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1 | INTRODUCTION

Summary

One of the ways to analyze unstructured log messages from large-scale IT systems is
to classify log messages with log templates generated by template generation meth-
ods. However, there is currently no common knowledge pertained to the comparison
and practical use of log template generation methods because they are implemented
on the basis of diverse environments. To this end, we design and implement amulog,
a general log analysis framework for comparing and combining diverse log template
generation methods. Amulog consists of three key functions: (1) parsing log mes-
sages into headers and segmented messages, (2) classifying the log messages using a
scalable template-matching method, and (3) storing the structured data in a database.
This framework helps us easily utilize time-series data corresponding to the log tem-
plates for further analysis. We evaluate amulog with a log dataset collected from
a nation-wide academic network and demonstrate that it classifies the log data in
a reasonable amount of time even with over 100,000 log template candidates. The
template-matching method in amulog also reduces 75% processing time for template
generation and keeps the accuracy when combined with an existing structure-based
template generation method. In order to show the effectiveness of amulog in compar-
ing log template generation methods, we demonstrate that the appropriate template
generation methods and accuracy metrics largely depend on the purpose of further
analysis by comparing the accuracy of six existing log template generation methods

with ten different accuracy metrics on amulog.
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to investigate manually. For example, SINET5 2 aresearch and
education network in Japan, reports about 150,000 log lines in

System and network operators need to maintain high availabil-
ity of IT infrastructures by means of efficient troubleshooting.
For troubleshooting, we rely on many kinds of operational
data. Log data is one of the most effective data sources for this
because, unlike other measurable data, it provides contextual
information of system behaviors as literal explanations. How-
ever, log data from large-scale information systems is too large

This paper is an extended version of work published in Ref. '

a single day. We need automated analysis methods and tools
for analyzing such large-scale log data.

Automated analysis of log data is also difficult because
a log message includes an unstructured statement. A major
approach to analyze log data is generating log templates. A
log template is a format of unstructured statements in log
messages. Log messages belonging to a log template usu-
ally contain information on a common system behavior, so
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template generation is an effective way to classify log mes-
sages with their behaviors. In contrast to full-text search®*3,
which is another major approach used for keyword-based anal-
ysis, the template-based approach is suitable for aggregating
and digesting the system behaviors, enabling time-series-based
quantitative analysis such as anomaly detection®”8%10 and
root cause analysis ' 1213,

Many log template generation methods have been pro-
posed in past literature!*!>. These methods are based on
diverse approaches such as source code analysis %1718, cluster-
ing 1920.21.22.23.2425 ' prefix-tree approaches?%’-?7, and machine
learning?®%. As log data plays an important role in multiple
IT fields, the template generation methods also have a diver-
sity of assumptions, such as online and offline processing. The
difference of assumptions sometimes prevents operators and
developers from determining whether the methods match their
use in a consistent manner. Therefore, we need a general frame-
work for automated log analyses that does not depend on a
specific log template generation method.

In addition, the log template generation methods are eval-
uated in disparate ways in the past works (see section 4). For
example, past works have used disparate accuracy metrics such
as the Rand Index %?73°, pairwise F-measure?’3!, and parsing
accuracy 232, Due to the difference, it is difficult for operators
to compare and select log template generation methods with
the literature. In our experience, the appropriate accuracy met-
rics depend on the further use of generated log templates. We
need to re-organize the common knowledge of how to com-
pare and evaluate log template generation methods fairly and
consistently.

In this paper, we propose amulog, a general framework
for template-based log analysis. As a unique feature, amulog
consistently uses segmented log statements. Intuitively, log
messages are considered as a string and use regular expressions
for template matching. However, template matching based on
regular expressions is not efficient in terms of the processing
time (details in section 3). By applying a constant message
segmentation, we can handle the data flow more simply. In
addition, the messages segmented with the common rules
can be used by multiple template generation methods in a
same manner. Therefore, we can easily compare and combine
multiple template generation methods on amulog.

Figure 1 shows the schematic system architecture of amu-
log. The key functions provided by amulog are threefold: (A)
parsing log messages into headers and segmented statements
with a rule-based parser log2seq?3, (B) classifying log mes-
sages with log templates by a tree-based scalable algorithm,
and (C) storing the parsed data in a database that enables search
and aggregation for further analysis. Two processing modes

are available on amulog: online processing for real-time analy-
sis and offline processing for hindsight analysis. We implement
amulog as open-source software>*.

We discuss the design and implementation of amulog to
show its effectiveness in practical log analysis (section 2).
We evaluate amulog in terms of log parsing validity and log
template matching performance with a real log data from
SINET4%, a nation-wide academic network (section 3). We
confirm that the proposed tree-based algorithm in amulog
matches and classifies log messages with given log templates
in a reasonable amount of time even if the number of given
templates is more than 10°. In addition, we conduct a com-
parison of six log template generation methods to determine
the applicability of amulog to various algorithms (section 4).
Through the comparison, we provide a number of findings on
how to compare log template generation methods; In summary,
we need to select appropriate measurement procedure and
accuracy metrics considering the further usage of generated
templates. In the comparison, we demonstrate that combining
our template matching method with existing log template gen-
eration methods largely decreases the processing time and in
some cases improves the accuracy of template generation. In
particular on the extended version of existing CRF-based tem-
plate generation method 28, the template matching reduces 75%
processing time and keeps the accuracy. Finally, we discuss the
practical availability of amulog (section 5) and its uniqueness
to existing literature (section 6).

The contributions of this paper are as follows. (1) We design
and implement a general log analysis framework for compar-
ing and combining multiple log template generation methods.
(2) We propose a scalable template-matching algorithm, which
can improve the performance of other log template generation
methods when combined. (3) We provide a guideline for com-
paring and selecting the template generation method through
our comprehensive comparison work.

