Comparative Causal Analysis of Network Log Data in Two Large ISPs

Satoru Kobayashi, Keiichi Shima, Kenjiro Cho,
Osamu Akashi, Kensuke Fukuda
AnNet 2022

Toward automated network log analysis

- Automated log analysis
 - Necessary for recent large-scale networks and their logs
 - Especially important for root cause analysis of network troubles
- Machine learning approach for network root cause analysis
 - Lack of diversity in training data
 - Weak for unknown trouble cases
- ➤ Collaborative (inter-ISP) log analysis

Future collaborative log analysis

- Collaborative log analysis of multiple ISPs
 - Learn more (and diverse) troubles
 - Can be effective for unknown troubles (If appeared in other ISPs)

Difficulty in collaborative log analysis

- Does there really exist transferable knowledge?
 - If not, transfer learning loses accuracy and reliability
- We need to preliminarily compare multiple log datasets
 - To examine the transfer learning is effective or not in advance

Research goal: Propose a comparative log analysis technique of ISPs

Challenges for comparative log analysis

- Difference of environment (vendors and network topology)
 - Different system behavior
 - Different log formats and variables
 - Different logging behavior (when to log)
 - ➤ Difficult to compare directly
- Data publication policy of ISPs
 - Network logs include sensitive information
 - ➤ Need anonymization

Key idea

- Log messages -> Time-series event with log templates
 - Time-series event: same log template, same host device
 - Helpful for anonymization
- Focus on event causality
 - If there is a same network behavior, there can also be similar causal relations of log events [1]
 - Clear and direct relations without spurious correlation

AnNet 2022 7

Analysis flow overview

1 DAG for 1-day log data

1 time-series node: events with 1 log template from 1 host device

(1) Log template generation

- 1. Parse log messages into header information and statements
- 2. Generate log templates from log statements
- 3. Classify log messages with the templates

[2] S. Kobayashi, et al. "amulog: A General Log Analysis Framework for Comparison and Combination of Diverse Template Generation Methods", International Journal of Network Management, Wiley, 2021

(2) Preprocessing of input time-series nodes

- Decrease processing time of causal discovery
 - ➤ Remove periodic component of log time-series [1]
 - Ignore daily or weekly (planned) system behavior
 - Prune causal edge candidates with prior knowledge [3]
 - Considering network topology and protocol layers of events
 - ➤ Merge completely synchronizing time-series nodes (new)
 - Decrease the number of input nodes
 - These three methods can be used together

[1] S. Kobayashi, et al. "Mining Causality of Network Events in Log Data", IEEE Transactions on Network and Service Management, pp.53-67, vol.15, no.1, March, 2018

[3] S. Kobayashi, et al. "Causal analysis of network logs with layered protocols and topology knowledge", CNSM'19, pp.1-9, 2019

AnNet 2022 10

(3) Causal discovery

- PC algorithm [4]
 - Relatively fast causal discovery method (available for large dataset)
 - With G square test (for binary time-series)

Evaluation outline

- Datasets
- Validation of node-merging preprocessing
- Evaluation (Comparative causal analysis of ISPs)
 - Causal analysis results
 - Details of Circuit-related causal edges
 - Case study

Datasets

ISP A

- nation-wide ISP in Japan
- 56,968,361 log lines
- 92 days
- 1,861 hostnames
- 36 corresponding trouble tickets
- 5,182 log templates
- NOT using preprocessing of prior knowledge

ISP B

- nation-wide ISP in Japan
- 34,722,785 log lines
- 365 days
- 131 hostnames
- 88 corresponding trouble tickets
- 1,789 log templates
- Using preprocessing of prior knowledge

Validation of node-merging preprocessing

- Causal results of ISP B without/with node merging
 - (each value is the average of every 1-day log data)
 - Processing time: 76.0 sec -> 36.3 sec (52% decreased)
 - Number of nodes: 360.1 -> 279.4
 - Number of edges: 56.8 -> 49.8
 - Corresponding trouble tickets: 70/88 -> 71/88

