dot2net: A labeled graph approach
for template-based configuration
of emulation networks

Satoru Kobayashi?, Ryusei Shiiba?, Ryosuke Miura3,
Shinsuke Miwa3, Toshiyuki Miyachi3, Kensuke Fukuda?*
1: Okayama Univ, 2: Sokendai, 3: NICT, 4: NII
November 1, 2023

Network management with digital twins

* Digital twins
— Digital copy in virtual environment for testing and simulation
* Network emulation (digital twins of networks)

— Verify safety and fault tolerance of networks without affecting the
network services

Big datayorg wide Al @W
o web
. [(Denioy >

g\ A __ S—

|
N)TN) 4 Feedback

Service network Emulation network
Our research fOCUS

Configuring emulation networks

* Problem: Time-consuming to construct emulation networks

— We cannot use production network configuration directly
 Difference of devices or softwares -> Difference of configuration formats
» Difference of parameter assignment such as IP addresses

— It is time-consuming to configure large-scale networks
» Describe a bunch of config lines similar to other devices or interfaces

* Using “copy-and-paste” strategy sometimes cause errors due to a lack of
consideration of parameter changes

Example of configuration failures
for emulation networks

e TINET [1]
— Platform for Docker-based
emulation networks

— Provide various example
network configurations

Example topology (3-tier CLOS)

[1] TINET, https://github.com/tinynetwork/tinet/

39

41
42
43
44

46
47
48
49
50

52

59
60
61
62
63
64

Official configuration example of TiNET

- name: Leaf3
image: slankdev/frr
interfaces:
- { name: upl, type: direct, args: Spinel#dn3 }
- { name: up2, type: direct, args: Spine2#dn3 }

- { name: dnl, type: direct, args:| Serv3#net0 }

- { name: dn2, type: direct, args:| Serv4#net0 }
- name: Leaf4
image: slankdev/frr Duplicated interfaces
interfaces:
- { name: upl, type: direct, args: Spinel#dn4 }
- { name: up2, type: direct, args: Spine2#dn4 }
- { name: dnl, type: direct, args:| Serv3#net0 |}

- { name: dn2, type: direct, args:] Serva#net0 [}

~ name: Inconsistent specification

image: slankdev/frr
interfaces: [{ name: type: direct, args:fLeaf2#dnl|}]

- name: |Serv4

image: slankdev/frr
interfaces: [{ name: type: direct, args:|Leaf2#dn2 |}]

https://github.com/tinynetwork/tinet/pull/86 4

Batch configuration of network devices

Config templates
— Embed parameters to templates to configure multiple objects

name = eth@ interface eth@
ip_addr = 192.2.100. 1 fe——)- ip address 192.2.100.1/24

interface {{ .name }} ip_plen = 24 :

ip address {{ .ip_addr }}/{{ .ip_plen }} +

! name = ethl interface ethl
ip_addr = 192,2.101. 2 fe—]p- ip address 192.2.101.2/24
ip_plen = 24 !

Config template
Objects with parameters Generated config

Difficulty in templating network configurations
1. Limitation of per-device templates
2. Difficulty for complicated network topologies

Difficulty in templating network configurations

1. Limitation of per-device templates

Per-device template with control syntaxes

ip forwarding
|

{% for interface in data.interfaces %}
interface {{ interface.id }}
ip address {{ interface.ip }}/{{ interface.plen }}
[}
{% endfor %}
{% if data.ospf.enabled %}
router ospf
ospf router-id {{ data.loopback }}
{% for network in data.ospf.networks %}
network {{ network }} area 0
{% endfor %}
{% endif %}
1

dot2net NodeClass template block

ip forwarding
|

router ospf
ospf router-id {{ .ip_loopback }}

Config blocks

—

Node \

dot2net InterfaceClass template block

Interface ethO \

Interface eth1 \

interface {{ .name }}

ip address {{ .ip_addr }}/{{ .ip_plen }}
I
router ospf

network {{ .ip_net }} area 0
!

