
Causal analysis of network logs with layered
protocols and topology knowledge

Satoru Kobayashi
NII

sat@nii.ac.jp

Kazuki Otomo
The University of Tokyo
otomo@hongo.wide.ad.jp

Kensuke Fukuda
NII/Sokendai

kensuke@nii.ac.jp

Abstract—To detect root causes of failures in large-scale
networks, we need to extract contextual information from opera-
tional data automatically. Correlation-based methods are widely
used for this purpose, but they have a problem of spurious
correlation, which buries truly important information. In this
work, we propose a method for extracting contextual information
in network logs by combining a graph-based causal inference
algorithm and a pruning method based on domain knowledge
(i.e., network protocols and topologies). Applying the proposed
method to a set of log data collected from a nation-wide R&E
network, we demonstrate that the pruning method reduced
processing time by 74% compared with a single-handed causal
analysis method, and it detected more useful information for
troubleshooting compared with an existing area-based method.

I. INTRODUCTION

Leveraging operational data is a fundamental requirement
for continuous and stable maintenance of large-scale networks.
The system log is one of the most effective data sources for
network operations, as the detailed log messages provide a
better understanding of system failures and their causes [1].
However, the amount of system logs obtained from large-scale
networks is too large for manual use [2]. We need automated
analysis methods for analyzing such large-scale logs.

To analyze system logs automatically, various approaches
have been proposed including anomaly detection, fault local-
ization, and root cause analysis. Among them, root cause anal-
ysis is especially challenging, because it requires contextual
information (i.e., relations, dependencies, and backgrounds) on
network behavior. The system log is an effective information
source for this purpose, as it provides time-series relationships
and descriptive explanations. However, it is not easy to extract
these from system logs with automated analysis as logs are
large-scale, unstructured, and varied among different vendors
and services [2].

Causal inference [3] is a popular approach to extracting
contextual information in automated analysis. It removes
spurious correlations from the results, leading operators to
focus on truly important information. However, causal analysis
requires a large amount of processing time, which delays
system restoration and recovery. We need efficient analysis
methods with causal inference to create assistive technology
that can be practically used when operating networks.

One effective and natural approach for efficient analysis is
to leverage domain knowledge on a target network. In manual
operation, network operators empirically select valuable infor-

mation from miscellaneous data sources on the basis of their
domain knowledge. For example, when two devices are not
connected and independent in terms of network functions and
services, network operators assign low priority of investigation
to the relation between the devices. This kind of information
selection is not always reliable, but it is effective for improving
the efficiency of troubleshooting. This idea also helps us
avoid accidentally misunderstanding co-occurring events as
dependent when using statistical methods. However, to the
best of our knowledge, there is no thorough discussion on
how to handle prior domain knowledge with automated causal
inference algorithms.

In this paper, we propose an approach for improving the
causal analysis of network logs. We especially focus on the ba-
sic current Internet architecture: layered protocols and network
topology. Network functions are separated into multiple layers
to implement them independently. In this layered model, net-
work connections always take place among network functions
belonging to a common network layer. Therefore, the network
protocol layers respectively form different network topologies.
These facts have been used for manual troubleshooting by
network operators. To leverage the architecture in automated
causal analysis, we classify log messages into functional
layers and constrain their relation candidates with the device
connectivity obtained from the layered network topology.

We implement a novel method that combines a causal infer-
ence algorithm, the PC algorithm [4], and the network domain
knowledge. We prune causal edge candidates in the initial
graph of the PC algorithm on the basis of domain knowledge.
We apply this method to 15 months of syslog messages, which
is 34 million messages in total, collected from a nation-wide
network for research and education (R&E) in Japan [5]. Our
implementation successfully decreased the processing time for
causal analysis by 74% compared with singlehanded causal
analysis method, which corresponds to 16% reduction of
the processing time compared with an existing method. It
also improved the reliability of the obtained causality by
removing false causal edges. We demonstrate the effectiveness
of the obtained causality in practical troubleshooting through
comparison with trouble ticket data. The code used in the
experiments has been made publicly available [6].

The contribution of this paper is twofold. (1) We propose an
approach to handling domain knowledge (§ III) in the causal
inference algorithm (§ II), and, (2) with real network data

978-3-903176-24-9 c⃝ 2019 IFIP

(§ IV), we confirm that domain knowledge improves causal
analysis in terms of processing time and reliability (§ V, § VI).

II. CAUSAL INFERENCE

Causal inference is used for removing spurious correlations
from confounders. In this section, we will explain the basic
idea of causal inference, and an existing approach to analyzing
log data on the basis of causal inference.

A. Conditional independence and PC algorithm

Causal inference consists of two key ideas to estimate causal
relations: removing spurious correlations and determining di-
rections of causal edges. Conditional independence is an idea
used mainly for removing spurious correlations.

We first introduce the concept of conditional independence.
Suppose two correlated events A and B. They can be inde-
pendent if the correlation is spurious via covariates C. A and
B are conditionally independent C if

P (A,B | C) = P (A | C)P (B | C), (1)

where the events A and B are independent as long as C
appears (C can represent multiple events). This means that
a correlation between A and B disappears when considering
their related event C. Therefore, conditional independence
helps in determining causality by finding spurious correlations.

The PC algorithm [4], [7] is a graph-based method for
reconstructing causal relations among nodes with conditional
independence. It assumes a directed acyclic graph (DAG) of
events corresponding to the causality of events. This algorithm
works in two steps: skeleton graph estimation (i.e., removing
spurious correlations) and DAG structure estimation (i.e.,
determining directions of causal edges).

