
Towards an NLP-based log template generation algorithm
for system log analysis

Satoru Kobayashi
University of Tokyo

sat@hongo.wide.ad.jp

Kensuke Fukuda
NII

kensuke@nii.ac.jp

Hiroshi Esaki
University of Tokyo

hiroshi@wide.ad.jp

ABSTRACT
System log from network equipment is one of the most im-
portant information for network management. Sophisticated
log message mining could help in investigating a huge num-
ber of log messages for trouble shooting, especially in re-
cent complicated network structure (e.g., virtualized net-
works). However, generating log templates (i.e., meta for-
mat) from real log messages (instances) is still difficult prob-
lem in terms of accuracy. In this paper we propose a Natural
Language Processing (NLP) approach to generate log tem-
plates from log messages produced by network equipment
in order to overcome this problem. The key idea of the
work is to leverage the use of Conditional Random Fields
(CRF), a well-studied supervised natural language process-
ing technique. As preliminarily evaluation, with one month
network equipment logs in a Japanese academic network, we
show that our CRF based algorithm improves the accuracy
of generated log templates in reasonable processing time,
compared with a traditional method.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
logging ; C.2.3 [Computer-communication networks]: Net-
work operations—network management ; I.2.7 [Artificial in-
telligence]: Natural language processing—language parsing
and understanding

General Terms
Reliability, Management, Languages

1. INTRODUCTION
Analyzing system logs from network routers and switches

helps in detecting troubles and root causes of them in net-
work management [5]. Especially in network management
under recent and future complicated network structure with

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CFI ’14 June 18 - 20 2014, Tokyo, Japan
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2942-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2619287.2619290 .

virtualized techniques, the number of logs will increase and
dependency of each log will be complicated because of com-
plexity of physical and virtual nodes. It is a time-consuming
task for network engineers to check a huge number of system
log messages in real-time. Clearly, automated log mining
techniques could improve the efficiency and reliability of the
network system [3]. However, many research problems are
remained for such intelligent support [4]. One of them is
that the most important information in system log must be
extracted through contextual information of log messages
and information on environment (i.e., configuration of the
system), rather than single log message.

In order to extract contextual log messages, at first, we
require to obtain log templates (i.e., meta format) that ex-
clude variable information like IP address and device name
from system logs (i.e., log instances). This enables us to
analyze normalized log templates rather than instances of
them. For example, log templates can be compared by an-
alyzing time series data of normalized log templates. We
can identify the semantic relation of log templates from this
information. However, generating log templates from raw
log messages is not a simple problem, because the output
templates of log messages are not available in many cases,
particularly on commercial systems. In addition, existing
methods show poor performance of obtaining log templates
from log instances. Less reliable log templates frequently
lead to miss of finding appropriate log messages related to
trouble itself and its root cause. This is a serious problem
for further analysis of log messages though this has been
heuristically solved in the past literature [7, 10].

We propose a Natural Language Processing (NLP) based
approach to tackle this problem. Generating log output tem-
plates can be considered as a problem of labeling sequential
data in NLP. Specifically, we leverage Conditional Random
Fields (CRF) [2,6] to learn the structure of log messages for
obtaining log templates. Our preliminary evaluation with 1
month network equipment logs demonstrates that our CRF-
based algorithm achieved more than 99 percent accuracy in
word-level comparison in reasonable processing time, while
an existing method shows 70 percent of accuracy.

2. RELATED WORK
Xu et al. [9] investigate root causes of failures in oper-

ating system and distributed system by examining system
logs. Their analysis relies on log templates obtained from
source code of system software. However, this approach can
be applied only for open source software, and thus its appli-
cability is limited because most source codes of commercial

products are not available. Moreover, large scale network is
usually built with switches or routers provided by multiple
commercial vendors.
Yamanishi et al. [10] define log templates produced by