2 | AMULOG

2.1 | Requirements

There are three requirements for a general log analysis frame-
work.

(A) The framework needs to preprocess the messages uni-
formly before applying log template generation methods. Most
of the log template generation methods use segmented log
messages (i.e., a sequence of words), but many practical log
messages cannot be segmented by simple methods (details in
subsection 2.3). In addition, the difference of segmentation
rules among the template generation methods prevents us from
combining and comparing them in a consistent manner. A suit-
able log segmentation rule depends on the dataset rather than
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ing log templates. A log analysis framework should consider
various use cases, such as accurate log templates being par-
tially available without template generation or manual tem-
plate modification required for precise analysis. Log template
matching enables the framework to remap log templates and
their instances to satisfy these practical requirements.

(C) The framework needs to provide the parsed and classi-
fied data in an appropriate style for further analysis, as system
operators intend to search log data with the appropriate schema
for their troubleshooting in mind.

2.2 | Overview of amulog

To satisify these three requirements, we propose amulog a
general framework for template-based log analysis, which is
mainly designed for comparison and combination of diverse
log template generation methods. Figure 1 illustrates the sys-
tem architecture of amulog. It has three main components
corresponding to the three requirements: (A) log parsing, (B)
template matching, and (C) database storing. Amulog assumes
line-based log data collected from multiple devices using log-
ging platforms such as syslog as the input. The log data must
contain at the very least a time stamp, source hostname, and
free-format statement. Users can search and aggregate the log
messages with time stamp, hostname, and template identi-
fier from the database storage by means of amulog functions
afterward.

The key idea of amulog is to use segmented log statements
and segmented log templates consistently. Figure 2 shows an
example of the segmented log data. Many log template gen-
eration methods use some word segmentation technique while
their template generation processes, but the implementations
of these methods finally restore the segmented templates to the
original format'®32. In contrast, we keep the log statements
segmented and store them in a database. By applying a constant

Costly
Word segmentation

Segmented log statement Segmented log template

Segmented format
(AMULOG) sshd user sat loging <——>
Efficient
template matching

sshd |user| = login

FIGURE 2 Difference of data format between amulog and
conventional systems.

message segmentation, we can handle the data flow more sim-
ply and compare (or combine) template generation methods in
a consistent manner.

Amulog first parses an input log message into header items
(i.e., time stamp and hostname) and a sequence of words cor-
responding to the free-format log statement. Note that the
symbol strings that separate the words in the log statement
are also extracted separately because some log template gen-
eration methods need them?>?*. Next, amulog determines a
corresponding log template for the segmented statement by
means of log template generation (i.e., estimates log tem-
plates dynamically) or log template matching (i.e., uses pre-
generated log templates). In amulog, the log template gener-
ation methods are external modules. Log template matching
with known templates can be treated as one of the log tem-
plate generation methods, and it can be combined with other
log template generation methods (e.g., basically using tem-
plate matching, and estimating log templates for unfamiliar
log messages). Finally, amulog stores the data structured with
the above two steps in a database. The stored data include
time stamps, source hostnames, log template identifier, and all
words in the statement.

2.3 | Log parsing

Log messages have two parts of information in each line: a
structured header part (e.g. time stamp and source hostname)
and an unstructured statement part (e.g., event description)
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FIGURE 3 Example of log messages with inconsistent symbol
string usage.

The format of the header part depends on the configuration of
the logging system (the same as syslog3®). The statement part
is free-format, but basically has a potential template because
system programs output the log statement by filling the replac-
ers (e.g., format specifiers) in the template with variables.
For human readability, the statement part is usually semi-
formalized (i.e., partially using natural language), so in many
cases it can be segmented into a sequence of words, just
like other languages can be. Many log template generation
algorithms use this feature of the statement part.

There is a problem with the word segmentation process of
the log template generation; some log messages are inconsis-
tent with the usage of symbol strings because the statement
part is free-format. Figure 3 shows an example of such log mes-
sages in our dataset (details in section 3) in which some of the
sensitive variables (such as IP addresses) have been replaced.
Focusing on the slash symbols (“/), some of them are used
as separators of words, while others are part of the variable,
which is an interface name in this case. If we split the statement
with a word segmentation rule that uses slashes as separa-
tors, the interface name “xe-4/3/1” will be torn into smaller
pieces that lose the information of interface. In contrast, if we
leave the slash in the word segmentation, the words “in” and
“out” are not available in the log template generation and fur-
ther analysis. No single static rule can parse this log statement
correctly.

In response to this issue, we propose log2seq, a rule-based
log message parser that converts string log messages into head-
ers and segmented log statements. The key idea of log2seq is to
fix known variable words while parsing. For example, a sample
configuration of log2seq consists of four steps. First, we parse
the header part using a static rule of regular expressions. Next,
we split the statement part (the remaining part after removing
the header part) into word sequences using standard separator
symbols (e.g., spaces and brackets). Then, we fix the known
variable words that should not be separated later (e.g., IPv6
address). Finally, we split the words by inconsistent symbols
(e.g., colons). These rules can parse the log message in Figure 3
as expected.

The configuration for log2seq consists of two rules: the
header parsing rule and the statement segmentation rule. The
header parsing rule is a simple regular expression to parse
the header information. The statement segmentation rule is
a collection of multiple actions for word segmentation. The
actions can be classified into two types: SPLIT and FIX. A

SPLIT action is specified with a regular expression of separa-
tor symbol strings. A FIX action is specified with some regular
expressions of known variable words. The user customizes
the configuration of these rules by modifying the orders and
corresponding regular expressions in these actions.