1) Skeleton graph estimation: A skeleton graph is an undi-
rected graph representing causal node pairs, and it is estimated
by removing edges that form conditional independence.

We start with a complete graph of all nodes as an initial
state. The PC algorithm searches for conditional independence
candidates while increasing the number of covariate nodes
by one staring from zero, where a conditional independence
candidate is an edge with connected covariate nodes. The
idependency of all candidates is tested with a conditional
independence test. If an edge is considered to be conditionally
independent, it is removed from the graph. Repeating the
search and removal, the PC algorithm generates a skeleton
graph without conditional independence.

The PC algorithm can use any of the conditional indepen-
dence tests. The G square test and Fisher-Z test are used in
practice [8]. We use the G square test, which is reasonable for
analyzing sparse time-series data like system logs [9].

2) DAG structure estimation: Edge directions in the skele-
ton graph are determined by two ideas: V-structure and the
orientation rule [10].

The V-structure is a subgraph that can be directed with
conditional independence. Assume three event nodes U , V ,
W are connected via V like U − V −W , and U −W are
not connected directly. If V is not contained in a separation

set, that is, a set of covariate nodes that make U and W
conditionally independent, then U → V ← W is concluded.
This rule enables the PC algorithm to the determine a part of
directions in a skeleton graph.

The orientation rule is a set of rules derived from the nature
of DAG; it has no loops. If a graph is partially directed, these
rules can determine the residuary part of the directions.

The PC algorithm determines the structure of causal DAG
with these two ideas. However, it does not always determine all
directions in a graph. If an edge cannot be directed with the V-
structure and orientation rule, the edge is left as a bidirectional
edge. Bidirectional edges can be caused for a variety of
reasons, like unobserved confounders and insufficient data.

B. Log causal analysis

We previously proposed a series of methods for analyzing
causal relations among events in log data [9].

To analyze log data statistically, we first need to classify log
messages on the basis of their meanings. For that purpose,
we generate log templates from raw log messages. A log
template is the output format of a log message. If we know
which words in log messages are variables, we can generate
log templates by replacing the variable words with wildcards.
There are many approaches to generating log templates from
raw log messages automatically [11], [12], [13], [14]. We use
an automated log template generation method [14] based on
supervised learning before making manual corrections. Log
templates enable us to classify log messages into log events,
where a log event corresponds to a series of log messages
belonging to one log template and output from one host
device. Hence, a log event is considered as time-series data
corresponding to the appearance of a specific system event.

Next, we need preprocessing for log time-series to make
the causal analysis accurate. Causal analysis including the
PC algorithm has a problem in that false detection occurs
many times for a periodic or constant time-series. This is
because a pair of time series with a similar trend forms a
false correlation. The false correlation cannot be removed with
causal inference because it is not a spurious correlation caused
by confounding. Therefore, we need to remove periodic or
constant components from input time-series data for the PC
algorithm. We remove the components with a method based
on Fourier analysis and linear regression [9]. In addition, the
input data for the PC algorithm needs to be binary because
the G-square test only accepts binary or multivalued data. We
used the binary data of event appearance for every time-series
bins (60 seconds) as the PC algorithm input.

Finally, we can perform a causal analysis with the PC
algorithm. The output DAG shows the causal relations among
all events in input data. We make a DAG for every one days’
worth of data to focus on temporal causality.

C. Processing time of PC algorithm

The PC algorithm takes the majority of processing time
for estimating the skeleton graph, because it repeatedly tests
conditional independence for every combinations of nodes.

raw log
message

template
generation

event
time series

remove
periodic

time series

PC
algorithm

domain
knowledge

edge
pruning

DAGs

Fig. 1. Overall system architecture

The processing time depends on the square of the number of
input nodes (i.e., linear to the number of input edge candidates)
in the best case, when the causal structure is sparse enough that
there are no conditional independence candidates with one or
more covariant node. If there are any conditional independence
candidates, the processing time increases greatly. In the worst
case, a combinatorial explosion of conditional independence
candidates causes an extreme increase in processing time. The
processing time is extremely large if a DAG is close to the
complete graph [9].

An effective way to decrease the processing time of skeleton
graph estimation is to decrease the number of conditional
independence tests. Decreasing the number of input nodes for
the PC algorithm and using appropriate conditional indepen-
dence tests for data distribution are effective for decreasing the
processing time [9]. We describe an approach for reducing the
number of conditional independence tests in § III.

III. PROPOSED METHOD

We propose a causal analysis method that uses the domain
knowledge of a target network. Figure 1 shows its abstracted
workflow, which basically follows the log causal analysis
method introduced in § II-B.

In the proposed method, we perform pruning on the basis
of domain knowledge on the network protocols and topolo-
gies. For efficient causal analysis, we need to decrease the
number of edge candidates for conditional independence tests
as mentioned in § II-C. We prune edge candidates that are
considered as not being related on the basis of the domain
knowledge prior to conditional independence tests.

A. PC algorithm with domain knowledge

To use the domain knowledge for a target network in
causal analysis, we pay attention to the initial state of the
PC algorithm. As mentioned in § II-A, the PC algorithm uses
a complete graph of all input nodes as an initial state for
skeleton estimation. In contrast, we prune edges in the initial
graph that should not be causal edges according to our domain
knowledge (pruning strategy is shown in § III-B).

