amulog: A General Log Analysis Framework
for Diverse Template Generation Methods

Satoru Kobayashi?, Yuya Yamashiro?,

Kazuki Otomo?, Kensuke Fukuda?
1: National Institute of Informatics, 2: The University of Tokyo
CNSM 2020, Poster A: Data Mining / Management
Nov 4, 2020

Background

* Automated system log analysis

— Helpful in daily network operation

Nov 4 13:00:25 sv1 interface ethl down

Nov 4 13:00:26 rt2 connection failed to 192.168.1.4
Nov 4 13:02:16 sv1 user sat logged in from 192.168.1.15
Nov 4 13:02:29 sv1 su for root by sat

Nov 4 13:02:58 sv1 interface eth1 up

* Requires log template generation

— To classify log messages for time- $
Templates

series analysis

— To apply natural language
processing approaches [1]

Count

Classification
by templates

interface ** down

Connection failed to **

1
Time

[1] W. Meng, et al. “Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs,”

in JCAI, 2019, pp. 4739-4745.

Log template generation methods

e More than 50 different methods [2]

* Diverse assumptions
— Some methods classify logs, others do not
— The methods use different segmentation rules

» Difficult to compare or combine multiple methods

* We need general framework to use these methods uniformly

[2] M. Landauer, et al. “System log clustering approaches for cyber security applications: A survey”,
Computers and Security, 92(101739), 1-17, 2020.

Goal

* Design and Implement a general framework for diverse log
template generation methods
— For easier evaluation
* Comparing log template generation methods in the same manner
— For flexible and practical use
e Combining multiple log template generation methods
* Importing / Exporting templates

Requirements for general framework

A) Preprocessing logs uniformly
— Preprocessing should depend on data (NOT template methods)
» For constant comparison of methods

B) Matching log templates and their instances
— Messages with known templates should be processed fast

» For flexible template use

C) Storing parsed data into database

» For further analysis

amulog’s design

(A) Uniform preprocessing

-> Rule-based customizable

parser to segment message
(log2seq)

(B) Template matching
-> Tree-based fast search
method (not estimation)

Monitored
devices

(C) Database store
-> Available in both
online and offline use

Header

(A) Timestamp,Host
D\ rad emplate
Orlglnal Log eneration
Iog data parsing = Statement modules

N

)
_——

Log instances

I
I
I
I

example !

Seq. of words

\\ Template

matching

\
example N

’ Apr 20 11:22:33 sv1: user sat logged in from 192.0.2.5 |

| user sat Iogged in from 192.0.2.5 |

S 7
Parse and Segment

=1 Database

o belonging to templates

Further

Templates analysis

example !
| user** logged in from ** |

S 7
Find (or generate) template

Evaluation of template matching algorithm

10° ——————r ——— —— ,
TREE —e— <- Proposed 1 ¢ Compare processing
TABLE +—e— i) _
—~ RE : time to classify 1-day
8104 = RE'HaSh -3
o | : log messages (76,719)
) il
£ o}] — Using SINET4 [3] log
9103 3 E messages
= |
8 — Give log templates
(&) o
09_102 - . . ; g.enerated by 5
@ : different methods
e e e © 1
1 | [3] S. Urushidani, et al. “Highly available network
10 — —]

3 4 ' 5 design and resource management of sinet4,”
10 10 10 Telecomm. Systems, vol. 56, pp. 33-47, 2014.

Log-log scale Number of candidate templates

Evaluation of template matching algorithm

Findings

* TREE and TABLE
(both using segmentation)
are faster than others
» Segmentation makes

template matching fast

10° ———— ——
TREE —e— <- Proposed
TABLE —e—
1t RE
\U_), =
o)
£
c»1()3 2
c
‘»
()]
=107 o
o - ®
- 8 e e ©
1 .] .]
10
103 10* 10°

Log-log scale Number of candidate templates

TREE is fast even with over
10° given log templates
» amulog is scalable

Conclusion

 amulog: A general log analysis framework for diverse log
template generation methods

— Combination or comparison of methods in constant manner

— Flexible and practical use with template matching

* amulog is fast and scalable in template matching
* https://github.com/cpflat/amulog

This work is supported by JSPS KAKENHI JP19K20262 and MIC/SCOPE #191603009.

https://github.com/cpflat/amulog

