Mining causality of network events in log data

National Institute of Informatics Project Researcher Satoru Kobayashi Oct 17, 2018

1

About this presentation

- Speaker: Satoru Kobayashi, Ph.D.
 - Postdoc researcher in National Institute of Informatics
 - Expertise: Network management, Data mining, ...
- Related paper
 - "Mining causality of network events in log data"
 S.Kobayashi et al, in IEEE TNSM, 2018
- Source code:

– <u>https://github.com/cpflat/LogCausalAnalysis</u>

.

Challenge of this research

Oct 17 17:00:00 routerA System shutdown by root Oct 17 17:00:05 switchB Error detected on eth0 Oct 17 17:00:15 routerC BGP state changed from Established to Idle Oct 17 17:00:15 routerD SNMP trap sent to routerA

Outline

- Background
- Causal analysis
- System architecture
 4 underlying methods
- Evaluation
- Conclusion

Network management with data

- 3 tasks for operating large-scale network
 - 1. Continuous monitoring
 - 2. Fast recovery of failures
 - 3. Relapse prevention of failures
- Operational data
 - Used to find and analyze failures
 - Large variety
 - Large-scaled data -> Automated analysis

Satoru Kobayashi

CRW2018

Active / Passive analysis of operational data

	Active analysis	Passive analysis
Example	 Traffic data Routing table Load average Temperature 	 System log Access log Trouble ticket
Feature	 For failures assumed in advance Environment- dependent design 	 Independent of the environment Flexible data Difficult to analyze automatically

System log

- System log
 - e.g., syslog
 - Contextual information (compared to measurement data)
- Difficulty in automated analysis
 - Free-format (Unclear message structure)
 - Mixture of frequent and sparse logs
 - Lengthy / Repeated data

Aug 1 12:43:55 host1 %%01VTY/5/ACL_DENY(1)[61179]: The TCP request was denied according to ACL rules. (IpAddress=192.0.2.1) Aug 1 12:45:20 host1 %%01MCAST/6/SUPPRESS_REPORT(1)[61180]: Suppress report packet. (VlanID=64500, Group ip=192.0.2.100, Rece iveInterface=Eth-Trunk0)

Aug 1 12:49:12 host1 %%01VTY/5/ACL_DENY(1)[61181]: The TCP request was denied according to ACL rules. (IpAddress=192.0.2.3) Aug 1 12:57:50 host1 %%01INFO/4/SUPPRESS_LOG(1)[61182]: Last message repeated 1 times.(InfoID=1079644206, ModuleName=VTY, InfoA lias=ACL_DENY)

Automated analysis of system log

[1] K. Yamanishi et al. "Dynamic syslog mining for network failure monitoring". In ACM KDD'05, p. 499, 2005.

[2] F. Salfner et al. "Using hidden semi-Markov models for effective online failure prediction". In IEEE SRDS, pp. 161–174, 2007.

[3] P. Chen et al. "Causeinfer: Automatic and distributed performance diagnosis with hierarchical causality graph in large distributed systems". In IEEE INFOCOM, pp. 1887–1895, 2014.

[4] I. Beschastnikh, et al. "Inferring Models of Concurrent Systems from Logs of Their Behavior with CSight." In ICSE 2014, 468-479, 2014.
 [5] T. Kimura et al. "Spatio-temporal factorization of log data for understanding network events". In IEEE INFOCOM, pp. 610–618, 2014.

Causal analysis of system log

- Problems of existing methods [7,8]
 - Large processing time
 - Analysis range is limited
 - Only considering logs of close time
- Graph-based causal analysis
 - Efficient analysis
 - Enable to point out root causes
 - Exploratory approach -> knowledge extraction

^[6] B. Tak et al. "LOGAN: Problem Diagnosis in the Cloud Using Log-Based Reference Models," in IEEE IC2E, 2016, pp. 62-67.

^[7] Z. Zheng et al. "3-Dimensional root cause diagnosis via co-analysis," in ACM ICAC, 2012, pp. 181.

^[8] A. Mahimkar et al. "Towards automated performance diagnosis in a large iptv network," in ACM SIGCOMM, 2009, pp. 231–242.