J:L Merging

(a) Traditional templating approach

Existing tools are per-device

Requires control syntaxes (for and if)

(b) Proposed approach (dot2net)
Expect appropriate granularity

Per-device
config

templates without control syntaxes

Difficulty in templating network configurations

2. Difficulty for complicated network topologies o static endooint

OOO0

Simple network topology:
Consider only one of both link ends
in parameter assignment

Complicated network topology:
- Necessary to consider combinations
of link ends in parameter assignment
- Much more parameter values

7

Requirements for emulation network
configuration platform

* Description simplicity

— Efficient description without duplications
» Scalability for larger networks

— Automated parameter assignment

— Support large-scale networks (with hundreds of devices)

 Expressiveness for complicated networks

— Accept advanced technologies for emulation
—

____ Research goal

Emulation network configuration platform dot2net that meets
description simplicity, scalability, and expressiveness

Key idea: Separate network topology and configuration

* Network topology description
as a labeled graph Target node

Interface Interface
— Describe roles of devices or ‘. .%. .‘
interfaces with labels 7

— Generate config blocks with Labels [(BaGp Router | [iBap | [OsPE
templates corresponding to labels / J 1 \

Topology graph

— Obtain traditional per-device

config by merging config blocks Config blockS\

» Easy to change topology by
modifying the labeled graph

Per-device config

111/
I

2.

3.

4.

5.

Five design principles of dot2net

Separate network topology and configuration (Key idea)
Declarative config description (for simplicity)
» Easy to validate with external tools
No control syntax macros in templates (for simplicity)
» Config template can be described in more simple format
Minimum manual parameter specification (for scalability)
» Automatically assign parameters -> Decrease human failures

Accept advanced network technologies (for expressiveness)

» Available for testing new network technologies

10

Two challenges to meet design principles

Challenge 1: Automated IP address assignment

— Unlike other parameters, we need to consider subnet consistency

— How to handle advanced network technologies?

»Issue 1: Automated IP address assignment considering network layers
Challenge 2: Relational parameter reference from templates

— How to refer parameters from templates without control syntax?

— e.g., Cannot refer parameters in lists because no “for” syntax

»Issue 2: Relational parameter namespace

11

Topology
as labeled graph

Overview of dot2net architecture

with object instances

—

Network model

M

Convert

/
@

Assign
parameters

Issue 1. Automated
IP address assignment

Per-device
config model

Emulation config

Config blocks

T~

4’

Deploy with tools
(e.g., containerlab)

Emulation network

T~

Docker

Merge
N and format
Label definitions Config files
Template blocks \
1
— = o] (3) Embed variables 4)
— / in templates Merge - Bind
and format mount
—] Issue 2. Relational
4 H parameter namespace
Dot2net |
Input Output

12

Issue 1. Automated IP address assignment
considering network layers

There are two major challenges:
A) How to determine IP subnets (network segments)

— Adjacent devices must have IP address of same IP subnet
— Some devices (e.g., L2 switches) do not have IP addresses
B) How to support advanced network technologies

— Advanced network protocols basically have network layers
— Layer-separated IP address assignment enables many of them

13

1.A) IP subnet decision algorithm

Connection to | |
Q\?art searching
Server C@ C@ ll:
: " Switch Router Router

Server

Detected network segment

(@) A network topology with L2 switch

Connection to
start searching

=)

Router Router

Server Server

. . @ Interfaces with layer flag
(b) A network topology with L2 tunneling

O Detected segment boundary

14

1.B) Layers in dot2net labeled graph

* Intuitive: Describe topologies by layers (Layer approach)
— Need to modify all layers when adding a device to topology

— Cause errors by emissions in modifications

* Proposed: Specify layers in label definitions (Label approach)

— Users only need to modify one labeled graph for topology changes

Layer A edlt Graph.
Layer approach . Label approach
Need to modify all layers Need only to modify
for topology changes one labeled graph
i : ; B 2 m @@:EED

Issue 2. Relational parameter namespace

* Traditional parameter data model is top-down
— Requires control syntax (for, if) to specify parameter placement

* Proposed parameter namespace is bottom-up

— Parameters are specified with relations to the object for config
generation (devices or interfaces)

Top-down data model Bottom-up namespace
4 Relational
Network model

. namespace,

/ \ - Requires P Parameters
iteration

Node Link Parent Neighbor
/ / \ node interface
\ Relations
v Name IPaddress Subnet Interface | in topology

rl {{ .name }} =ril

ri.net@ {{ .ip_addr }} = 10.0.0.1
rl.net® {{ .ip_net }} = 10.0.0.0/24
rl.netd® {{ .ip_plen }} = 24

rl.net® {{ .name }} = netO

rl.net®@ {{ .node_name }} = rl

rl.net® {{ .opp_ip_addr }} = 10.0.0.2
rl.net® {{ .opp_ip_net }} = 10.0.0.0/24
rl.net® {{ .opp_ip_plen }} = 24
rl.net® {{ .opp_name }} = net0
rl.net®@ {{ .opp_node_name }} = r2

r2 {{ .name }} = r2

r2.netd® {{ .ip_addr }} = 10.0.0.2
r2.netd® {{ .ip_net }} = 10.0.0.0/24
r2.netd® {{ .ip_plen }} = 24

r2.netd® {{ .name }} = neto

r2.net® {{ .node name }} = r2

r2.net® {{ .opp_ip_addr }} = 10.0.0.1
r2.netd® {{ .opp_ip_net }} = 10.0.0.0/24
r2.netd® {{ .opp_ip_plen }} = 24
r2.netd® {{ .opp_name }} = net@
r2.net® {{ .opp_node_name }} = rl