There are some issues to be aware of regarding the PC
algorithm with pruned initial graphs. Pruning an initial graph
causes the three following differences in the PC algorithm:

(1) a pruned edge will not be a causal edge, (2) a pruned
edge will not cause other edges to become conditionally
independent, and (3) a pruned edge will not form separation
sets used in the V-structure rule for direction determination.
These issues do not contradict the theory of causal inference.
Issue (1) self-evidently follows our intuition. Issue (2) is
reasonable because a non-causal edge cannot cause other edges
to become confounded. In other words, if pruning a non-
causal edge changes other edges in the skeleton estimation
results, the changes are relevant to causal inference. Issue (3)
is also reasonable because separation sets assume conditional
independence formed by causal edges. Issue (3) suggests that
we cannot determine some edge directions near pruned edges,
but this is interpreted as reducing the possibility of wrong
V-structure application. Therefore, the PC algorithm with
appropriate pruning of the initial graph does not cause failed
estimation and can improve the accuracy of DAG estimation.

B. Pruning strategy

We describe the method of pruning the initial graph fol-
lowing two pieces of information on a monitored network as
domain knowledge: network topology and network functions.
To handle the information, we consider using three network
layers: L3, L2, and others. Standard networks are constructed
with network devices: layer-3 routers and layer-2 switches.
Basically, layer-3 routers provide both L3 and L2 functions,
but layer-2 switches only provide L2 functions. This causes L3
functions and L2 functions to construct different topologies.
Here, a causal relation intuitively follows the connectivity of
devices on a network topology. For example, if two BGP (as
a Layer-3 function) events are correlated but the devices that
emitted the events are not connected on the L3 topology, the
two events do not have direct causality in our intuition.

However, we also need to consider unobserved events in
system logs. Logging functions usually do not record logs
for all functional events in network devices because logging
functions are originally designed for human operators. Un-
observed events can bridge the causal relations between two
events that are independent in our intuition. Therefore, if we
prune edges with rules that are too strict, we fail to catch
bridged causality with unobserved events. Bridged causality
is also important for network troubleshooting, because it can
indicate the propagation of unexpected trouble.

We heuristically introduce the following two pruning crite-
ria.

1) Causal edges potentially exist in an identical device, or
between the events of a common functional layer and
appeared in directly connected devices on the layer.

2) Causal edges estimated with the PC algorithm can be
bridged with one unobserved event.

These two criteria are applied as shown in Figure 2. In
examples (A) and (B), two events are in the same functional
layer, and they appear in connected devices on the layer. The
edge between these events is not pruned under rule (1). In
examples (C) and (D), the two events are in different layers,
so they do not have direct causality according to rule (1).

L3

L2

others

L3

L2

others

(A) Remain (B) Remain (C) Remain (D) Remain (F) Prune(E) Prune
No Layer-3
connectivity

End node
events

Unobserved
events

Multiple middle node
-> Pruned by rule (2)

Fig. 2. Examples of pruning rule application. Each case describes potential causal path for edge candidate between two events appearing in different devices.
In cases A and D, devices have both L2 and L3 connectivity in domain knowledge. In other cases, devices have L2 connectivity but no L3 connectivity
(described as interrupted layer). Nodes of solid circles are events of two end nodes of edge candidate, and nodes of dotted circles are unobserved events that
possibly mediate the causal path between the two end nodes.

However, these events can be bridged with one unobserved
event. Here, the edge between these events is not pruned
according to rules (1) and (2). In examples (E) and (F), the
two events are in different layers, and they need multiple
unobserved events to be bridged. The edge between these
events cannot be explained with rules (1) and (2), so we prune
the edge in the initial graph for the PC algorithm.

Under these criteria, an end node pair needs a cross-device
edge (the horizontal edge in Figure 2) in a connected layer
[rule (1)]. Also, there are at most two edges mediated by one
unobserved event between the end nodes [rule (2)], which
means at least one end node is adjacent to the cross-device
edge. A cross-device edge can only exist on a connected
functional layer [rule (1)], so the event corresponding to the
adjacent node also needs to be on the layer. Therefore, an
edge violates these criteria when neither of the end nodes of
an edge connect the devices with their respective functional
layer.

We explain the pruning algorithm on the basis of this idea.
The algorithm requires two pieces of input data. One is a
complete graph of all events, where the events are labeled
with their functional layers. The other is a layered network
topology, which is provided as lists of connected device pairs
for each layer. An edge is pruned when the following two
conditions are met: the end events are emitted by different
devices, and the devices are unconnected in both functional
layers of the two end events according to the lists. By repeating
this for all edge candidates in the complete graph, we generate
an initial graph for the PC algorithm.

IV. DATASET

In this paper, we evaluate our causal analysis method with
a set of backbone network logs obtained from SINET4 [5].
SINET4 is a nation-wide R&E network, connecting over 800
organizations in Japan. The network consists of 8 core routers
and over 100 Layer-2 switches provided by multiple vendors.
All syslog messages are stored in a centralized database, which
means that some messages can be lost due to link failures.
Each log message contains header information such as a
timestamp and source device name (or IP address) in addition
to free-format message based on the syslog protocol. We use
timestamps for generating time-series data, and source device
names for classifying messages into events. The free-format

TABLE I
CLASSIFICATION OF LOG MESSAGES AND TEMPLATES

Type #messages #preprocessed #templates
System 27,705,933 7,917,677 (29%) 543

Network 1,252,779 280,331 (22%) 152
Interface 238,844 232,283 (97%) 189
Service 213,853 22,126 (10%) 35
Mgmt 5,098,112 374,882 (7%) 580

Monitor 157,966 67,547 (43%) 86
VPN 29,593 26,888 (91%) 123

Rt-EGP 21,539 19,543 (91%) 66
Rt-IGP 4,166 3,881 (93%) 15
Total 34,722,785 8,945,158 (26%) 1,789

TABLE II
FUNCTIONAL MAP OF LOG EVENTS

Layer Type Meanings

L3
Rt-EGP AS-level routing functions like BGP
Rt-IGP Interior routing functions like OSPF
VPN Network functions related to VPN services like MPLS

L2 Network Functions related to network protocols
(except L3 functions)

Interface Events managing network interface status

Others

System Functions within identical device

Service Network services that communicate
with other devices like NTP

Mgmt Functions for management by human operators
Monitor Activities for measuring system status and behaviors

part of log messages is also used for classifying messages into
events by generating log templates as shown in § II-B.