ATM switches by removing numerical descriptions such as
IP addresses. This simple algorithm ignores lexical variables
without numeric ones, though the main focus or their work
is not on defining log templates correctly. The system they
analyzed is relatively simple, and the number of potential
log templates are small. In this case this simple heuristic
algorithm works well, but cannot be used commonly.
Vaarandi [7, 8] proposes an efficient algorithm to extract

log templates from system log. First, the algorithm count
the number of appearances of each words in a set of logs.
Then, it defines words that appear more frequently than a
threshold as “descriptions”, and defines the others as “Vari-
ables”, while the threshold should be determined empirically.
Finally, it generates a log template by replacing variables
to wildcard symbols. Vaarandi’s algorithm is based on the
assumption that description words appear more frequently
than variable words in system log. However, this assumption
is not always correct. For example, words like IP address ap-
pear more frequently than description words in large-scale
system logs. This is because IP addresses appear in wide
variety of log messages, in contrast to description words.
Similar situation occurs widely in words like numerical val-
ues, state strings, device names, and user names. In this
case, these variables will be judged as “descriptions”. More-
over, this algorithm is affected by popularity of log tem-
plates. For example, a number of description words in in-
frequent log templates is less than that of variable words in
frequent log templates. Thus, the formers can be considered
as “variables”. From this reason, the accuracy of Vaarandi’s
algorithm is still limited.

3. APPROACH
The goal of this work is to develop a more reliable method

for reproducing accurate log templates. However, it is diffi-
cult to process logs accurately with methods that only con-
sider logs as a set of single words. Therefore, we rely on an
approach to apply NLP techniques, which have been well
investigated, to log instances. In general, description of sys-
tem logs is far from natural language. However, there are
some structural patterns in log messages common to nat-
ural language. For example, suppose that word “from” is
followed by variable descriptions, which are not part of log
template in system logs. Indeed, this rule pattern is fre-
quently appeared in real logs. This kind of information is
useful in predicting the structure of log messages. Thus, it
is reasonable that some NLP techniques can reveal structure
of system logs in the same way as for natural language. In
order to label which word is a part of log templates or not,
we rely on Conditional Random Fields [2, 6] that is a well
studied technique in NLP field.

3.1 Conditional Random Fields (CRF)
Conditional Random Fields (CRF) [2, 6] is a supervised

learning technique for segmenting or labeling sequential word
data. It is, for example, used for chunking of speech texts.
Train data consists of log messages and the labeled data of
their words. CRF calculates conditional probability of each
log message with feature functions, the probability of po-
sitional relations of words, and their features defined with

Figure 1: Overview of CRF with feature templates.

feature templates. Feature template consist of positional
relations of words and labels to be used in making feature
functions. This enables CRF to avoid useless calculation and
over-fitting. For example, feature functions are defined as in
Figure 1; Feature templates assign two neighboring words
and labels before and after the target word. Solving a max-
imization problem of the conditional probability is used for
learning relationship between other words and their features.
Finally, CRF classifies each words in unlabeled test data into
“descriptions” and “variables”. This procedure shows that
CRF evaluates the structure of whole words in a single log
message. This is an advantage of CRF comparing with other
labeling algorithms like Hidden Markov Model (HMM) [1].

Here, we briefly explain a procedure of CRF1. For train-
ing, CRF requires feature templates and training data. The
first step of labeling words of system log is to prepare a
train data set with correct labels: “description” or “vari-
able”, meaning that the word is a part of log templates or
not. For example, words of log instances are annotated,
where D and V correspond to “Description” and “Variable”,
respectively. Next, CRF reads the learning data and con-
structs a CRF model consisting of conditional expressions
made by learning data and feature templates. Finally, the
CRF model classifies every line of target logs. The output
is its log template, the description of log message with its
variable string replaced with wildcard.

3.2 Data set
We investigate a set of log data that is collected at back-

bone routers and L2 switches at a research and education
network in Japan. Three different types of logs are included
in the dataset corresponding to three vendors of equipment.
We preliminarily analyze one month log data in following
experiments. This data consists of 2,572,621 log messages
and can be heuristically classified into 201 log templates. We
construct labeled data by using a self-made simple regular
expression-based analyzer for train data and ground truth
data.

Figure 2 shows the distribution of the number of appear-
ances of log instances per log template in the data set. It is
clear that the plots have a long tail, meaning that a small
number of log templates appears more frequently. Indeed,
only top 21 patterns appear over 1000 times while 35 log

1We used CRF++ as an implementation of CRF.
http://code.google.com/p/crfpp/

Figure 2: Frequency distribution of
log templates.

Figure 3: Accuracy of the proposed
algorithm and Varrandi’s algorithm.

Figure 4: Processing time of two al-
gorithms.

templates appear only once; however 1,478,386 log messages
belong to them. In other words, they account for 57 percent
of all log messages. This data shows that the actual system
log data is characterized by a skewed distribution.