In our experience, the configuration of log2seq largely
depends on the vendor of the devices and applications. Still,
the configuration can be easily shared in engineer communi-
ties because it does not include any internal information of the
systems and devices.

The source code of log2seq is publicly available on
GitHub??, and can be easily installed as a PyPI package.

2.4 | Template matching

Log template generation must deal with two issues: determin-
ing the log template structure (structure issue) and classifying
the log messages with the templates (classification issue).
Solving the structure issue enables us to obtain an abstracted
log representation and to determine variable words in tem-
plates. These are important when we compare variables in
the messages and apply NLP-based log analysis methods that
focus on descriptive messages®!%. On the other hand, solving
the classification issue is required for event-oriented time-
series analysis. Many existing works based on network log
analysis (including anomaly detection®’-%*10 and root cause
analysis '"1213) classify log messages with log templates to
generate the time series of log events.

However, not all template generation methods satisfy both
issues. For example, a set of generated templates from source
code analysis'®!”-13 is not mapped to the real log messages
(i.e., does not solve the classification issue). These methods
need template matching to use classified log data in further
analysis. Another example appears when we use external log
template lists (e.g., third-patry documents) for log analysis.
Such template lists are usually not mapped to our log messages.
Furthermore, in practical terms, we would need to modify
log templates generated automatically by some methods if
they have any errors. Editing log templates usually breaks
the consistency of models for automated template generation,
so log template matching is required to re-map the modified
templates to the log messages.

To design a log template-matching method, it is important to
consider the scalability of the log template matching to accept
diverse template generation methods. Log data from large-
scale systems have a large number of log template candidates,
which prevents fast template matching. Also, the number of
template candidates can be larger if the templates are generated
automatically and include any errors.

A straightforward approach for log template matching is to
use regular expressions. However, template matching based
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on regular expressions is not efficient because a log template
usually includes multiple variables. For example, some log
templates found in our dataset (see subsection 3.1) have more
than ten variable words in one log statement. The degree of
freedom of the regular expressions is too large for efficient cal-
culation. Besides, the computation complexity is O(n) in the
straightforward approaches, where # is the number of the log
templates for template matching.

To resolve this issue, we propose a log template-matching
algorithm based on a prefix-tree. In this algorithm, we first
make a search tree of the given log templates, as shown in
Figure 4. Every node has a word or a wildcard, and some
nodes have log template identifier that indicate the end of
the templates. This tree consists of three log templates: “user
** Jogged in from **”, “user name invalid”, and “user name
** removed” (“**” represents a variable word). The search-
ing algorithm is a kind of depth-first one: the search process
starts from the root node and the next node is determined
by matching the words with the nodes from the top of the
input statement. There can be several potential branches of the
searching paths because some nodes are the wildcard for vari-
able words. In that case, we first select a node with a static
word and then search another node with a wildcard. If there
is no next matching node, the searching path is discarded and
searching for the next path begins. If the node after passing all
words in the input statement has a log template identifier, the
searching process finishes.

For example, assume the log statement “user name logged
in from 192.0.2.5” is given for matching with the tree in
Figure 4 (it is unlikely, but this is just an example). First, amu-
log traces branch (1) and fails with the fourth word “removed”.
Next, amulog traces branch (2) and succeeds to obtain a cor-
responding log template identifier. Finally, amulog obtains a
log template identifier registered at the end of branch (2) as an
identifier corresponding with the input.

The computational complexity of the tree-based template-
matching method is O(2™) in the worst case where m is the
number of words in the input statement. This is because of the

forks formed by the wildcard nodes in the search tree. How-
ever, it is a rare case that amulog needs to search for multiple
paths for a log message with practical log templates. The paths
to be searched increase only when a word matches both nodes
of the equal static word and that of a wildcard, but template
generation methods usually unify them because most of the
words in log messages are used for either a static word or a vari-
able. In addition, m is typically small enough in practical log
templates (13 words on average in our ground truth templates).

2.5 | Data storage

We also need to consider the schema of the database storage.
Currently amulog support SQLite or MySQL as data storage.
Amulog records the time stamp, source hostname, and tem-
plate identifier of each log message for further analysis. The
time stamp and the hostname are parsed with log2seq. The
template identifier is determined by means of log template
matching or log template generation.

Also, amulog records all words in the log statement for
detailed analysis. Intuitively, it would seem that we only need
to record variable words instead of all words in the log state-
ment. However, some template generation methods (especially
incremental methods based on clustering approaches, such as
Drain?%) change the definition of the log templates afterward.
If we only record the variable words in the log statement, the
definition change of the log templates will destroy the data
structure. In addition, by recording all words, we can manually
edit the log template definitions afterward (see section 5).

2.6 | Implementation

Amulog is implemented in Python 3. The source code of
amulog is available on GitHub3*.

Amulog provides two processing modes: online and offline.
Online processing is designed for continuous data collection
and real-time log analysis. The online processing works with
small memory costs and supports interruption and resump-
tion of template generation. Offline processing is designed for
hindsight analysis. The offline processing works with all tem-
plate generation methods, and some of them support parallel
processing (see section 4). Amulog currently supports multi-
ple log template generation methods including online methods
(e.g., Drain®, LenMa?®’, FT-Tree’, and CRF?®) and offline
methods (e.g., Dlog?7).
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3 | EVALUATION
3.1

We use a set of backbone network syslog data obtained from
SINET43 to evaluate amulog performance (in this section)
and conduct further analysis (section 4). SINET4 is a nation-
wide R&E network connecting over 800 organizations in
Japan. The network consists of eight core routers and over 100
Layer-2 switches provided by multiple vendors.