We analyzed 455 days of consecutive logs composed of
35M log messages collected over 2012 to 2013. We generated
a DAG for each one-day-long log, which means we obtained
455 causal DAGs from all of the data.

In addition, we used a set of trouble tickets issued by
SINET4 operators. We had 227 tickets from 365 days over
2012 to 2013, and 205 of the tickets were used for our analysis
because the others did not have any corresponding log mes-
sages. Ticket data consists of a date and a summary of trouble.
The tickets are considered to indicate large network problems
affecting service quality. We manually made a database of log
messages corresponding to the tickets. We used this database
for evaluating the detection capability of the PC algorithm with
our proposed method (shown in § V-D).

A. Classification of network logs

We manually labeled event types for all generated log
templates in order to determine their functional layers. The

event types classified log templates as shown in Table I.
Basically, we classified log templates into six groups on the
basis of their functional role: System, Network, Interface,
Service, Management, and Monitor. In addition, we used labels
for three individual event types for core network services in
SINET4 (not duplicates of former six groups): VPN, Rt-EGP,
and Rt-IGP. Detailed explanation is given in Table II.

In Table I, “#messages” shows the number of raw log
messages, “#preprocessed” represents the sum of time series
for PC algorithm input (decreased with preprocessing of peri-
odicity and regularity, explained in § II-B), and “#templates”
shows the number of corresponding log templates. 1,789 log
templates were found in the 35M log messages. The prepro-
cessing removed a large part of Management events, which
included daily events caused by automated remote access. In
contrast, the major part of events labeled as Interface and
individual network protocols remained after preprocessing.

B. Domain knowledge definition

SINET4 follows a standard network structure as mentioned
in § III-B [15], so we used a multi-layered pruning method
with three layer groups: L3, L2, and others. We classified event
types into these three layer groups as shown in Table II. The
L3 group consisted of routing events and VPN events (VPN
is not strictly Layer-3 function, but its events follow layer-3
connectivity in our experience). The L2 group consisted of
other network events and interface events. The others group
represented events that were contained within a device or did
not follow the logical network topology (like Monitor).

We also made L3 and L2 network topologies for SINET4
that describes the connectivity of devices. The L3 network
forms a full mesh structure of core routers, with branches
for some border routers. The L2 network forms a tree-like
structure with a core router as a root node and L2 switches
as branches or end nodes. Note that all L3 connections were
also included in the L2 network topology in SINET4.

We pruned the initial graph of the PC algorithm by using
the strategy in § III-B with the knowledge on these layered
network topologies and layered event classifications.

V. EVALUATION

In this section, we evaluate the efficiency (i.e., processing
time) and effectiveness (i.e., quality of edges) of our proposed
method. We find that our proposed method is more efficient
than an area-based existing method especially on the days
without anomalous system behaviors (§ V-B). Next, we point
out that our method overcomes a problem with existing
methods (i.e., missing area borders) (§ V-C). Moreover, we
demonstrate that our proposed method successfully detects
cross-device causal edges related to large network failures
through comparison with trouble ticket data (§ V-D).

A. Compared methods and experiment environment

To evaluate our proposed method, we compared it with two
existing methods: “None” and “Area-based”. “None” means
using a complete graph of events as an initial graph of the

TABLE III
AVERAGE PROCESSING TIME AND EDGES (PER DAY)

Method Processing time (sec) Edges
Pruning PCalg. #Input #Output

None 0 609.6 88,622.1 66.3
Area-based 0 191.5 25,248.8 64.2

Multi-Layered 3.4 157.1 18,455.1 60.8
L2 0.5 276.9 31,269.0 58.6
L3 0.5 263.5 29,297.0 58.6

L2-Layered 3.0 121.5 15,352.2 61.7
L3-Layered 3.3 99.6 10,181.1 61.1

All-Independent 0.4 65.4 5,776.6 62.7

 10

 20

 50

 100

 200

 500

 1000

 5000 10000 20000 50000 100000

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

Number of edges in initial graph

None
L2

L3
Area

ML
L2L

L3L

Indep

Fig. 3. Processing time for PC algo-
rithm (log-log scale)

10
3

10
4

10
5

10
6

10
4

10
5

10
6

N
u
m

b
e
r

o
f
e
d
g
e
s
 a

ft
e
r

p
ru

n
in

g

Number of edges before pruning

Baseline
Area-based

Multi-Layered

Fig. 4. Number of edge candidates
after pruning

PC algorithm. “Area-based” is an existing method [9]. The
method divides devices into eight areas corresponding to a sub
network with one core router. The PC algorithm respectively
estimates one DAG for the data subset of events in devices of
one area. This method is essentially the same as generating
eight independent complete subgraphs corresponding to the
areas as initial graphs.

In addition, we evaluated the effect of using domain knowl-
edge by comparing our proposed method with partial methods.
“Multi-Layered” is the proposed method using all domain
knowledge explained in § III-B. “L2” and “L3” partially use
domain knowledge to generate an initial graph. They do
not distinguish events of different layers but consider device
connectivity. They prune edges between events appearing in
two different devices that do not have L2 (or L3) connectivity.
“L2-Layered” and “L3-Layered” basically follow the same
rules as Multi-Layered, but only use L2 (or L3) connectivity as
domain knowledge. For example, the L2-Layered method will
prune edges between L3 events appearing in devices that have
L3 connectivity. “All-Independent” prunes all edges between
events appearing in different devices.

