Towards application of network topology information to network causal log analysis

National Institute of Informatics
Project Researcher
Satoru Kobayashi
Dec 13, 2018

Difficulty of leveraging system log

- Huge dataset
- Large scale and complicated systems
- 150,000 lines / day in SINET 5
- Automated analysis required

- Difficult to analyze automatically
- Free-format
- Mixture of frequent and sparse logs
- Lengthy / Repeated data

Automated analysis of system log

3 challenges for operating network

- Anomaly detection
- State modeling [1,2]
- Bayesian estimation [3]

[1] K. Yamanishi et al. "Dynamic syslog mining for network failure monitoring". In ACM KDD’05, p. 499, 2005.
[2] F. Salfner et al. "Using hidden semi-Markov models for effective online failure prediction". In IEEE SRDS, pp. 161-174, 2007.
[3] P. Chen et al. "Causeinfer: Automatic and distributed performance diagnosis with hierarchical causality graph in large distributed systems". In IEEE INFOCOM, pp. 1887-1895, 2014.
[4] I. Beschastnikh, et al. "Inferring Models of Concurrent Systems from Logs of Their Behavior with CSight." In ICSE 2014, 468-479, 2014.
[5] T. Kimura et al. "Spatio-temporal factorization of log data for understanding network events". In IEEE INFOCOM, pp. 610-618, 2014.

Causal analysis of system log

- Graph-based causal inference ${ }_{\text {[9] }}$
- PC algorithm: causal structure estimation
- Exploratory analysis in contrast to existing approaches [7, 8]
- Challenges
- Processing time
- Reliability of detected information
> Improve causal analysis based on topology knowledge
[6] B. Tak et al. "LOGAN: Problem Diagnosis in the Cloud Using Log-Based Reference Models," in IEEE IC2E, 2016, pp. 62-67.
[7] Z. Zheng et al. "3-Dimensional root cause diagnosis via co-analysis," in ACM ICAC, 2012, pp. 181.
[8] A. Mahimkar et al. "Towards automated performance diagnosis in a large iptv network," in ACM SIGCOMM, 2009, pp. 231-242.
[9] S. Kobayashi et al. "Mining causality of network events in log data", IEEE TNSM, vol. 15, no.1, pp. 37-67, 2018.

Goal

- Extract causality of events in system logs efficiently
- Based on causal inference (PC algorithm)
- Using network topology knowledge
- Provide reliable information for system management and troubleshooting
- More accurate information
- Less redundant (or meaningless) information

Dataset

- SINET4
- https://www.sinet.ad.jp/en/top-en
- A nation-wide R\&E network in Japan
- 8 core routers and 100 over L2 switches
- 15 months syslog data
- 3.5 million lines to analyze

Causal Inference

- Conditional Independence
- A and B are independent if the effect of confounder C is excluded
- A and B are conditionally independent given C
- PC algorithm [10]
- Directed acyclic graph (DAG)

- Explore conditional independence and remove false edges
[10] P. Spirtes et al. "An algorithm for fast recovery of sparse causal graphs", Social science computer review, vol. 9, pp. 62-72, 1991.

Flow of PC algorithm

Complete graph (initial)

Skeleton graph

Directed acyclic graph

- Remove edges of conditional independence
- Statistical test for conditional independence [11] s) [12]
- G2 test (for binary or multi-level data)
- Fisher-Z test (for continuous data)
[11] R. E. Neapolitan. "Learning Bayesian Networks." Prentice Hall Upper Saddle River, 2004.
[12] T. Verma, et al. "An algorithm for deciding if a set of observed independencies has a causal explanation". In Proceedings of UAI'92, pp. 323-330, 1992.

Log analysis and causal inference ${ }_{\text {[9] }}$

Oct 17 17:00:00 routerA System shutdown by root
Oct 17 17:00:05 switchB Error detected on eth0
Oct 17 17:00:15 routerC BGP state changed from Established to Idle
Oct 17 17:00:15 routerD SNMP trap sent to routerA

[9] S. Kobayashi et al. "Mining causality of network events in log data", IEEE TNSM, vol. 15, no.1, pp. 37-67, 2018.

System architecture

System architecture

Proposed method

- Preprocessing based on network topology
- Heuristic: Only network events of connected devices have causal relations
- Edit initial graph of PC algorithm
- Complete graph -> Pruned graph

Complete graph (initial)

Skeleton graph

Directed acyclic graph

Proposed method

- Preprocessing based on network topology
- Heuristic: Only network events of connected devices have causal relations
- Edit initial graph of PC algorithm
- Complete graph -> Pruned graph

Pruned graph (initial)

Skeleton graph

Directed acyclic graph

Generate analytics topology

- Consider both L2 and L3 connectivity
- Add edges of L3 connections

Pruning initial graph

- Prune edges between events of unconnected devices in given analytics topology

Complete graph of events
Topology knowledge

New initial graph for PC algorithm

Compare with existing method

- Existing method: Area-based separation ${ }^{\text {(9] }}$
- Multiple smaller complete graphs

Area-based

Topology-based

- Edges among core routers
- Sparse edges

Evaluation

- Generate causal DAGs for 455-days log data
- 35 million lines
- 1789 log templates, 132 devices
- Results

Method	Edges	Time (sec/day)
None	30,174	1,220
Area-based	29,195	870
Topology-based	26,005	940

Both methods decrease 25% processing time

Classification of causal edges

Type	Nodes	Ends of edges		
		None	Area	Topology
System	53,505	- 1 co	O-0n7	
Network	12,901	a monitoring server		
Interface	13,446			
Service	7,697	742	435	\07
Mgmt	75,677	25,183	23,722	17,359
Monitor	2,452	267	305	298
VPN	3,465	50	1,074	106
Rt-EGP	3,831	1,576	1.8	1,605
Rt-IGP	VPN connections in core routers			
Total	-> Condition	indepen rea-based	dence no method	effective in

Case study 1

- Found causal edges in topology-based method (and NOT in area-based method)
- Events of system errors

Removed in area-based method because of conditional independence of failed (impossible) confounding factor

Case study 2

- Found causal edges in topology-based method (and NOT in area-based method)
- Events of VPN among core nodes

```
1771[vpn] in core router B
**:rpd[**]:
RPD_MPLS_LSP_SWITCH:
MPLS LSP ** switch
from secondary(**) to
primary(**), Route ...
```

```
1771[vpn] in core router C
**:rpd[**]:
RPD_MPLS_LSP_SWITCH:
MPLS LSP ** switch
from secondary(**) to
primary(**), Route ...
```

Topology-based method can find edges between core-router events (and Area-based method cannot)

Discussion

- Depends on network topology
- Not effective in SINET5 (Full mesh topology)

Concluding remarks

- Estimate causal relations among network events in SINET4 log data
- Use topology knowledge of network devices to prune initial edges of PC algorithm
- Decrease 25\% processing time
- More accurate analysis than area-based method
- Future work
- Co-operative analysis with other data sources
- Layer-based preprocessing