4. EVALUATION

4.1 Performance Metrics
In order to evaluate performance improvements of the

CRF-based method, we conduct multiple experiments with
two log template generation algorithms (i.e., Vaarandi’s and
the proposed one) with different parameter sets. For each
experiment we perform 20 trials with train data selected
randomly and independently, and we show their average and
standard error, considering dependencies on the selection of
the train data set. The performance metric we used is as
follows:

4.1.1 Accuracy
Accuracy is defined as the rate how correctly the algo-

rithm can generate appropriate log templates. We consider
three levels of accuracy in this paper:

• Word accuracy : Assigned label is validated in word
level. This checks whether the label of a description
word (or variable word) is “description” (or“variable”),
or not.

• Line accuracy : Assigned labels are validated in a log
message. It is failed if more than one label in a log
message does not match.

• Log template accuracy : This is the averaged line ac-
curacy weighted by the number of appearance of log
messages.

4.1.2 Reduction rate
The log template generation algorithms make 1 log mes-

sage into 1 log template, and same templates from multiple
log messages are merged. However, if labeling variable words
fails, log templates which have different variable words can-
not be aggregated. Thus, the number of the final log tem-
plates become large. In other words, incorrect labeling of
words generates unnecessary and verbose log templates. As
a consequence, the number of the final log templates is an

Table 1: Comparison of the number of output log tem-
plates and the ratio to original log messages (2572621)

Algorithm Templates Reduction rate

Regular expression 201 12799
Vaarandi’s algorithm 1302 1975
CRF (with 10 train data) 85750 41
CRF (with 100 train data) 13649 884
CRF (with 1000 train data) 1156 2237
CRF (with 10000 train data) 960 2717

alternative metric to measure the appropriateness of the al-
gorithm. such patterns will not decrease the total number of
log templates. A reduction rate of log templates is defined
as the ratio of the number of all log messages to the number
of generated log templates, i.e., a larger reduction rate is
better.

4.1.3 Processing Time
The processing time includes not only classification parts,

but also making a word dictionary in Vaarandi’s algorithm
and making CRF models by learning train data.

4.2 Results
We compare the proposed algorithm with Vaarandi’s one.

Figure 3 indicates the comparison of three types of accuracy
with error bars: word, line, and log template accuracies. A
CRF with sufficient train data achieves 30 percent improved
in word accuracy and 60 percent improved in line accuracy
than Vaarandi’s algorithm. As for these two metrics, our
method indicates totally higher accuracy.

In addition, we can see that the more learning data given,
the more accurately CRF produces log templates. Clearly
a sufficient number of train data enables us to analyze less
frequently appearing log templates. Therefore, it is reason-
able that a log template can be analyzed correctly if train
data include some of similar templates. However, in terms
of log template accuracy, CRF requires 10000 train data to
achieve same accuracy as Vaarandi’s algorithm.

As described in Sec. 2, Vaarandi’s algorithm cannot pro-
duce log templates correctly from log instances including
variable words (e.g., IP addresses) that appear on multiple
log templates. Such logs, which are majority in the dataset,
yield low word and line accuracies of Vaarandi’s algorithms.
On the other hand, system log messages without major vari-

ables can be parsed correctly. Therefore, we conclude that
Vaarandi’s algorithm successfully parse a part of minor log
templates.
In our CRF algorithm, major variable words like IP ad-

dresses are correctly annotated with high probabilities. Clearly
a sufficient number of train data enables us to analyze less
frequently appearing log templates. Therefore, it is reason-
able that a log template can be analyzed correctly if train
data include some of similar templates, because the same
variable word is likely to appear in train data and has more
chance to be learned. However, our method failed to anno-
tate words in infrequent log templates correctly, in contrast
with Vaarandi’s algorithm which failed in log templates con-
taining frequent variable words. Figure 2 shows that the
number of log instances in 159 log templates have less than
100. In other words, a probability of appearing such a log
templates is less than 4 percent in 1000 train data. This
result demonstrates that the performance of the proposed
algorithm largely depends on the selection of train data set,
and CRF is potentially poor at extracting minor log tem-
plates with random selection of train data.
Table 1 lists the number of generated log templates of