We manually generate ground truth log templates for the
dataset. There are 1,788 different log templates in 15 months
of log data (35 million lines in total). Figure 5 shows the num-
ber of log instances in the dataset. This empirical distribution
is long-tailed in log-scale, which means most log messages
belong to only a small number of log templates.

In the following experiments, we use an Ubuntu 18.04 server
(x86_64) equipped with an Intel(R) Xeon(R) Silver 4110 (2.10
GHz) and 64 GB of memory.

| Dataset

3.2 | Log template matching

We demonstrate a comparison of the processing times of
various log template-matching approaches with the proposed
tree-based algorithm in amulog in the processing time.

Four template-matching approaches are used for the com-
parison: TREE, TABLE, RE, and RE-Hash. TREE is our pro-
posed tree-based method described in subsection 2.4. TABLE
is a simple method for segmented log messages. It searches the
corresponding template with the same length (i.e., the same
number of words) of log statement and matches all words
except wildcards. TREE and TABLE depend on the message
segmentation (i.e., use log2seq). RE uses regular expressions
for template matching. We automatically generate a regular
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FIGURE 6 Processing time of template-matching methods.

expression for a given log template. RE-Hash is also based on
regular expressions, but it classifies the regular expressions by
the hash of initial characters in the log statement (we use five
characters; e.g., “/kern” in Figure 3) to decrease the number
of regular expressions to match a message. RE and RE-Hash
do not translate the input log statements into a sequence of
words. The computational complexity of TABLE and RE is
O(n), where n is the number of given log templates.

For the comparison, we measure the average processing time
over ten trials with shuffling the order of the log template can-
didates to generate the matching models. This is because the
processing time of some template-matching methods (espe-
cially TABLE and RE) depends on the order of the given
log templates. As explained in subsection 3.1, most log mes-
sages belong to only a small number of templates. Therefore,
if the frequently appearing templates were on the top part
of the given templates, linear search methods (TABLE and
RE) would succeed in matching the messages in a very short
amount of time. That is why we need to shuffle the templates
for a fair comparison.

We also generate six template sets for the comparison using
the implemented log template generation methods !. We eval-
uate the processing time to generate an amulog database from
1-day log data (76,719 lines, a part of the testing data in
section 4) with the four different template-matching methods.
The processing time includes all of the standard amulog pro-
cesses: initializing the matching model from the templates,
parsing input messages with log2seq, classifying the messages
by the template matching, and generating a database.

Figure 6 shows the log-log-scale comparison of the pro-
cessing time with the four template matching methods. As

!'The six methods are Manual, Drain, Match+CRFe, CRFe, RegEx, and CRF.
These methods are introduced in section 4. The number of templates is 1,504, 2,726,
5,108, 10,793, 26,986, and 215,934, respectively.
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TABLE 1 Log template generation algorithms for comparison

Method Online Offline Parallel Preparation
Drain? 3 v v

LenMa?®’ v v -
FT-tree?’ v v scanning
Dlog’ v -
RegEx v v v -
CRF% v v v training

explained above, the measured processing time is the average
of ten trials with shuffled templates and an error bars shows
their standard error. Our proposed method, TREE, took about
40 seconds even if more than 10° templates were given as
template candidates *. We can see that the difference in the
processing time was small with a smaller number of template
candidates, but this difference became larger for more tem-
plate candidates. The processing time of template matching
with TREE was nearly consistent, and the increase for larger
template candidates stemmed from the model initialization
step (because the number of given templates was larger than
the number of log messages). The processing time of TABLE
depended largely on the number of templates, but even so it
was even faster than RE and RE-Hash. This is because the
message segmentation enabled us the partial matching of mes-
sages. On the TABLE algorithm, we do not need to match all
words in a template if the top word is neither a matching word
nor a wildcard. In contrast, RE and RE-Hash need to match
all of the message with the regular expressions, as wildcards
in regular expressions allow any length of variable. Besides,
RE-Hash was not effective compared to RE in this result. In
our dataset, most templates in the larger template sets start
with variable wildcards, so the hash of initial characters cannot
decrease the candidate templates for matching. In summary,
the amulog design with segmenting messages is effective
for efficient template matching, and the proposed tree-based
method improves the scalability of template matching.

4 | APPLICATION

To determine the applicability of amulog to various template
generation methods, we demonstrate a comparison of existing
log template generation methods with the dataset explained in
3.1.

2The amulog implementation is highly improved from the past paper !, and now
it only takes less than 50% processing time compared with the previous version.

4.1 | Compared methods

We compare six different existing methods, consisting of
cluster-based and structure-based methods, as shown in
Table 1.

The first four methods are cluster-based, classifying log
messages into clusters on the basis of message similarity and
heuristics. Drain? is an online template generation method
based on heuristics and clustering with common words.
LenMa?’ is an online method using the character length of
words for message clustering. FT-tree?’ is an online method
with a tree-based method that prunes minor words as vari-
ables. Dlog” is an offline method with a tree-based clustering
and aggregation of common parts. LenMa and FT-tree use the
heuristic knowledge that a top word is always a part of the tem-
plates. We disable this heuristic rule in the algorithms because
the messages in our dataset often start with variables. As Drain
also uses this knowledge, we leave it available because it avoids
failures with top variables by preprocessing for commonly
used variables (digit values).