Equivalent reliability with smaller results

Node merging enables:

- Faster calculation
- More reliable causal results

Evaluation - Comparative causal analysis of two ISPs

Causal analysi	s Network	#Nodes	#Edges	$\# { m Tickets}$	
results	ISP A	2,758.3	349.8	18 (42%)	
	ISP E	3 279.4	49.8	71 (81%)	
Classification of tickets	Network	Class	#All	#Tickets	
			tickets	with edges	
	ISP A	Circuit	22	15 (68%)	Similar results in
		Connection	7	0 (0%)	Circuit troubles
		Device	7	3~(43%)	
	ISP B	Circuit	22	14 (63%)	
		Connection	55	50 (91%)	
		Device	7	4 (57%)	
		Blackout	4	3 (75%)	

Evaluation - Details of Circuit-related causal edges

Aggregated with adjacent nodes of causal edges

Network	Node label	Days	Days	Days w/ tickets
		$w/\log s$	w/ edges	(edges/tickets)
ISP A	MPLS	88	69	12 (17%)
(92 days)	System	92	92	5 (5%)
	Interface	92	92	5 (5%)
	Monitor	90	53	4 (4%)
	OSPF	61	5	1 (20%)
ISP B	Monitor	191	60	10 (17%)
(365 days)	MPLS	39	13	4 (31%)
	BGP	315	291	4 (1%)
	Interface	318	211	3 (1%)
	OSPF	54	1	1(100%)

MPLS, Interface, Monitor:
Found in many days
-> Regular behavior

OSPF:

Logs regularly appear, but causality is rare

-> Anomalous if OSPF has causality with others System

Interface

Monitor

Interface

Interface

Monitor

Interface

Interface

System

System

Interface

Monitor

Monitor

Monitor

Monitor

Interface

Monitor

Monitor

MPLS

MPLS

OSPF

BGP

Label 1

AnNet 2022

Network

ISP A

(92 days)

ISP B

(365 days)

MPLS System MPLS MPLS Monitor Monitor

Label 2

OSPF

OSPF

OSPF

MPLS

Monitor

Interface

Monitor

Monitor

Monitor

MPLS

BGP

MPLS

BGP

MPLS

MPLS

MPLS

OSPF

Interface

Monitor **OSPF**

System Interface

Same

host

28

215

166

Days

11

91

28

w/ edges

Days w/ tickets

(edges/tickets)

5 (45%)

3 (3%)

5 (18%)

3 (14%)

2(15%)

3 (5%)

1 (100%)

1 (100%) 1 (100%)

1 (100%)

1 (100%)

1 (100%)

2(100%)

1(33%)

1 (100%)

1 (100%)

1 (100%)

9 (32%)

4 (2%)

4 (80%)

3(2%)

1(33%)

1 (100%)

1 (100%)

1(33%)

1(100%)

Another aggregation of causal edges related to Circuit tickets

Edges between same labels (Within a protocol function) -> Relatively frequent (regular) but sometimes related to troubles Edges between different labels:

(Communication between protocols) -> Anomalous and related to troubles

Mainly adjacent to subordicate

functions (Interface and Monitor)

Evaluation - Case study

One of Circuit troubles in ISP B

Edges across devices
between different labels
(Rare and large behavior)
Found similar edge
in ISP A too
-> Similar behavior in
different ISPs

Discussion

- Causal approach is effective for dataset comparison
 - Logs appear regularly in any classes -> Which to focus?
 - Log causality can reveal large and relational behaviors
- How about other tickets (Connection and Device)?
 - Difficult to compare at least between these ISPs
 - Connection: Depends largely on used network protocols
 - Device: Depends largely on device vendors and models

Conclusion

- Goal: Comparative log analysis between different ISPs
- Approach: Causal discovery of time-series events classified with log templates and host devices
- Performance: Improved with node-merging by decreasing 52% of the processing time
- Result: Contribute to finding similar behaviors in two ISPs (especially on Circuit-related troubles)
- https://github.com/amulog/logdag