each algorithms and their corresponding rate. The raw of
“Regular expression” indicates the ideal case of log template
generation. The result of reduction rate is similar to that of
the log template accuracy. However, our algorithm achieved
similar reduction rate to that of Vaarandi’s algorithm with
smaller train data, comparing with the log template accu-
racy. This is because reduction rate decreases largely with
major log templates parsed correctly.
The result of processing time (Fig. 4) shows that Vaarandi’s

algorithm has advantage over our method, but our method
works in reasonable time. If a sufficient amount of learning
data are provided, our method takes time from 3 to 5 times
of Vaarandi’s algorithm. Even if the size of test data in-
creases, this relations remains as it is, because our method
processes each log messages independently.
Additionally, we can see that CRF processes test data in

less time with a sufficient number of learning dataset. It
takes more time to construct a CRF model with more learn-
ing data. However, its impact is small as far as learning data
is considerably smaller than test data; learning 10000 data
takes only 5 seconds, though annotation takes 592 seconds.
The time to process log messages with CRF model depends
heavily on the number of learning data. This is likely due to
pruning process in implementation of CRF. If there is dom-
inant information in learning data, unnecessary calculation
can be omitted by pruning process. An enough number of
learning data that contain essential information reduces the
processing time of a CRF model.

5. CONCLUDING REMARKS
In order to extract contextual information from system

log through classifying log messages by their log templates
and comparing time series data of the appearance of each log
template, it is necessary to generate log templates from raw
system log. We proposed a method to do this by learning

the structure of log messages. In many cases, system logs
are characterized by a skewed distribution in the appearance
of each log templates, and this feature prevents us from an-
alyzing actual system log with simple approaches. The key
idea of the proposed algorithm relies on the use of CRF, a
recent natural language processing technique. The accuracy
of our proposed method basically outperformed that of a
traditional algorithm.

However, our CRF-based algorithm still has a remaining
issue that it fails minor log messages with a limited num-
ber of train data. There are two potential solutions to this.
One is to combine CRF with Vaarandi’s algorithm. Sec-
tion 4.2 indicates that these two algorithms have different
types of mislabeling in generating log templates; Vaarandi’s
algorithm cannot annotate variable words like IP addresses
that appear in multiple log templates, and the CRF algo-
rithm is poor at labeling words of minor log templates. How-
ever, these methods achieved similar log template accuracy.
Therefore, it is plausible to generate log templates more ac-
curately with a hybrid method. Second one is an approach
to select train data set based on the structure of log mes-
sages. If train data consists of log messages that are similar
to a particular one, CRF cannot annotate log messages with
different structure from that. In order to generate log tem-
plates correctly with a limited number of train data, it is
expected that train data includes as various log templates
as possible. This could be achieved by feedback (or boost-
ing) to select better train data set, e.g., online learning. We
will continue to improve the accuracy of parsing log mes-
sages with CRF from two above-mentioned view points.

6. REFERENCES
[1] D. Freitag and A. McCallum. Information extraction with

HMM structures learned by stochastic optimization. In
AAAI, pages 584–589, 2000.

[2] J. Lafferty, A. Mccallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In ICML, pages 282–289, 2001.

[3] C. Lim, N. Singh, S. Yajnik, A. Labs, and B. Ridge. A log
mining approach to failure analysis of enterprise telephony
systems. In IEEE DSN, pages 398–403, 2008.

[4] A. Medem, M. Akodjenou, and R. Teixeira. Troubleminer:
Mining network trouble tickets. In IFIP/IEEE IM, pages
113–119, 2009.

[5] T. Qiu, G. Tech, Z. Ge, F. Park, D. Pei, and J. Xu. What
happened in my network? Mining network events from
router syslogs categories and subject descriptors. In ACM
IMC, pages 472–484, 2010.

[6] F. Sha and F. Pereira. Shallow parsing with conditional
random fields. In NAACL, pages 134–141, 2003.

[7] R. Vaarandi. A data clustering algorithm for mining
patterns from event logs. In IEEE IPOM, pages 119–126,
2003.

[8] R. Vaarandi. Real-time classification of IDS alerts with data
mining techniques. In IEEE MILCOM, pages 1–7, 2009.

[9] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan.
Detecting large-scale system problems by mining console
logs. In ACM SOSP, pages 117–131, 2009.

[10] K. Yamanishi and Y. Maruyama. Dynamic syslog mining
for network failure monitoring. In ACM KDD, pages