The latter two methods are structure-based. In these meth-
ods, template generation is considered as a problem to classify
words in log messages into descriptions (i.e., words to form
templates) and variables (i.e., words replaced into wildcards
in the templates). RegEx is a simple method based on regular
expressions. We manually created regular expressions for com-
monly used variables in log messages (digits, timestamps, IP
addresses, MAC addresses, and interface/device names). We
consider words matched with the regular expressions as vari-
ables and other words as descriptions. CRF3%?3 is an NLP-like
approach that estimates template structures (i.e., descriptions
and variables in a log message) for log messages. CRF requires
manually labeled training data for supervised learning, but for
tagging, it does not depend on other messages, which means
parallel processing can be easily applied. We also extended the
CRF-based template generation (CRFe) in two ways: (1) using
mid-labels generated by regular expressions (same as RegEx)
and (2) sampling training data for manual labeling with a pre-
liminary clustering by a simplified SLCT*° to learn more about
minor templates.

In addition, we used combined methods with the tree-based
template-matching method of amulog. As the method combi-
nation in amulog is implemented as a pipeline processing for
each line, the combined template generation is only available
for online methods (i.e., Dlog cannot be combined with tem-
plate matching). In the combined methods, the log template
matching enables to process log messages fast by matching
them to known log templates. A combined method conduct log

3POP3#, an extended method of Drain, is offline-only but can be processed in
parallel.

“In online processing, FT-tree requires a static scan of all or at least a part of
the log data to survey word appearance distribution.
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TABLE 2 Accuracy metrics for log template generation.

Metrics Category Decision Count
Word accuracy (WA) ki structure word label words
Line accuracy (LA)23 structure line labels lines
Template accuracy (TA)28 structure line labels templates
Template word accuracy (TWA) | structure word label templates
Rand Index (RI)*! cluster line pairs line pairs
Adjusted Rand Index (ARI)*? cluster line pairs line pairs
Pairwise F-measure (Fm) %3 cluster line pairs line pairs
V-measure score (Vm)** cluster line entropy lines
Parsing accuracy (PA)?> cluster exact match lines
Cluster accuracy (CA) cluster exact match  templates

template generation as follows: Initially, there is an empty log
template search tree. For each input log message, the method
first search existing templates with the tree. If not found, the
method generate a log template with the combined existing
method. Then the generated log template is added to the search
tree, and used for following input log messages.

4.2 | Accuracy metrics and comparison settings

There also exist multiple accuracy metrics for log template
generation. Past works have used disparate metrics such as
the Rand Index ®?7, pairwise F-measure?*3!, and parsing accu-
racy -2, In this experiment, we utilize the ten metrics shown
in Table 2.

These accuracy metrics can be classified into two categories:
structure metrics and cluster metrics. Structure metrics mea-
sure whether the structure of generated log templates is correct
or not. We use four different structure metrics, three of which
are proposed in our previous paper?®. There are two aspects
to explain the difference between the four structure metrics.
One is the difference in the decision unit to evaluate. WA and
TWA evaluate whether each word is labeled (i.e., classified as
description or variable) correctly or not, and LA and TA evalu-
ate whether the words in each log line are all labeled correctly
or not. The other is the difference in the counting unit to eval-
uate. WA and LA simply count the number of words or lines,
depending largely on the distribution of log instances (see also
subsection 3.1). In constrast, TA and TWA are the average of
the scores for each log templates, which means the metrics are
weighted to be fair to each log templates.

On the other hand, cluster metrics measure whether the mes-
sage clusters classified by the templates are correct or not.
RI, ARI, and Fm are the pair-wise metrics that are tradition-
ally used to evaluate clustering results. PA is designed for log
template generation, which strictly matches the generated clus-
ters with the ground truth. CA is an extended metrics of PA,
which is weighted for clusters instead of log instances, the
same as TA and TWA. Vm, which is also similar to PA, is a

combined value of two entropy-based support metrics, homo-
geneity (Ho) and completeness (Co). Ho measures whether
the log instances in one ground truth cluster are correctly
classified into one estimated cluster. Opposite to the Ho, Co
measures whether the log instances in one estimated cluster
are corresponding to only one ground truth cluster. These two
metrics respectively correspond to two kinds of failure cases
in strict cluster matching (similar to PA): over-division and
over-aggregation. From the viewpoint of template structures,
cluster over-division is caused by false estimation of variables
as descriptions, and cluster over-aggregation is caused by false
estimation of descriptions as variables.

We compare the six log template generation algorithms with
these ten accuracy metrics on amulog. We use the first three
months of log data as training and the following twelve months
for evaluation. For the online clustering methods, the training
data is preliminarily loaded into the model before evaluation
(This is mandatory for the FT-tree preprocessing. For other
methods, this stabilizes the template structure in the online
evaluation). For the CRF-based methods, we annotated 1,000
items sampled from the training data and used them to generate
the CRF model. In both cases, we only use the results of testing
data, not the training data, for calculating the metrics. Note that
the template-matching method can help the annotation step:
we manually prepare a list of answer log templates, and amu-
log annotates the items by the template-matching method with
the list.

4.3 | Results and findings

We first need to discuss the usage of these ten accuracy metrics
in comparing log template generation methods. In this section,
we demonstrates some findings through the comparison results
shown in Table 3.

Online and offline measurement should be distinguished
in structure metrics: For the online clustering methods
(Drain, LenMa, and FT-tree), we can conduct two kinds of
accuracy measurement: offline and online. Offline evaluation
is the intuitive measurement that calculates after all evalua-
tion data processing has finished. In the online evaluation, we
incrementally calculate the structure metrics with the gener-
ated template just after each line is processed. This will cause
a difference of the structure metrics between offline and online
because the template structures change as cluster components
are added during data processing. Table 4 compares the accu-
racy of offline and online measurement in structure metrics.
In the comparison, the structure metrics values were differ-
ent between the online and offline evaluations: specifically,
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TABLE 3 Performance comparison of log template generation algorithms.

