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Abstract—One of the ways to analyze unstructured log messages
from large-scale IT systems is to classify log messages with log
templates generated by template generation methods. However,
there is currently no shared knowledge pertained to the compari-
son and practical use of log template generation methods because
they are implemented on the basis of diverse environments. To
this end, we design and implement amulog, a general log analysis
framework for diverse log template generation methods. There
are three key functions of amulog: (1) parsing log messages into
headers and segmented messages, (2) classifying the log messages
using a scalable template-matching method, and (3) storing the
structured data in a database. This framework helps us easily
utilize time-series data corresponding to the log templates for
further analysis. We evaluate amulog with a log dataset collected
from a nation-wide academic network and demonstrate that it
works in a reasonable amount of time even with over 100,000 log
template candidates.

Index Terms—Log analysis, network logs, framework

I. INTRODUCTION

System and network operators need to maintain high avail-
ability of IT infrastructures by means of efficient troubleshoot-
ing. Log data is one of the most effective data sources for this
because, unlike other measurable data, it provides contextual
information of system behaviors as literal explanations. How-
ever, log data from large-scale information systems is too large
to investigate manually. For example, SINET5 [1], a research
and education network in Japan, reports about 150,000 log lines
in a single day. We need automated analysis methods and tools
for analyzing such large-scale log data.

Automated analysis of log data is also difficult because log
messages include unstructured statements. A major approach
to analyzing log data is generating log templates, a format
of the statements. Log messages belonging to a log template
contain information on a common system behavior, so template
generation is an effective way to classify log messages with
their behaviors. In contrast to full-text search [2]–[4], which
is another major approach used for keyword-based analysis,
the template-based approach is suitable for time-series-based
quantitative analysis such as anomaly detection [5]–[9] and root
cause analysis [10]–[12].

Many log template generation methods have been proposed
in past literature [13], [14]. These methods are based on
diverse approaches such as source code analysis [15]–[17],
clustering [18]–[24], prefix-tree approaches [6], [25], [26], and

machine learning [27], [28]. As log data plays an important
role in multiple IT fields, the template generation methods
also have diverse assumptions, which prevent operators from
determining whether the methods match their use in a consistent
manner. Therefore, we need a general framework for automated
log analyses that does not depend on a specific log template
generation method.

There are three requirements for a general log analysis frame-
work. First, the framework needs to preprocess the messages
uniformly. Most of the log template generation methods use
segmented log messages (i.e., a sequence of words), but many
practical log messages cannot be segmented by simple methods
(details in § II-A). A suitable log segmentation rule depends on
the dataset rather than the template generation method, so we
need log segmentation functions in the framework. Second, the
framework needs to match log messages with existing log tem-
plates. A log analysis framework should consider various use
cases, such as accurate log templates being partially available
without template generation or manual template modification
required for precise analysis. Log template matching enables
the framework to remap log templates and their instances
to satisfy these requirements. Third, the framework needs to
provide the parsed and classified data in an appropriate style
for further analysis.

In this paper, we propose amulog, a general framework for
template-based log analysis to satisfy these requirements. Fig-
ure 1 shows the schematic system architecture of amulog. The
key functions provided by amulog are threefold: (A) parsing
log messages into headers and segmented statements with a
rule-based parser log2seq [29], (B) classifying log messages
with log templates by a tree-based scalable algorithm, and (C)
storing the parsed data in a database that enables search and
aggregation for further analysis. Two processing modes are
available on amulog: online processing for real-time analysis
and offline processing for hindsight analysis. We implement
amulog as open-source software [30].

We discuss the design of amulog to show its effectiveness
in practical log analysis. We evaluate amulog in terms of log
parsing validity and log template matching performance with
a real log data from SINET4 [31], a nation-wide academic
network. We confirm that the proposed tree-based algorithm
in amulog matches log messages with given log templates
in a reasonable amount of time even if the number of given978-3-903176-31-7 c⃝ 2020 IFIP
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Fig. 1. Overview of proposed log analysis framework.

templates is more than 105.
The contributions of this paper are as follows. (1) We find

and solve practical issues for a general log analysis framework.
(2) We implemented the general log analysis framework and
evaluate its performance.