Goal

- Infer causal relations among network events in log data
 - Time series analysis + Causal inference
 - Exploratory approach with wide-range data
 - Available in large-scale network
- Troubleshooting of system failures

- Operators can understand system behavior easily

Dataset

- SINET4
 - (https://www.sinet.ad.jp/en/top-en)
 - A nation-wide R&E network in Japan
 - 8 core routers and 100 over L2 switches
 - 15 months syslog data
 - 3.5 million lines to analyze
 - 12 months trouble ticket
 - For evaluations

Outline

- Background
- Causal analysis
- System architecture
 4 underlying methods
- Evaluation
- Conclusion

Causal Inference

- Conditional Independence
 - A and B are independent if the effect of confounder C is excluded
 - A and B are conditionally independent given C
- PC algorithm [9]
 - Directed acyclic graph (DAG)
 - Explore conditional independence and remove false edges

P(A|C)P(B|C) = P(A, B|C)

Flow of PC algorithm

[10] R. E. Neapolitan. "Learning Bayesian Networks." Prentice Hall Upper Saddle River, 2004.
[11] T. Verma, et al. "An algorithm for deciding if a set of observed independencies has a causal explanation". In Proceedings of UAI'92, pp. 323–330, 1992.

.

Log analysis and causal inference

Oct 17 17:00:00 routerA System shutdown by root Oct 17 17:00:05 switchB Error detected on eth0 Oct 17 17:00:15 routerC BGP state changed from Established to Idle Oct 17 17:00:15 routerD SNMP trap sent to routerA

Outline

- Background
- Causal analysis
- System architecture
 4 underlying methods
- Evaluation
- Conclusion

System architecture

Satoru Kobayashi

CRW2018

18

System architecture

Log template

• Log template

Original logAccepted password for sat from 192.168.1.1 port 12345Log templateAccepted password for * from * port *

- Why log template is needed for analysis?
 - Generate time-series by message classification
 - Extract contextual properties
 - Most existing works use format-based classification

Log template generation methods

- 3 different approaches
 - 1. Generating templates from source codes
 - Most accurate approach
 - 2. Clustering messages
 - Major approach
 - 3. Estimating template structure
 - (Our contribution)
 - Effective in network logs

1. Template generation from source codes

- Extract logging functions in source codes [12, 13]
- Advantage
 - No estimation failure
 - Independent from message distribution
- Disadvantage
 - Available only in open source software

>Usually unavailable in commodity network devices

[12] W. Xu et al. "Detecting large-scale system problems by mining console logs". In ACM SOSP , pp. 117-132, 2009.
[13] M. Zhang, et al. "GenLog: Accurate Log Template Discovery for Stripped X86 Binaries". In 2017 IEEE COMPSAC, pp. 337–346, 2017.

2. Clustering messages for generating templates

- Clustering messages and extract common part — Words, word locations or message length [14, 15]
- Advantage
 - Especially accurate in major log messages
- Disadvantage
 - Not accurate in minor log messages
 - Critical / Important messages are usually minor in network logs

[14] R. Vaarandi. "A data clustering algorithm for mining patterns from event logs". In IEEE IPOM , pp.119-126, 2003.[15] M. Mizutani. "Incremental mining of system log format". In IEEE SCC'13, pp. 595–602, 2013.

Problem statement of 3. Template structure estimation

- Classify words into **Descriptions** and **Variables**
 - **Descriptions** are common in message instances
 - Variables can be different in message instances
 - Log template: word structure of message, presented in Description and Variable (Variable -> wild card)

Structure learning for template generation

- Machine learning based template generation [16]
 Labeling words as Description or Variable
- Conditional Random Fields (CRF) [17]
 - Supervised Learning
 - Labeling sequential data
 - Mainly used in Natural Language Processing
 - Part-of-speech tagging, Chunking, etc...

[16] S. Kobayashi, et al. "Towards an NLP-based Log Template Generation Algorithm for System Log Analysis". In CFI, 2014

[17] J. Lafferty, et al. "Conditional Random Fields : Probabilistic Models for Segmenting and Labeling Sequence Data". In ICML 2001, pp. 282–289, 2001.

CRF-based log template estimation

Difficulty of supervised learning in network logs

• Cumulative ratio of messages in log templates

2-step log template estimation

[14] R. Vaarandi. A data clustering algorithm for mining patterns from event logs. In IEEE IPOM, pp.119-126, 2003.