Method Stats Structure metrics Cluster metrics Support metrics
Algorithm Time #Clusters WA LA TA TWA RI ARI Fm Vm PA CA Ho Co
(Answer) - 1,504 — — - — — — — - — — — -

Drain 3,241 2,726 0.933 0.559 0.221 0.817 0.997 0.988 0.990 0.984 0.582 0.408 0.971 0.997
LenMa 15,552 2,285 0.868 0.235 0.134 0.727 0.977 0918 0.932 0.949 0.086 0.368 0.971 0.928
FT-tree 2,940 13,380 0.765 0.233 0.067 0.633 0.996 0.988 0.990 0.949 0.201 0.266 0.995 0.907

Dlog 8,238 9,549 0.698 0.000 0.053 0.665 0.994 0.981 0.985 0.972 0.066 0.394 0.997 0.948
RegEx 5,318 26,986 0.867 0.040 0.260 0.870 0.921 0.675 0.717 0.724 0.349 0.525 0.999 0.567

CRF 11,992 215,934 0.985 0.949 0.167 0.808 0.999 0.996 0.998 0.915 0.930 0.521 1.000 0.843

CRFe 12,155 10,793 0.940 0.529 0.560 0.941 0.999 0.998 0.998 0.990 0.278 0.745 1.000 0.979

Match+Drain 3,043 2,648 0.933 0.559 0.221 0.803 0.997 0.988 0.990 0.984 0.581 0.406 0.971 0.997

Match+LenMa 3,059 832 0.867 0.235 0.131 0.716 0.997 0.988 0.990 0.984 0.085 0.369 0.969 0.999

Match+FT-tree 3,047 9,530 0.834 0.203 0.068 0.670 0.996 0.988 0.990 0.953 0.007 0.305 0.988 0.919

Match+RegEx 3,025 21,246 0.867 0.041 0.269 0.872 0.921 0.676 0.718 0.725 0.351 0.545 1.000 0.568
Match+CRF 3,012 18,330 0.993 0.966 0.344 0.898 1.000 1.000 1.000 0.996 0.968 0.596 1.000 0.991
Match+CRFe 3,022 5,108 0.941 0.530 0.576 0.943 1.000 0.998 0.999 0.991 0.811 0.803 1.000 0.982
Ground truth cluster Estimated cluster

accepted password for user sat from 192.168.0.1 accepted password for user sat from 192.168.0.1
accepted password for user yuya from 192.168.0.2 received disconnected by user sat from 192.168.0.1
accepted password for user otomo from 192.168.0.3 accepted password for user yuya from 192.168.0.2
accepted password for user kensuke from 192.168.0.4 accepted password for user otomo from 192.168.0.3

accepted password for user kensuke from 192.168.0.4
Ground truth template <~ Estimated template < L

* %

accepted password for user from

*% *k ** user * % from * %

FIGURE 7 A simplified example of over-aggregation in clustering-based template generation methods. One additional unex-
pected log message significantly changes the structure of log templates. In online evaluation, messages only after the unexpected
message are considered failed to determine the structure of top three words. In offline evaluation, all the messages in the cluster

are considered failed.

TABLE 4 Comparison of online and offline measurements in
structure metrics.

Algorithm Offline WA LA TA TWA
Drain 0933 0559 0221 0.817
0903 0.572 0.121 0.813

LenMa 0.868 0.235 0.134 0.727

v | 0812 0.055 0.153 0.656

FT-tree 0.765 0.233 0.067 0.633

v | 0765 0233 0.009 0.602

Match+Drain 0933 0.559 0.221 0.803
v 10902 0572 0.125 0.817

Match+LenMa 0.867 0.235 0.131 0.716
v | 0811 0.055 0.237 0.803

Match+FT-tree 0.834 0.203 0.068 0.670
v | 0834 0203 0.012 0.599

many values were better in the online evaluation. Figure 7
helps understand the reason. In this example, the second line
of the estimated cluster members is an unexpected log instance
(i.e., over-aggregation). In the online measurement, top three
words were correctly labeled when processing the first line,
but failed when processing the following four lines because
the second line changes the template structure of this clus-
ter. In contrast in the offline measurement, the accuracy of all
lines are calculated with the final template structure. There-
fore, over-aggregation caused the performance degradation in

the structure metrics in the offline measurement. Hereafter,
we focus on online measurement results (Table 3 is all online
measurement).

Over-division and over-aggregation can be measured by
Vm support metrics.: As explained in offline-online compar-
ison, over-division and over-aggregation make different effect
on the measurement results. With Ho and Co, the support-
ing metrics of Vm, we can measure how much over-division
and over-aggregation exists in the comparison results (see sub-
section 4.2). For example in Table 3, Drain and LenMa had
smaller Ho scores (i.e., more over-aggregation). This can also
be confirmed in Table 4: the offline-online difference is larger
in Drain and LenMA than in FT-tree especially on unweighted
metrics (WA and LA).

It is important to understand the two failure cases, over-
division and over-aggregation, in the template generation
results. One reason is that the failures of some template gen-
eration methods can be biased for each of the cases. In the
six methods, Drain and LenMa have both over-division and
over-aggregation. In comparison, failures in other methods are
biased to over-division. The other reason is that the presen-
tation of generated log templates depends on failure cases.
If a template has an over-division failure, the generated tem-
plate still have much variables, so the over-division should be
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reduced for anonymizing log data. On the other hands, if a tem-
plate has an over-aggregation failure, the generated template
is too much masked (see also Figure 7). The over-aggregation
should be reduced for some visualization purposes.