II. AMULOG

Figure 1 illustrates the system architecture of amulog. It has
three main components: (A) log parsing, (B) template matching,
and (C) database storing. Amulog assumes line-based log data
collected from multiple devices using logging platforms such as
syslog as the input. The log data must contain at the very least a
time stamp, source hostname, and free-format statement. Users
can search and aggregate the log messages with time stamp,
hostname, and template identifier from the database storage by
means of amulog functions afterward.

The key idea of amulog is to use segmented log statements
and segmented log templates consistently. Many log template
generation methods include word segmentation in some form,
but the implementations of these methods usually restore the
segmented templates to the original format [18], [32]. In
contrast, we keep the log statements segmented and store them
in a database. By applying a constant message segmentation,
we can handle the data flow more simply and compare (or
combine) template generation methods in a consistent manner.

Amulog first parses an input log message into header items
(i.e., time stamp and hostname) and a sequence of words
corresponding to the free-format log statement. Next, amulog
determines a corresponding log template for the segmented
statement by means of log template generation (i.e., estimates
log templates dynamically) or log template matching (i.e., uses
pre-generated log templates). In amulog, the log template gen-
eration methods are external modules. Log template matching
can be combined with other log template generation methods
(e.g., basically using template matching, and estimating log
templates for unfamiliar log messages). Finally, amulog stores
the data structured with the above two steps in a database. The
stored data include time stamps, source hostnames, log template
identifier, and all words in the statement.

A. Log parsing

Log messages have two parts of information in each line: a
structured header part (e.g. time stamp and source hostname)

/kernel: xe-4/3/1: DAD detected duplicate IPv6 address 2001:0db8::1 NS in/out=3/3, NA in=0

Fig. 2. Example of log messages with inconsistent symbol string usage.

and an unstructured statement part (e.g., event description).
The statement part is free-format, but partially forms a kind
of formal languages because it is output by filling the replacers
(e.g., format specifiers) with variables by the system programs.
This means that a statement part can be segmented into a
sequence of words, just like other languages can be. Many log
template generation algorithms use this feature.

There is a problem with the word segmentation process of
the log template generation; some log messages are inconsistent
with the usage of symbol strings because the statement part is
free-format. Figure 2 shows an example of such log messages
in our dataset (details in § III) in which some of the sensitive
variables (such as IP addresses) have been replaced. Focusing
on the slash symbols (“/”), some of them are used as separators
of words, while others are part of the variable, which is an
interface name in this case. If we split the statement with a word
segmentation rule that uses slashes as separators, the interface
name “xe-4/3/1” will be torn into smaller pieces that lose the
information of interface. In contrast, if we leave the slash in the
word segmentation, the words “in” and “out” are not available
in the log template generation and further analysis. No single
static rule can parse this log statement correctly.

In response to this issue, we propose log2seq, a rule-based
log message parser that converts string log messages into
headers and segmented log statements. The key idea of log2seq
is to fix known variable words while parsing. For example, a
sample configuration of log2seq consists of four steps. First, we
parse the header part using a static rule of regular expressions.
Next, we split the statement part into word sequences using
standard separator symbols (e.g., spaces and brackets). Then,
we fix the known variable words that should not be separated
later (e.g., interface names). Finally, we split the words by
inconsistent symbols (e.g., slashes).

The configuration for log2seq consists of two rules: the
header parsing rule and the statement segmentation rule. The
header parsing rule is a simple regular expression to parse
the header information. The statement segmentation rule is
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Fig. 3. Example of a template search tree.

a collection of multiple actions for word segmentation. The
actions can be classified into two types: SPLIT for separator
symbol strings and FIX for known variable words. The user
customizes the configuration of these rules by modifying the
orders and corresponding regular expressions in these actions.

In our experience, the configuration of log2seq largely de-
pends on the vendor of the devices and applications. Still, the
configuration can be easily shared in engineer communities
because it does not include any internal information of the
systems and devices.