We used an Ubuntu 16.04 server (x86 64) equipped with
an Intel(R) Xeon(R) Silver 4110 (2.10 GHz) and 64 GB of
memory throughout the experiments. The PC algorithm in
this experiment works in a single thread, which means the
processing time corresponds to its CPU cost. The experimental
code is available as part of an open source project [6].

B. Processing time and pruning

We first demonstrate that our method largely decreased the
processing time. Table III shows the average processing time
for one day of data. “Pruning” represents the processing time
for pruning edges in the initial graph. “PCalg.” means the

processing time for DAG estimation with the PC algorithm.
We can see that the processing time for pruning edges was
small enough compared with that for DAG estimation. Without
any pruning methods (None), the PC algorithm required about
600 seconds for the one day of data. Our proposed method
(Multi-Layered) enabled the PC algorithm to estimate DAG
for the one day of data in 160 seconds, decreasing processing
time by 74%. In addition, the proposed method required
less processing time than the existing Area-based method,
corresponding to 16% reduction.

Next, we show that edge pruning did not affect the de-
tectability of causal edges. Table III lists the average number
of edges in DAGs. “#Input” is the number of edges in the
initial graph of the PC algorithm (i.e., the input of the PC algo-
rithm), and “#Output” shows the number of edges in estimated
DAGs (i.e., the output of PC algorithm). The table shows that
the number of output edges was stable and independent from
that of input edges. This means that edge pruning did not affect
the detectability of causal edges but changed the combinations
of detected event pairs as causal edges. We also find that
the processing time for DAG estimation approximately had
a linear relation with the number of input edges (as presented
in Figure 3). The relation follows the theory of computational
complexity in the best case, as mentioned in § II-C. This
means that the causal structure in our dataset was sparse
enough to avoid the computational combinatorial explosion of
conditional independence candidates. If a more complicated
dataset were used, the difference in processing time between
the pruning methods could be much larger than this result.

We take a detailed look at the pruning step to demonstrate
that our method decreased the number of edges uninteresting
to operators. Figure 4 shows the number of edges before and
after pruning for the respective one day of data with two
methods, Area-based and Multi-Layered. The baseline in the
figure shows the results without pruning. The additional lines
are power functions approximated to the data groups. The
figure shows that the Multi-Layered method decreased a higher
number of edges than the Area-based method, especially
for the days with fewer edge candidates. When a network
has no trouble or anomalous behavior for a day, devices in
the network emit only regular events.The regular events can
form spurious correlations, but they are not always removed
with causal inference because of unobserved covariate events
like configurations. The Multi-Layered method prunes edges
among the regular events in different devices because most of
the regular events belong to “System” and “Mgmt” groups
(i.e., no correspondence to topology layers). In contrast,
the Area-based method cannot prune edges between regular
events. That is why the two methods have a large difference in
terms of days with fewer edge candidates. This also matches
the network operators’ interests in abnormal network events
rather than regular events.

C. Detected causal edges

Next, we break down the detected edges detected to show
the changes made by pruning methods in detail. Table IV

TABLE IV
NUMBER OF DETECTED EDGES

Method Directed edges All edges
(Diff. device) (Diff. device)

None 4,760 (15.8%) 2,919 (9.7%) 30,174 11,505 (38.1%)
Area-based 4,330 (14.8%) 2,269 (7.8%) 29,195 8,089 (27.7%)

Multi-layered 1,742 (6.3%) 62 (0.2%) 27,668 241 (0.8%)
L2 2,371 (8.9%) 675 (2.5%) 26,656 2,801 (10.5%)
L3 2,032 (7.6%) 269 (1.0%) 26,683 1,581 (5.9%)

L2-Layered 1,779 (6.3%) 41 (0.1%) 28,056 168 (0.6%)
L3-Layered 1,757 (6.3%) 26 (0.1%) 27,787 98 (0.4%)

All-Independent 1,848 (6.5%) 0 (0 %) 28,548 0 (0 %)

TABLE V
FUNCTIONAL CLASSIFICATION OF DETECTED EDGES

Type #Nodes #Ends of edges
None Area ML

System 49,005 24,577 23,033 22,662
Network 10,585 1,402 1,391 1,355
Interface 13,562 1,943 2,062 2,134
Service 7,697 742 435 314
Mgmt 81,628 29,379 27,911 26,332

Monitor 2,467 267 305 304
VPN 4,538 97 1,171 155

Rt-EGP 4,738 1,923 2,063 2,063
Rt-IGP 870 18 19 17
Total 175,090 60,348 58,390 55,336

shows the number of directed edges determined by the PC
algorithm. We show causal edges with determined directions
as “Directed edges” in this table, as the PC algorithm does
not always determine the directions of edges (mentioned in
§ II-A2). “Diff. device” indicates causal edges between events
appearing in different devices. We can see that the pruning-
based methods, except for the Area-based method, determined
fewer directed edges and edges spanning to different devices.
In fact, the determined directions of edges largely depend
on the results of conditional independence tests. Without
domain knowledge, the directions are determined by false
candidates of conditional independence that violate the domain
knowledge, which means that the directions include false
information. The directions determined in aggressive pruning
methods are more reliable than those with existing methods.