Pairwise metrics are not effective in long-tailed dataset:
In Table 3, pair-wise cluster metrics (RI, ARI, and Fm) were
nearly stuck to the upper limit. As shown in Figure 5, the log
template appearance in our dataset is long-tailed. Pair-wise
values depend on the square of the number of log lines, where
the values only demonstrate major clusters in the dataset.

Line-counting metrics are for trend analysis, and
template-counting metrics are for anomaly analysis: To
clarify the difference between the counting unit (i.e., lines or
clusters), we focus on the difference between CRF and CRFe.
The difference stems mainly from extension (2) of CRFe: sam-
pling training data. CRF randomly selects training data, which
means frequently appearing messages are intensively learned
(according to the log instance distribution shown in Figure 5,
90% of the training data would belong to only ten templates
if randomly sampled). In contrast, CRFe selects training data
including minor log templates, which means the CRFe model
focuses more on minor log templates than frequent ones. This
difference is confirmed by the results in Table 3: CRF was
superior, especially on LA and PA (i.e., counting lines), and
CRFe was superior on TA, TWA, and CA (i.e., counting tem-
plates). To this end, we should select appropriate metrics for
further analysis usage of log data. If we focus largely on the
time-series trend of frequent messages (e.g., access-log trend
analysis), we should focus on line-counting metrics such as
LA, PA, and Vm. On the other hand, if we focus on anoma-
lous events that rarely appear (e.g., troubleshooting of error
logs), we should focus on template-counting metrics such as
TA, TWA, and CA.

Structure metrics and cluster metrics should be used
together: Especially with clustering-based template genera-
tion methods, large cluster metrics does not mean large struc-
ture metrics. This is because, in clustering-based method, a
template structure is obtained as the common parts of log
instances in a cluster. Even if the cluster is completely accurate,
some variables can be consistent in a dataset and be considered
as descriptions. The template structure is expected accurate for
example in semantic analysis*® or variable analysis. For these
purposes, we should consider not only cluster metrics but also
structure metrics.

Line-complete metrics and cluster-complete metrics are
too peaky to understand template generation results: We
can see that some metrics, especially LA and TA, were too
peaky for comparison. These metrics consider the labeling
of a log message as failed even with one failed label (i.e.,
line-complete) and are sometimes ineffective for comparison
because they cannot distinguish partial failures from nearly

complete failures. PA and CA also have a similar problem, as
they consider log instances in a cluster as all failed even with
one excess or deficiency message (i.e. cluster-complete). In
terms of over-aggregation, this is reasonable because one unex-
pected message can break the template structure completely as
shown in Figure 7. However, in terms of over-division, these
metrics are too sensitive. We can see this with the results for
Dlog and CRFe: almost all failures on these methods were due
to over-division (i.e., large Ho and small Co), and they had a
large Vm but comparatively small PA even though Vm and PA
are similar metrics depending on the number of lines. There-
fore, we should avoid these peaky metrics (LA, TA, PA, and
CA) for precise comparison of template generation methods.

Recommendation: From these findings, if one intends to
design log template generation methods for general further
usage, the recommendation is using TWA and Vm for eval-
uation, and additionally using Vm’s supporting metrics (Ho
and Co) for validation. Vm shows the accuracy for standard
usage such as trend analysis, and TWA shows the accuracy
for anomaly analysis and template-structure-required analy-
sis. The supporting metrics will help understand what kind
of failures (i.e., over-division or over-aggregation) exist in the
results.

4.4 | Method comparison

On the basis of above, we briefly compare the template gen-
eration methods. Drain is the state-of-the-art method in this
field, and it outperformed the other clustering methods in terms
of accuracy. Even so, it had more over-aggregation failures
than the other methods, which may result in some minor log
messages being buried into a cluster of major messages with
different template structures (as in Figure 7). If we intend to
avoid over-aggregation for further analysis, we should also
consider other methods such as Dlog. Moreover, if we allow a
certain amount of training data to be manually annotated, CRF
or CRFe would be the best method. These CRF-based meth-
ods are especially effective in terms of structure metrics, which
has a big impact on further log analysis considering variable
values of log instances (e.g., protocol-specific analysis).

In addition, we can see combining template matching and
existing methods is effective in many cases. For the meth-
ods that require large processing time (especially LenMa and
CRFs), template matching reduces processing time to the same
level as Drain and FT-tree. In particular, the processing time
of CRFe is 75% reduced if combined with template matching.
Also, template matching does not largely change the accuracy
in any metrics. In particular for CRFs, the accuracy metrics
(notable in PA and Vm) are improved with template match-
ing. This is because CRF sometimes fails to label variables
that appear in multiple different templates. The messages with
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these variables can be easily merged with appropriate template
clusters by template matching. Therefore, template matching
is effective especially when combined with structure-based
methods.

S | DISCUSSION

Requirements for combination of template generation
methods: In this paper, we demonstrated the combination
of template matching and existing template generation meth-
ods. They are combined in pipeline style; one method gen-
erates templates for a part of input accurately, and the other
method generates templates for the remaining part of input.
As explained in subsection 4.1, this approach is only avail-
able for online template generation. For effective combination,
the combined passing methods (i.e., methods except the last
one) need to be more accurate than the following methods and
only determine a part of messages. LogParse 3’
approach to combine multiple template generation methods,
but it has some limitations (see section 6).