The source code of log2seq is publicly available on
GitHub [29], and can be easily installed as a PyPI package.

B. Template matching

Log template generation must deal with two issues: determin-
ing the log template structure (structure issue) and classifying
the log messages with the templates (classification issue).
Solving the structure issue enables us to obtain an abstracted
log representation and to determine variable words in templates.
These are important when we compare variables in the mes-
sages and apply NLP-based log analysis methods that focus
on descriptive messages [8], [9]. On the other hand, solving
the classification issue is required for event-oriented time-
series analysis. However, not all template generation methods
satisfy both issues. For example, a set of generated templates
from source code analysis [15]–[17] is not mapped to the
real log messages (i.e., does not solve the classification issue).
These methods need template matching to use classified log
data in further analysis. Therefore, log template matching is a
mandatory function for any general log analysis framework.

To design a log template-matching method, it is important to
consider the scalability of the log template matching to accept
diverse template generation methods. A straightforward ap-
proach for log template matching is to use regular expressions,
but this approach is not efficient because the degree of freedom
of the regular expressions is too large due to multiple variables
in the log messages. Besides, the computation complexity is
O(n) in the straightforward approaches, where n is the number
of the log templates for template matching.

To resolve this issue, we propose a log template-matching
algorithm based on a prefix-tree. In this algorithm, we first make
a search tree of the given log templates, as shown in Figure 3.
Every node has a word or a wildcard, and some nodes have log
template identifier that indicate the end of the templates. This
tree consists of three log templates: “user ** logged in from

**”, “user name invalid”, and “user name ** removed” (“**”
represents a variable word). The searching algorithm is a kind
of depth-first one; the searching process starts from the root
node and the next node is determined by matching the words
with the nodes from the top of the input statement. There can be
several potential branches of the searching paths because some
nodes are the wildcard for variable words. In that case, we first
select a node with a static word and then search another node
with a wildcard. If there is no next matching node, the searching
path is discarded and searching for the next path begins. If the
node after passing all words in the input statement has a log
template identifier, the searching process finishes.

For example, assume the log statement “user name logged in
from 192.0.2.5” is given for matching with the tree in Figure 3.
First, amulog traces branch (1) and fails with the fourth word
“removed”. Next, amulog traces branch (2) and succeeds to
obtain a corresponding log template identifier.

The computational complexity of the tree-based template-
matching method is O(2m) in the worst case where m is the
number of words in the input statement. However, it is a rare
case that amulog needs to search for multiple paths for a log
message with practical log templates. The paths to be searched
increase only when a word matches both nodes of the equal
static word and that of a wildcard, but template generation
methods usually unify them because most of the words in log
messages are used for either a static word or a variable.

C. Implementation

Amulog is implemented in Python 3. Amulog provides two
processing modes of log template generation: online and offline.
Online processing is designed for continuous data collection
and real-time log analysis. Offline processing is designed for
hindsight analysis with parallel processing. Amulog currently
supports multiple log template generation methods including
online methods (e.g., Drain [24], LenMa [33], FT-Tree [6], and
CRF [27]) and offline methods (e.g., Dlog [26]). Amulog can
use SQLite or MySQL as data storage. The source code of
amulog is available on GitHub [30].

III. EVALUATION

We demonstrate a comparison of the processing times of
various log template-matching approaches with the proposed
tree-based algorithm in amulog. We use a set of backbone
network syslog data obtained from SINET4 [31] to evaluate
amulog performance. SINET4 is a nation-wide R&E network
connecting over 800 organizations in Japan. The network
consists of eight core routers and over 100 Layer-2 switches
provided by multiple vendors. We manually generate ground
truth log templates (1,788 different templates) for the 15-
month of log data (35 million lines in total). In the following
experiments, we use an Ubuntu 18.04 server (x86 64) equipped
with an Intel(R) Xeon(R) Silver 4110 (2.10 GHz) and 64 GB
of memory.

