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Background

* Automated system log analysis

— Helpful in daily network operation

Nov 4 13:00:25 sv1 interface ethl down

Nov 4 13:00:26 rt2 connection failed to 192.168.1.4
Nov 4 13:02:16 sv1 user sat logged in from 192.168.1.15
Nov 4 13:02:29 sv1 su for root by sat

Nov 4 13:02:58 sv1 interface eth1 up

* Requires log template generation

— To classify log messages for time- $
Templates

series analysis

— To apply natural language
processing approaches [1]
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[1] W. Meng, et al. “Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs,”

in JCAI, 2019, pp. 4739-4745.




Log template generation methods

e More than 50 different methods [2]

* Diverse assumptions
— Some methods classify logs, others do not
— The methods use different segmentation rules

» Difficult to compare or combine multiple methods

* We need general framework to use these methods uniformly

[2] M. Landauer, et al. “System log clustering approaches for cyber security applications: A survey”,
Computers and Security, 92(101739), 1-17, 2020.



Goal

* Design and Implement a general framework for diverse log
template generation methods
— For easier evaluation
* Comparing log template generation methods in the same manner
— For flexible and practical use
e Combining multiple log template generation methods
* Importing / Exporting templates



Requirements for general framework

A) Preprocessing logs uniformly
— Preprocessing should depend on data (NOT template methods)
» For constant comparison of methods

B) Matching log templates and their instances
— Messages with known templates should be processed fast

» For flexible template use

C) Storing parsed data into database

» For further analysis



amulog’s design

(A) Uniform preprocessing

-> Rule-based customizable

parser to segment message
(log2seq)

(B) Template matching
-> Tree-based fast search
method (not estimation)

Monitored
devices

(C) Database store
-> Available in both
online and offline use
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Evaluation of template matching algorithm
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Evaluation of template matching algorithm

Findings

* TREE and TABLE
(both using segmentation)
are faster than others
» Segmentation makes

template matching fast
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TREE is fast even with over
10° given log templates
» amulog is scalable




Conclusion

 amulog: A general log analysis framework for diverse log
template generation methods

— Combination or comparison of methods in constant manner

— Flexible and practical use with template matching

* amulog is fast and scalable in template matching
* https://github.com/cpflat/amulog
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