Practical use of combined template generation: The com-
bination of template-matching method is also useful for more
practical situations. In actual operation, we sometimes have
partial lists of accurate log templates. For example in network
fields, the partial log templates can be obtained from ven-
dor’s documentation of network devices. These template lists
are used in two different approaches.One approach is for com-
bined template matching. By adding the template lists as initial
knowledge of the template search tree, amulog can generate
accurate log templates for more log inputs. The other approach
is for CRF training data. With the template lists, we can gen-
erate annotated training data more easily. Note that generating
training data from some lists may cause a training bias, so it
is better to add manually generated training data that follows
missing templates in the lists. These two approaches can be
used together, which will largely improve the accuracy of log
template generation.

Manual modification of log templates: Amulog supports
manual modification of log template structures after automated
log template generation. This modification not only change
template structure but also re-organize log message clusters.
It will help more flexible operation, for example when we
have known important log messages that must be classified
accurately. If we simply modify log templates generated by
online clustering methods, it may lose consistency of online
clustering. However, if the method is combined with template
matching, we can modify the templates on the search tree
and keep online clustering consistent. Therefore, the template
matching is also helpful for flexible management. Note that if
one intends to modify log templates manually, he/she should

uses a similar

select an automated log template generation method that have
smaller over-aggregation. In our experience, we can easily
fix over-divided templates by just replacing variables into
wildcards. In contrast, it is difficult to fix over-aggregated tem-
plates because we need to refer cluster members to reorganize
accurate templates.

Parameter tuning: Amulog is also helpful for parame-
ter tuning of log template generation methods. To illustrate
this, we selected a set of parameters for Drain by an auto-
mated parameter tuning on the annotated three-months dataset
(corresponding to the three-months training data used in sub-
section 4.2). Drain has two parameters, depth and st, and the
appropriate parameters depend on the dataset?®. We maxi-
mized Vm and obtain depth = 3 and st = 0.5. Note that
the obtained parameters change if we use different accuracy
metrics to be maximized, so it is important to use appropriate
accuracy metrics for the purposes of further analysis to select
a reasonable set of parameters.

Limitation: As amulog consistently uses segmented log
statements, there is a limitation that amulog cannot distinguish
log templates with common words but different separator sym-
bols. In our experience, it is a rare case that two such templates
have different meanings and their clusters should be divided.
Instead, the minor changes of separator symbols are mainly
caused by the updates of softwares or firmwares. For the long
term analysis, we do not need to distinguish templates with dif-
ferent separator symbols. Similar problems appear if we use
log templates extracted from software source codes on amu-
log. There are some literature that use log templates extracted
from source codes 141746 These templates are not parsed as the
sequence of words, and cannot be segmented directly because
the variable part can include separator symbols that is not
visible in the templates. To use these templates on amulog,
we additionally need their log instances to apply segmenta-
tion accurately. Still, the scalable template-matching method of
amulog is very helpful to use these extracted templates because
the number of extracted templates is extremely large com-
pared to the ones that actually appear in managed systems. For
example, Yamashiro et al.*® generated 28,148 templates from
source code*” of routing services of Vyatta, an open source
router.

6 | RELATED WORKS

Some earlier works have proposed log analysis frameworks
and platforms for monitoring computer systems. One popular
approach is the full-text search based on Elasticsearch*®. Bai?
proposed a real-time log search engine with Elasticsearch and
HBase. Cuong et al* constructed a log management system
with LogStash 49 and Elasticsearch, where LogStash functions
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as a formatting and forwarding engine of the log messages
using rule-based filters>°. The other approach is Hayabusa?,
a full-text search engine for log data based on a distributed
and parallelized SQLite database. These approaches focus on
the full-text search of massive log data and are not appropriate
for template-based log analysis (i.e., event-oriented time-series
analysis) because it is difficult to extract log instances for a
template with a keyword search.

Other works have discussed the selection of log template
generation methods for log analysis. El-Masri et al. 4 reviewed
17 state-of-the-art log template generation algorithms selected
from 89 research papers. Landauer et al.'> surveyed more
than 50 articles about log template generation methods. These
works are simple qualitative comparisons based on paper sur-
veys but are nevertheless helpful to select template generation
methods. Zhu et al.*?3! conducted a quantitative comparison
of 13 log template generation methods with an open log dataset
of supercomputers and applications. Our comparison in the
current paper ( section 4) is different from this work in the
following three points: we consider both online and offline pro-
cessing, we compare multiple accuracy metrics, and we use
network logs that have significantly different features from the
open dataset (specifically, there are much more templates and
the heuristic rule of top words in log messages is not reasonable
as explained in section 4).

Similar to our work, LogParse’, another existing log anal-
ysis framework, combines a template-matching method based
on an extended FT-tree with existing log template generation
methods. However, this approach depends on word appearance
counts of log messages that must be measured consistently in a
dataset. This prevents LogParse from flexible use such as using
external template lists and modifying log templates manually
(see section 5).

0

7 | CONCLUSION

In this paper, we have proposed the design and implementa-
tion of a general framework, amulog, for template-based log
analysis. Our design is characterized by a simplified data flow
while using segmented log messages consistently. We imple-
mented amulog considering the three issues facing framework
design: rule-based log parsing, tree-based template matching,
and database schema. Our evaluation demonstrated that the
proposed template-matching algorithm is scalable enough to
match 1-day log messages (76,000 lines) with more than 103
templates in 40 seconds. To demonstrate the applicability of
amulog to the comparison and combination of log template
generation methods, we conducted a comprehensive compar-
ison of existing log template generation methods with real
network log data on amulog. We clarified that there is no

one best log template generation method; rather, we need to
select which methods to use by considering the purposes of
the further analysis. We also confirmed that the combination
of template matching with existing methods is effective to
decrease processing time of log template generation.

As future work, we will implement state-of-the-art template
generation methods as external modules for amulog. We will
also share the log2seq configurations for major devices and
applications. In addition, we will consider further log analysis
approaches based on amulog.
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