Towards application of network topology information to network causal log analysis

National Institute of Informatics Project Researcher Satoru Kobayashi Dec 13, 2018

Difficulty of leveraging system log

- Huge dataset
 - Large scale and complicated systems
 - 150,000 lines / day in SINET 5
 - Automated analysis required

- Difficult to analyze automatically
 - Free-format
 - Mixture of frequent and sparse logs
 - Lengthy / Repeated data

Automated analysis of system log

[1] K. Yamanishi et al. "Dynamic syslog mining for network failure monitoring". In ACM KDD'05, p. 499, 2005.

[2] F. Salfner et al. "Using hidden semi-Markov models for effective online failure prediction". In IEEE SRDS, pp. 161–174, 2007.

[3] P. Chen et al. "Causeinfer: Automatic and distributed performance diagnosis with hierarchical causality graph in large distributed systems". In IEEE INFOCOM, pp. 1887–1895, 2014.

[4] I. Beschastnikh, et al. "Inferring Models of Concurrent Systems from Logs of Their Behavior with CSight." In ICSE 2014, 468-479, 2014.
 [5] T. Kimura et al. "Spatio-temporal factorization of log data for understanding network events". In IEEE INFOCOM, pp. 610–618, 2014.

Causal analysis of system log

- Graph-based causal inference [9]
 - PC algorithm: causal structure estimation
 - Exploratory analysis in contrast to existing approaches [7, 8]
- Challenges
 - Processing time
 - Reliability of detected information

Improve causal analysis based on topology knowledge

[6] B. Tak et al. "LOGAN: Problem Diagnosis in the Cloud Using Log-Based Reference Models," in IEEE IC2E, 2016, pp. 62-67.

[7] Z. Zheng et al. "3-Dimensional root cause diagnosis via co-analysis," in ACM ICAC, 2012, pp. 181.

[8] A. Mahimkar et al. "Towards automated performance diagnosis in a large iptv network," in ACM SIGCOMM, 2009, pp. 231–242.

[9] S. Kobayashi et al. "Mining causality of network events in log data", IEEE TNSM, vol. 15, no.1, pp. 37–67, 2018.

Goal

- Extract causality of events in system logs efficiently
 - Based on causal inference (PC algorithm)
 - Using network topology knowledge
- Provide reliable information for system management and troubleshooting
 - More accurate information
 - Less redundant (or meaningless) information

Dataset

• SINET4

- https://www.sinet.ad.jp/en/top-en
- A nation-wide R&E network in Japan
- 8 core routers and 100 over L2 switches
- 15 months syslog data
 - 3.5 million lines to analyze

Causal Inference

- Conditional Independence
 - A and B are independent if the effect of confounder C is excluded
 - A and B are conditionally independent given C
- PC algorithm [10]
 - Directed acyclic graph (DAG)
 - Explore conditional independence and remove false edges

P(A|C)P(B|C) = P(A, B|C)

Flow of PC algorithm

[11] R. E. Neapolitan. "Learning Bayesian Networks." Prentice Hall Upper Saddle River, 2004.
 [12] T. Verma, et al. "An algorithm for deciding if a set of observed independencies has a causal explanation". In Proceedings of UAI'92, pp. 323–330, 1992.

Log analysis and causal inference [9]

Oct 17 17:00:00 routerA System shutdown by root Oct 17 17:00:05 switchB Error detected on eth0 Oct 17 17:00:15 routerC BGP state changed from Established to Idle Oct 17 17:00:15 routerD SNMP trap sent to routerA

.

[9] S. Kobayashi et al. "Mining causality of network events in log data", IEEE TNSM, vol. 15, no.1, pp. 37–67, 2018.

System architecture

System architecture

Proposed method

- Preprocessing based on network topology

 Heuristic: Only network events of connected devices have causal relations
- Edit initial graph of PC algorithm
 - Complete graph -> Pruned graph

Proposed method

- Preprocessing based on network topology

 Heuristic: Only network events of connected devices have causal relations
- Edit initial graph of PC algorithm
 - Complete graph -> Pruned graph

Generate analytics topology

- Consider both L2 and L3 connectivity
 - Add edges of L3 connections

Pruning initial graph

 Prune edges between events of unconnected devices in given analytics topology

Compare with existing method

Existing method: Area-based separation [9]
 Multiple smaller complete graphs

Evaluation

- Generate causal DAGs for 455-days log data
 - 35 million lines
 - 1789 log templates, 132 devices
- Results

Method	Edges	Time (sec/day)	
None	30,174	1,220	Both methods
Area-based	29,195	870	decrease 25%
Topology-based	26,005	940	processing time

Classification of causal edges

Type	Nodes	Ends of edges				
		None	Area	Topology		
System	53,505		00 007	00 091		
Network	12,901	SSH remote connections from				
Interface	2 13,446	a monitoring server				
Service	$7,\!697$	742	435	567		
Mgmt	$75,\!677$	$25,\!183$	$23,\!722$	$17,\!359$]	
Monitor	$2,\!452$	267	305	298	_	
VPN	$3,\!465$	50	$1,\!074$	106]	
Rt-EGP	$3,\!831$	$1,\!576$	1.6	1,605		
Rt-IGP	VPN connections in core routers					
Total	-> Conditional independence not effective in					
	area-based method					

Case study 1

- Found causal edges in topology-based method (and NOT in area-based method)
- Events of system errors

Removed in area-based method because of conditional independence of failed (impossible) confounding factor

Case study 2

- Found causal edges in topology-based method (and NOT in area-based method)
- Events of VPN among core nodes

```
<u>1771[vpn] in core router B</u>
**:rpd[**]:
RPD_MPLS_LSP_SWITCH:
MPLS LSP ** switch
from secondary(**) to
primary(**), Route ...
```

<u>1771[vpn] in core router C</u> **:rpd[**]: RPD_MPLS_LSP_SWITCH: MPLS LSP ** switch from secondary(**) to primary(**), Route ...

Topology-based method can find edges between core-router events (and Area-based method cannot)

Discussion

- Depends on network topology
 - Not effective in SINET5 (Full mesh topology) [13]

[13] T. Kurimoto, *et al.* "SINET5: A low-latency and high-bandwidth backbone network for SDN/NFV Era", in *IEEE International Conference on Communications,* 2017

Concluding remarks

- Estimate causal relations among network events in SINET4 log data
 - Use topology knowledge of network devices to prune initial edges of PC algorithm
 - Decrease 25% processing time
 - More accurate analysis than area-based method
- Future work
 - Co-operative analysis with other data sources
 - Layer-based preprocessing