We highlight event types (defined in § IV-A) of detected
edges shown in Table V. “Nodes” means the total number
of events in the respective one day of data, and “Ends
of edges” represents the number of end nodes of detected
causal edges (causal edges cannot be directly classified with
event types because edges can connect two different types of
events. The total number of “Ends of edges” is equivalent to
double the number of detected edges). Overall, System and
Mgmt events formed a large number of causal edges. These
types included events triggered by the activities of operators,
like remote login, authorization, and user interfaces. These
events repeatedly appeared for each action taken by operators,
resulting in many self-evident causal edges being detected. We
can also see that Rt-EGP events had more causal edges than
others. Routing events like BGP follow multiple procedures
with communication among different devices. These events are
observed in logs as a set of repeated correlated events, which

TABLE VI
DETECTABILITY OF CAUSAL EDGES RELATED TO REPORTED TROUBLE

TICKETS

Method Ticket coverage
(Diff. device)

None 101 (49.3%) 7 (3.4%)
Area-based 112 (54.6%) 8 (3.9%)

Multi-Layered 113 (55.1%) 5 (2.4%)
L2 111 (54.1%) 7 (3.4%)
L3 112 (54.6%) 4 (2.0%)

L2-Layered 125 (61.0%) 3 (1.5%)
L3-Layered 114 (55.6%) 2 (1.0%)

All-Independent 129 (63.0%) 0 (0 %)

is easily detected as causality with statistical approaches.
We demonstrate that our method overcame a problem with

the Area-based method. We can see that the Area-based
method detected many causal edges related to VPN events. In
SINET4, VPN is mainly used for the connections between core
routers or to external networks. Some of the state changes of
these connections trigger the same network events in multiple
core routers at the same time. Causal edge candidates among
these events are usually removed by the PC algorithm because
they are conditionally independent. However, the Area-based
method cannot consider the connectivity among core routers,
because areas are defined as a core router and its child nodes.
In that case, the causal edges of a VPN within a core router
cannot be removed because they have conditional indepen-
dence by other covariate events across area borders. Thus,
the VPN edges consists of false positive edges caused by the
Area-based method. The false positive edges are successfully
removed with the Multi-Layered method because it considers
the area borders in network topologies.

D. Trouble tickets

To evaluate the effectiveness of the detected causal infor-
mation for practical network troubleshooting, we matched the
detected causal edges with trouble tickets recorded by SINET4
network operators. Table VI shows the detectability of the
causal edges related to the tickets. Ticket coverage is the
number of tickets for which the PC algorithm detected at
least one related causal edge. For this aggregation, we focused
on edges for which both ends were related to a ticket 1. As
mentioned in § IV, we used 205 tickets in this evaluation.

In Table VI, we see that the coverage was larger for methods
pruning more edge candidates (see also Table III). As shown
in Table III, the number of estimated causal edges was stable
and independent from the number of edge candidates in the
initial graph. As the pruning methods remove edges between
events in different devices, the proportion of edges closed off

1We also measured ticket coverage for edges with only one end related to
a ticket. However, these edges did not provide meaningful information for
the trouble recorded in the tickets. They mainly indicated other behaviors
appearing on the same day. For example, for network trouble recorded in a
ticket appearing in the morning of a day and another anomalous behavior
appearing in the evening of the day, if these two behaviors trigger a common
log event, a causal edge related to the latter behavior is also regarded as a
one-sided related edge of the former behavior because our proposed method
estimates one DAG for one day of data.

in an identical device was larger after pruning. In addition,
most of the causal relations related to anomalous behavior
should be closed off in an identical device because the system
workflow in a device is much more complicated than that of
communications among different devices. Therefore, the ticket
coverage was large with the methods focusing on edges closed
off in an identical device compared with methods considering
edges between different devices. That is why more aggressive
pruning methods were scored with a larger ticket coverage.

However, the aggressive methods detected fewer causal
edges between events spanning to different devices. This can
be confirmed in Table VI, as the table also shows the ticket
coverage values only for edges between events appearing
from different devices in the “Diff. device” column. Network
operators are usually interested in behaviors communicated via
networks rather than behavior closed off in a device because,
in many cases, their task is not debugging network devices but
debugging network structures and configurations for them.

Through our detailed comparison with the Area-based
method in terms of the ticket coverage of edges spanning
different devices, we find that our proposed method detected
tickets with valuable causal edges for troubleshooting, remov-
ing negligible information. We first take a detailed look at
the five tickets detected by “Diff. device” edges with the
Multi-Layered method. Three of the tickets were detected
by extracting the causal edges of “Interface” events. The
causal edges for these tickets showed that a couple of the
connected layer-2 devices had synchronized events of network
port errors and recovery from them. These three tickets were
also detected with the L2-Layered method but not with the
L3-Layered method because the causal edges were among
different devices with Layer-2 connectivity. The two other
tickets were detected by extracting the causal edges of the
following Layer-3-function events: BGP failures in external
ASes and VPN connection errors between a core router and an
external gateway. These tickets were also detected with the L3-
Layered method but not with the L2-Layered method. Thus,
it is important to consider the two different layer topologies
in order to detect these five tickets with our proposed method.

Next, we focus on the difference in ticket coverage with the
two methods. There were four tickets commonly detected with
both methods. The Area-based method detected four exclusive
tickets, and the Multi-Layered method detected one exclusive
ticket. The four exclusive tickets detected by the Area-based
method were detected with causal edges related to “Monitor”
events like SNMP traps. These edges were not detected with
our proposed method because we do not map “Monitor” events
to any functional layers with network topologies (shown in
Table II). The Multi-Layered method cannot detect any edges
between functionally unmapped events appearing in different
devices. In fact, monitoring events do not follow network
topologies in our experience because monitoring is one of the
services premised on available network connectivity (i.e., L2
and L3 functions). In addition, causal edges of monitoring
events are not important for troubleshooting in many cases
because the activity of monitoring usually does not affect

network connectivity or performance. In contrast, the one
exclusive ticket detected by the Multi-Layered method was
detected with a causal edge between “Interface” events. The
ticket regarded a system failure of a Layer-2 switch, and the
detected edge indicated a failed connection to a device from
an adjacent Layer-2 switch. This is useful information for
network troubleshooting, explaining the behavior of trouble
spreading.