Example of namespace

opposite “ip_addr” is
10.0.0.1

“ip_addr” is
10.0.0.1

]

17

dot2net implementation

Implemented in Go language, publicly available as OSS

— https://github.com/cpflat/dot2net

Input: A labeled graph (DOT) and label definitions (YAML)
Output: Config files for Docker-based network emulation

platforms such as Containerlab or TINET
— Including emulation network structure and router software settings

Dot2net can automate deploying emulation networks by
collaborating with above network emulation platforms

18

Evaluation of dot2net

 Performance evaluation (Scalability)

— Evaluate processing time for generating configuration files of large-
scale CLOS networks with hundreds of devices

» Description efficiency evaluation (Description simplicity)
— Describe five testing network for FRRouting with dot2net

— Evaluate configuration changes (bytes) on simple topology changes

* Expressiveness evaluation (Expressiveness)

— Discuss how to describe network topologies with advanced
technologies on the above testing networks

19

Performance evaluation (processing time)

10 o T 6800' AR 3-tier CLOS networks (100 nodes)
800
) Number of T3 4 nodes
\8)_), 1 nodes & Complete links
GEJ] | T2 32 nodes
= & Complete links
(@)
% T1 64 nodes
% 0.1 100 =
o Dot2net can generate config files
of a network with 1,000 devices
0.01 i el only in 3.5 seconds
10° 10* 10° 10°

|Og-|0g scale Number of links Note: containerlab takes more than 5 minutes

to deploy a network with 100 devices

Description efficiency evaluation (bytes)

dot2net Containerlab TiNET
Scenario (Expansion) | Topology (diff) | Config (diff) Total | (diff) (diff) (diff)
rip_topol 536 3,128 3,664 7,140 7,509
rip_topol (+1) 591 (455) 3,128 (£0) | 3,719 | (+55) 8,929 | (+1,789) 9,323 (+1,814)
ospf_topol 539 2,962 3,501 11,547 11,906
ospf_topol (+1) 582 (+43) 2,962 (+0) | 3,544 | (+43)|| 13,708 | (+2,161)|| 14,085 (+2,179)
ospf6_topol 982 2,813 3,795 9,872 10,265
ospf6_topol (+1) 1,026 (+44) 2,813 (£0) | 3,839 | (+44)|| 11,762 | (+1,890) || 12,180 (+1,915)
bgp_features 1,037 6,234 7,271 19,119 19,815
bgp_features (+1) 1,122 (+85) 6,234 (£0) | 7,356 | (+85)|| 21,999 | (+2,880) || 22,713 (+2,898)
bgp_evpn_vxlan_topol 777 4,171 4,948 13,787 14,088
bgp_evpn_vxlan_topol (+1) 862 (+85) 4,171 (£0) | 5,033 | (+85)|| 15,024 | (+1,237) || 15,345 (+1,257)
basic_clos 858 1,275 2,133 9,300 10,275
basic_clos +1) 909 (+51) 1,275 (£0) | 2,184 | (+51) 9,932 (+632) || 10,970 (+695)
(+1) means (diff) is the difference of Additional config

one node and one link

are added to the topology

configuration files
on the expansion

description is reduced to

less than 10%

21

Discussion

* Dot2net does not depend on specific network protocol
— Many existing methods [3,4] only support limited protocols (e.g., BGP)

— Dot2net just generate config description -> no protocol limitation

* |tis still difficult to handle some technologies with dot2net
— ACLs (depend on service policy rather than network topology)
— Source routing policies (DOT cannot describe paths)

— Value lists (not reasonable for one-to-one parameter namespace)

[3] S. Knight et al. “An automated system for emulated network experimenta tion,” in Proceedings of CONEXT ’13, pp. 235-246, 2013
[4] R. Beckett et al. “Don’t mind the gap: Bridging network-wide objectives and device-level config urations,” in Proceedings of 22
SIGCOMM ’16, pp. 328-341, 2016

