events.

Currently, PC algorithm uses a binary time series as input
due to a constraint of G-square test. As a possible improvement
of the detection algorithm, we can additionally use information
on the number of messages in a bin as introducing weights of
the messages [30] (e.g., TF-IDF).

VII. CONCLUSION

In this paper, we propose a method to mine causality of
network events from network log messages. The key idea
of the work is leveraged on PC algorithm that reconstructs
causal structures from a set of time series of events. Compared
with a cross-correlation based approach, we confirm that
PC algorithm outputs more appropriate events by removing
pseudo correlations by chance with conditional independence.
Furthermore, our pre- and post-processing steps are helpful
in providing a small set of important events with causality to
network operators. Through two case studies and comparison
with trouble ticket data, we demonstrate the effectiveness of
the proposed algorithm with 15 months syslog data obtained
at a Japanese research and education network.
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