In summary, our method detected five tickets with cross-
device edges valuable for troubleshooting and removed neg-
ligible edges, corresponding to four tickets detected with the
Area-based method, on the basis of domain knowledge on
layered protocols.

VI. DISCUSSION

As shown in Table III, our method decreased processing
time by 74% with the PC algorithm. To improve efficiency,
introducing parallel processing is a straight-forward idea. In
fact, in some studies [16], [17], methods are proposed for
calculating the PC algorithm in parallel. They are usable with
our proposed method at the same time because they do not
need a complete initial graph. Therefore, our proposed method
enables more efficient causal analysis than the existing method
and will be more efficient through collaboration with the
parallel PC algorithms.

Our proposed method can be combined with other reasoning
approaches than the PC algorithm like regression-based meth-
ods [18] because in some aspects they are pruning edges of
spurious correlation. In contrast, quantitative causal analysis
methods like ICA-based LiNGAM [19] are not available with
our approach, because their strategy is close to optimization
rather than pruning.

In addition, our proposed method is flexible with practical
networks. The Area-based or Topology-only methods are not
effective in a full-mesh network like SINET5 [20]. In contrast,
the Multi-Layered method can decrease the number of edge
candidates on the basis of domain knowledge of protocol
layers in a full-mesh network. We believe that the method
works effectively in other networks with different topologies.

According to Table IV, our proposed method determines
fewer of the directions of causal edges. External information
would help improve this issue with the directions of causal
edges. For example, Lou et al. [21] use timestamps to deter-
mine dependency directions, though log timestamps are not
always reliable due to synchronization failure, communication
delay, and logging time lag.

VII. RELATED WORKS

In past literature, root cause analysis of network logs was
tackled by using various approaches. These approaches can
be classified into three groups: rule-based, learning-based, and
relation mining approach.

Rule-based approaches are based on domain knowledge and
heuristics, which comes from past analysis and operators’
experience. Lou et al. [21] estimated event dependency in
Hadoop logs with heuristic-based rules of timestamps and

message variables. Tak et al. [22] determined the dependency
of events in cloud logs by using a heuristic-based method
with time-series relationships and referred variables. Lu et
al. [23] and Jia et al. [24] analyzed Spark logs with heuristic-
based rules. These methods depend on the heuristics of cloud
systems, which are not available in other network systems.

Learning-based approaches rely on decision tree algorithms.
Decision trees of network events are considered as dependency
graph [25]. Decision trees are generated by Bayesian infer-
ence [26] or Random Forest [27]. This approach requires a
large amount of log data for decision tree learning and are not
effective for unfamiliar or infrequent kinds of trouble.

Relation mining approaches extract relationships among
network events with Pearson correlation [28], [18], association
analysis [29], [30], and transfer entropy [31]. However, these
methods give rise to spurious results, so pruning methods have
also been proposed in some pieces of work to decrease the
number of false positives. A popular approach is inferring
causality (i.e., removing conditional independence) [18], [29].
In contrast, Rodrigo et al. [31] decreased the number of
spurious results on the basis of domain knowledge, e.g., the
topology of an industrial plant.

Our work in this paper is categorized as a relation min-
ing approach. The causal inference approach is resource-
expensive, and domain knowledge is insufficient for decreasing
the number of spurious results. Our key idea is to combine
these two relation mining approaches to incorporate the ad-
vantages of both.

VIII. CONCLUSION

In this paper, we propose a method of combining causal
inference and domain knowledge in analyzing network logs
for automated troubleshooting. The method prunes false edge
candidates in the initial graph of the PC algorithm by using
network protocols and topology information. For the pruning,
we consider both the layer-2 and layer-3 network topology
along with functional layers of log events. With this method,
we analyzed the log data of a nation-wide educational network
for 15 months. We confirmed that the proposed method
decreased the processing time by 74% compared with a single-
handed causal analysis method (None), which corresponds
to 16% reduction of the processing time compared with an
existing method (Area-based). We also found that the proposed
method can provide valuable information related to large
network trouble recorded in trouble tickets.

The proposed method enables the causal analysis of larger
or more complicated networks like SINET5 [20]. As future
work, we will analyze the log data of other networks to confirm
the generality and effectiveness of causal analysis in network
troubleshooting. In addition, we will explore measures to find
causality among events obtained from other data sources.

ACKNOWLEDGEMENTS

This work is supported by JSPS KAKENHI Grant Number
JP19K20262, and the MIC/SCOPE #191603009.

REFERENCES

[1] L. Zeng, Y. Xiao, H. Chen, B. Sun, and W. Han, “Computer operating
system logging and security issues: a survey,” Security and Communi-
cation Networks, vol. 9, pp. 4804–4821, 2016.

[2] T. Li, J. Ma, and C. Sun, “Dlog: diagnosing router events with syslogs
for anomaly detection,” The Journal of Supercomputing, pp. 1–23, 2017.

[3] J. Pearl et al., “Causal inference in statistics: An overview,” Statistics
surveys, vol. 3, pp. 96–146, 2009.

[4] P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and
search. MIT press, 2000.