Comparison of estimation accuracy

Summary of template generation

- Classify messages based on log templates

 Message -> Time-series event
- Supervised learning of log templates with CRF
 Labeling words into Description and Variable
- Efficient learning with 2-step CRF
 - Learn more various log template
 - Generate accurate templates for minor log messages (important in troubleshooting)

System architecture

Removing redundant logs

- Redundant log events
 - Self-evident information for operators
 - Regular messages (constant or periodic)
 - Bursting messages
- Regular messages
 - Different distribution from other sparse logs
 - Cause more false positive in causal analysis

Example of redundant logs

mgd[**]: UI_AUTH_EVENT: Authenticated user '**' at permission level '**'

Example of redundant logs (2)

sshd[**]: Accepted password for ** from ** port ** **

Comparison of preprocessing methods

- Fourier+Linear: Proposed 2-step method
- Corr: Past approach based on self-correlation [18]

Method	Nodes	Edges		Time (sec/day)				
None	293,252	74,919		1,744				
Corr	134,020	16,210		417				
Fourier+Linear	244,051	57,302		671				
	Keep major part of causal relations			Decrease 60% processing time				

[18] S. Kobayashi et al. Mining causes of network events in log data with causal inference. In IEEE IM, pp.45-53, 2017.

Summary of preprocessing

- Preprocessing to decrease false positives
 - Remove periodic events
 - Fourier analysis
 - Leave aperiodic components in periodic events
 - Remove regular events
 - Linear regression
 - Available in regular events with unstable interval
- Leave useful information that is removed in past approach [18]
- Decrease 60% processing time

System architecture

Conditional independence test

- Conditional independence test (CI test)
 Used repeatedly in PC algorithm
- CI test from time-series data
 - G square test [10]
 - Based on information theory
 - Conditional cross entropy
 - Fisher-Z test [10]
 - Based on statistics
 - Pearson-based, partial, population correlation

[10] RE. Neapolitan. "Learning Bayesian Networks." Prentice Hall Upper Saddle River, 2004.

CI test in network log time-series

- G square test
 - Input: binary or multilevel values
 - Ignoring multiple
 appearance in 1 bin

- Fisher-Z test
 - Input: integer
 - Assume Gaussian distribution data

Processing time comparison

Example of estimated DAG

• G square test • Fisher-Z test (partial)

Summary for CI tests

- Conditional independence tests
 - G square test
 - Fisher-Z test
- G square test is more useful in network logs
 - Sparse appearance of error-related logs
 - Processing time, quality of edges (i.e., information concreteness)

System architecture

Post-processing

- Found causal relations
 - Self-evident causality
 - Regular behavior
 - Valuable causality
 - Irregular or anomalous behavior
- Classify edges with regularity
 Give priority to irregular information

Contribution of exploratory analysis (Regularity not available in existing works)

Effect of post-processing

• Cumulative ratio of causal edges

Outline

- Background
- Causal analysis
- System architecture
 4 underlying methods
- Evaluation
- Conclusion

Evaluation

- 15 months log data for causal analysis

 3.5 million lines (1789 Log templates, 131 hosts)
 ➤ Causal edges: 57,302 (sum for every 1-day data)
- Investigation of found causal edges
 - Case study
 - Comparison with trouble ticket

Example of detected DAGs

Comparison with trouble tickets

• Detectability of causality related to tickets

Tickets with related causal edges	Tickets with r log messa	Tickets with related log messages		One-off events -> difficult to detect		
Event type	Associated ticke	ts Al	l tickets	Detect	rate	
Routing-EGP	<u>(</u>	91	106	\sim	86%	
System]	1	36	•	31%	
VPN]	9	19	100%		
Interface]	10	15		67%	
Monitor		7			70%	
Network		1 1]	100%	
Management		0	1		0%	
Total	13	39	188	/	74%	
Manually labeled event type		Provide valuable information in major parts of troubles				

Discussion about detected causality

- Detect valuable causality
 - Causality corresponding to trouble tickets
 - Practicability
 - Causality that is not recorded in trouble tickets
 - Useful to prevent recurrence
- Decrease false positive causality
 - Redundant edges <- preprocessing</p>
 - Decrease false positive <- preprocessing / G2 test
- Self-evident causality can be filtered

Conclusion

- Causation mining in network logs
 - Estimate causal DAG with PC algorithm
 - 4 devices for challenges of log causal analysis
- Evaluation with large-scale network logs
 - Detect useful information for troubleshooting
 - Prevent excessive extraction of information for practicability by decreasing false positives and unimportant relations