Future work

* Incremental config deployment

— Dot2net currently generate all config files
for each time of topology changes

— Due to emulation platforms such as
Containerlab and TiNET

* Reverse conversion from existing config

— Support topology changes of existing
network configurations

— Support config anonymization (for data
publication)

Reverse conversion

Dot2tinet input

Topology (DOT)

\

N

Config (YAML)

Config templates

—+
— +—

s

Reverse
conversion

Existing
configuration files

/

o
(Anonymization) <

— "

I
N
Dot2tinet

Dot2tinet

\ier-device config model

23

Conclusion

* Proposed design and implementation of dot2net, a template-based
configuration platform
— For simple, scalable, and expressive configuration description

— Separate network topology as labeled graph and label definitions as config
template blocks

— Available in https://github.com/cpflat/dot2net

 Demonstrate the effectiveness in performance and description
efficiency with test topologies for FRRouting
— Dot2net generates network configuration files with a thousand of devices in
3.5 seconds
— Dot2net reduces the increase in config file size to less than 10%

24

25

Object classes in dot2net

Name Parent Instance Labels Template
NodeClass - Node v v
InterfaceClass - Interface v v
ConnectionClass - Interface v v
GroupClass - Group v
NeighborClass | InterfaceClass Neighbor v
MemberClass any! Member v

26

Example of automated IP address assighment

area=0; area6=0.0.0.0 area=1; area6=0.0.0.1
Input

network (e (o () () {3 Four routers

topology ‘
(ospf_topol) |(2) (1) (o) () ||Cs) ()| <= Six switches

< >

IP address assignment (IPv4/IPv6 dualstack)

net0 netl net0 net2 net0
netl db8:0:1+- netQ ARRO-1 - 01 db8-0:4: -
20011db8”01:db8:o;1;;1 2001:db8:0:1:: 01:db8:0:2::1 2001:db8:0:1::2 oo 0:4:1 2001:d68:0:4:4

10.0.0.0/24
2001:db8::/64

netl
01:db8:0:5::1

10.0.1.0/24 10.0.1.0/24
2001:db8:0:1::/64| 2001:db8:0:1::/64

10.0.2.0/24 10.0.1.0/24
2001:db8:0:1::/64

net0)

10.0.3.0/24
2001:db8:0:3::/64

10.0.4.0/24
2001:db8:0:4::/64 2001:db8:0:4::/64 \2001:db8:0:5::/64

Expressiveness — [P addressing issue

* |IP dual stack
— “ospf_topol” scenario is IPv4/IPv6 dualstack

— Works well, shown as an example

* VXLAN

— “bgp_evpn_vxlan_topol” scenario depends on VXLAN
— Separate IP layer and IP-over-VXLAN layer

28

Automated IP addressing for VXLAN network

Connection to
Q\:/tart searching
Server : : {
@/Switch

Router Router
Server

(@) A network topology with L2 switch

addr

| | Two logical links
Detected network segment on VXLAN Connectlon

Connection to
start searching

=)

Router Router

Server

Server

(b) A network topology with L2 tunneling

=

O Interfaces with layer flag
O Detected segment boundary

29

Expressiveness — Namespace issue

 BGP Neighbor
— “bgp_features” scenario includes both BGP and non-BGP routers/switches
* Require parameters of L3 neighbor devices which can be more than one
— Define Neighbor subclass that belong to Interface classes
* The subclass will generate as many config blocks as the L3-neighboring objects
e Stub network

— “rip_topol” and “ospf6_topol” scenarios has mixed routing policies of
dynamic routing and static routing (stub)

— Put virtual nodes on the topology
* No configuration but available parameters of the virtual nodes in namespace

30

Comparison with existing methods

Method Approach Description simplicity Scalability Expressiveness
PRESTO [7] Extended Complicated due to Scalabl VPN. VoIP. et
template blocks extended control syntax calable » YOI, elc.
. Scripted model + Complicated due to procedural Limited support of Limited to
AutoNetkit [5], [20] templates style and control syntax parameter assignment BGP and OSPF
Product graph + Sophisticated _—
Propane [21] domain specific language but not intuitive Scalable Limited to BGP
. . . e Requires
HolistIX [22] Topology diagram Simple and intuitive manual parameters Only for IX network
Labeled graph + . e Easily scalable .
dot2net template blocks Simple and intuitive as § V-B, § V-C Expressive as § V-D

* Dot2net satisfies all of description simplicity, scalability,
expressiveness as explained

* Existing approaches have limitation mainly on expressiveness

(supporting limited protocols or environment)
31