[5] S. Urushidani, M. Aoki, K. Fukuda, S. Abe, M. Nakamura, M. Koibuchi,
Y. Ji, and S. Yamada, “Highly available network design and resource
management of sinet4,” Telecomm. Systems, vol. 56, pp. 33–47, 2014.

[6] “logdag,” https://github.com/cpflat/logdag.
[7] M. Kalisch and P. Bühlmann, “Estimating high-dimensional directed

acyclic graphs with the pc-algorithm,” in The Journal of Machine
Learning Research, vol. 8, 2007, pp. 613–636.

[8] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2004.
[9] S. Kobayashi, K. Otomo, K. Fukuda, and H. Esaki, “Mining causes of

network events in log data with causal inference,” IEEE Transactions
on Network and Service Management, vol. 15, no. 1, pp. 53–67, 2018.

[10] T. Verma and P. Judea, “An algorithm for deciding if a set of observed
independencies has a causal explanation,” in Proceedings of UAI’92,
1992, pp. 323–330.

[11] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in IEEE IPOM’03, 2003, pp. 119–126.

[12] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event
logs using iterative partitioning,” in Proceedings of ACM KDD’09, 2009,
pp. 1255–1264.

[13] M. Mizutani, “Incremental mining of system log format,” in Proceedings
of IEEE SCC’13, 2013, pp. 595–602.

[14] S. Kobayashi, K. Fukuda, and H. Esaki, “Towards an NLP-based log
template generation algorithm for system log analysis,” in Proceedings
of CFI’14, 2014, pp. 1–4.

[15] “SINET4 Archive,” http://w4a.sinet.ad.jp/Network/.
[16] T. Le, T. Hoang, J. Li, L. Liu, H. Liu, and S. Hu, “A fast PC algorithm

for high dimensional causal discovery with multi-core PCs,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 13,
no. 9, pp. 1–13, 2014.

[17] A. L. Madsen, F. Jensen, A. Salmerón, H. Langseth, and T. D. Nielsen,
“A parallel algorithm for Bayesian network structure learning from large
data sets,” Knowledge-Based Systems, vol. 117, pp. 46–55, 2017.

[18] A. A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and
Q. Zhao, “Towards automated performance diagnosis in a large iptv
network,” in Proceedings of ACM SIGCOMM’09, 2009, pp. 231–242.

[19] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen, “A Linear
Non-Gaussian Acyclic Model for Causal Discovery,” Journal of Machine
Learning Research, vol. 7, pp. 2003–2030, 2006.

[20] T. Kurimoto, S. Urushidani, H. Yamada, K. Yamanaka, M. Nakamura,
S. Abe, K. Fukuda, M. Koibuchi, H. Takakura, S. Yamada, and Y. Ji,
“SINET5: A low-latency and high-bandwidth backbone network for
SDN/NFV Era,” in Proceedings of IEEE ICC’17, 2017, pp. 1–7.

[21] J.-G. Lou, Q. Fu, Y. Wang, and J. Li, “Mining dependency in distributed
systems through unstructured logs analysis,” in ACM SIGOPS Operating
Systems Review, vol. 44, 2010, p. 91.

[22] B. C. Tak, S. Tao, L. Yang, C. Zhu, and Y. Ruan, “LOGAN: Prob-
lem Diagnosis in the Cloud Using Log-Based Reference Models,” in
Proceedings of IEEE IC2E’16, 2016, pp. 62–67.

[23] S. Lu, B. B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang, “Log-based
Abnormal Task Detection and Root Cause Analysis for Spark,” in IEEE
ICWS 2017, 2017, pp. 389–396.

[24] Z. Jia, C. Shen, X. Yi, Y. Chen, T. Yu, and X. Guan, “Big-data analysis
of multi-source logs for anomaly detection on network-based system,”
in IEEE CASE 2018, 2018, pp. 1136–1141.

[25] K. Nagaraj, C. Killian, and J. Neville, “Structured Comparative Analysis
of Systems Logs to Diagnose Performance Problems,” in Proceedings
NSDI’12, 2012, pp. 1–14.

[26] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates, “G-RCA:
A generic root cause analysis platform for service quality management
in large IP networks,” IEEE/ACM Transactions on Networking, vol. 20,
no. 6, pp. 1734–1747, 2012.

[27] J. Manuel, N. González, J. A. Jiménez, J. Carlos, D. López, and H. A. P.
G, “Root Cause Analysis of Network Failures Using Machine Learning
and Summarization Techniques,” IEEE Communications Magazine, pp.
126–131, September 2017.

[28] E. Chuah, S.-h. Kuo, P. Hiew, W.-c. Tjhi, G. Lee, J. Hammond, M. T.
Michalewicz, T. Hung, and J. C. Browne, “Diagnosing the Root-Causes
of Failures from Cluster Log Files,” in IEEE HiPC 2010, 2010, pp.
1–10.

[29] Z. Zheng, Z. Lan, B. H. Park, and A. Geist, “System log pre-processing
to improve failure prediction,” in Proceedings of the International
Conference on Dependable Systems and Networks, 2009, pp. 572–577.

[30] S. E. Solmaz, Bugra Gedik, H. Ferhatosmanoglu, S. Sözüer, E. Zeydan,
and C. Ö. Etemoglu, “ALACA : A platform for dynamic alarm collection
and alert,” International Journal of Network Management, pp. 1–17,
March 2017.

[31] V. Rodrigo, M. Chioua, T. Hagglund, and M. Hollender, “Causal analysis
for alarm flood reduction,” IFAC-PapersOnLine, vol. 49, no. 7, pp. 723–
728, 2016.