Four template-matching approaches are used for the compar-
ison: TREE, TABLE, RE, and RE-Hash. TREE is our proposed
tree-based method described in § II-B. TABLE is a simple



TABLE I
COMPARISON OF LOG TEMPLATE GENERATION ALGORITHMS.

Algorithm Time No. of clusters F1-score
Manual – 1,504 –
Drain 5,478 5,418 0.990
RegEx 7,912 27,039 0.717
CRF 14,146 215,934 0.998
CRFe 14,302 9,072 0.998

method based on log2seq that searches the log template with
the same length (i.e., the same number of words) of log
statement and matches all words except wildcards. RE uses
regular expressions for template matching. We automatically
generate a regular expression for a given log template. RE-
Hash is also based on regular expressions, but it classifies the
regular expressions by the hash of initial characters in the log
statement (we use five characters; e.g., “/kern” in Figure 2) to
decrease the number of regular expressions to match a message.
RE and RE-Hash do not translate the input log statements into a
sequence of words with log2seq. The computational complexity
of TABLE and RE is O(n), where n is the number of given
log templates.

We also generate five template sets for the comparison of
template-matching methods using the different log template
generation methods implemented in AMULOG. We use first
three months of log data for stabilizing the models, and
following twelve months for the template generation. For each
methods, Table I shows the processing time, number of clusters
(i.e., number of templates), and their accuracy in pair-wise
F-measure score with the ground truth (Manual). Drain [24]
is an online template generation method based on heuristics
and clustering with common words. RegEx is a simple method
based on manually defined regular expressions for commonly
used variables. CRF [27], [34] is an NLP-like approach that
estimates template structures with supervised learning (we
use 1,000 manually labeled messages for training) for log
messages. We also extend the CRF-based template generation
in two ways (CRFe): (1) using mid-labels generated by regular
expressions (same as RegEx) and (2) sampling training data for
manual labeling with a preliminary simple clustering (based on
SLCT [35]) to learn more about minor templates.

We evaluate the processing time to generate an amulog
database from 1-day log data (76,719 lines) with the four
different template-matching methods and the generated tem-
plates. The processing time includes all of the standard amulog
processes: initializing the matching model from the templates,
parsing input messages with log2seq, classifying the messages
by the template matching, and generating a database.

Figure 4 shows the log-log-scale comparison of the pro-
cessing time with the four template-matching methods. Our
proposed method, TREE, takes about 80 seconds even if more
than 105 templates are given as template candidates. We can see
that the difference in the processing time is small with a smaller
number of template candidates, but this difference becomes
larger for more template candidates. The processing time of
template matching with TREE is nearly consistent, and the
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Fig. 4. Processing time of template-matching methods.

increase for larger template candidates stems from the model
initialization step (because the number of given templates is
larger than the number of log messages). The processing time
of TABLE depends largely on the number of templates, but
even so, it is even faster than RE and RE-Hash. This is because
the message segmentation enabled us the partial matching of
messages: the TABLE algorithm does not need to match all
words in a template if the top word is neither a matching word
nor a wildcard. In contrast, RE and RE-Hash need to match all
the message with the regular expressions. Besides, RE-Hash
is not effective compared to RE in this result. In our dataset,
most templates in the larger template sets start with variable
wildcards, so the hash of initial characters cannot decrease the
candidate templates for matching. In summary, the amulog de-
sign with segmenting messages is effective for efficient template
matching, and the proposed tree-based method improves the
scalability of template matching.

IV. CONCLUSION

In this paper, we designed and implemented a general frame-
work, amulog, for template-based log analysis. Our design is
characterized by a simplified data flow while using segmented
log messages consistently. We implemented amulog considering
the three issues facing framework design: rule-based log pars-
ing, tree-based template matching, and database schema. Our
evaluation demonstrated that the proposed template matching
algorithm is scalable enough to match 1-day log messages
(76,000 lines) with more than 105 templates in 80 seconds.

As future work, we will implement state-of-the-art template
generation methods as external modules for amulog. We will
also share the log2seq configurations for major devices and
applications. In addition, we will consider further log analysis
approaches based on amulog.
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