
Comparative Causal Analysis of Network Log Data
in Two Large ISPs

Satoru Kobayashi
NII

sat@nii.ac.jp

Keiichi Shima
IIJ

shima@wide.ad.jp

Kenjiro Cho
IIJ

kjc@iijlab.net

Osamu Akashi
NII

akashi@nii.ac.jp

Kensuke Fukuda
NII/Sokendai

kensuke@nii.ac.jp

Abstract—Towards a collaborative analysis of log data obtained
from multiple networks, we first need to clarify what kind
of information is available as transferable knowledge between
different networks. However, we cannot directly compare net-
work log data from different sources because the data largely
depends on the network architecture and equipment. In this
paper, we focus on relational information among network log
events that follow standardized network protocols regardless
of network environment. We propose a comparative analysis
approach relying on causality between log time-series. In this
approach, we classify log messages into anonymized log time-
series with log templates, reduce the number of log time-series
to decrease processing time, and apply causal discovery with the
PC algorithm. To decrease the processing time of causal analysis,
we propose a new preprocessing method that reduces the number
of log time-series without any domain knowledge (i.e., available
in any ISPs). We compare log data obtained from two nation-
wide ISPs to demonstrate the effectiveness of the causal approach
in comparative analysis.

Index Terms—Network management, Log analysis, Causal
discovery, Comparative analysis

I. INTRODUCTION

Log data is an important data source for network manage-
ment and troubleshooting. As its data volume vastly increases,
many automated log analysis approaches have been proposed
such as anomaly detection [1]–[3], fault localization [4], and
root cause analysis [5]–[7].

Still, it is difficult to achieve automated network trou-
bleshooting from log data. One reason for this difficulty comes
from the lack of diversity in training data. Network troubles
are caused by diverse factors in recent complicated systems.
In addition, network operators usually do their best to prevent
network troubles. If we only focus on the data of one network,
the trouble data to be learned in machine learning approaches
for automated troubleshooting is limited.

One possible approach for automated analysis based on
richer knowledge is learning past troubles in the data of other
networks. If we preliminary train an automated system with
some valuable information from other networks, the system
can provide useful information even for unseen troubles in the
network. This collaborative system can be built on machine
learning techniques such as transfer learning. However, it is
unclear what knowledge can be transferred from different
networks. Modern large-scale networks consist of complicated
network technologies and their policies vary greatly from

Log

Log
Log template

generation
Causal

discovery

❌

More
comparable

ISP A

ISP B

Node
merge

Log
Time-series

Log template
generation

Node
merge

Causal
discovery

Difficult
to compare

Fig. 1. Overview of comparative causal analysis

network to network. We first need to validate the network
log data’s similarity and difference as the input data source of
future collaborative analysis for network troubleshooting.

There are several challenges to comparing network log data
obtained from different networks. Logically, the variables (i.e.,
IP addresses) appearing in the log message will differ in
accordance with the networks. Also, as the deployed network
devices are of different vendors or models, the log formats are
different even if they correspond to the same behavior in the
network protocols. Therefore, it is difficult to compare the logs
in multiple networks directly. In addition, we need to consider
the data publication policies. Network logs often include
sensitive information such as private network configuration,
network security policy, and sometimes customer activity.

In this paper, we propose a comparative analysis technique
of network log data from different networks. The key idea
is using causal analysis of log time-series events for the
comparative analysis. A log time-series event is time-series
data indicating the occurrence at each time bin of a log
group corresponding to similar system behaviors. If there is a
causality between given two log time-series events, the literal
meaning is that one event causes the appearance of the other
event. In this paper, we instead focus on the causality inferred
from observed data, which corresponds to a direct relationship
(or dependency) with a similar event appearance. This causal
information is helpful to understand system behaviors that emit
multiple log events together.

Figure 1 illustrates the abstracted analysis flow based on
this idea. The log time-series is extracted from the classified
log messages by log templates, which is a widely adopted978-1-6654-0601-7/22/$31.00 © 2022 IEEE

approach in past literature [4], [8]. The log time-series can
be treated as the anonymized data of log messages whose
variables (including sensitive parameters and addresses) are
replaced with wildcards. Therefore, it is easier to share the
anonymized log time-series than share log data by multiple
network operators. Also, causal analysis extracts the relational
information in the log time-series events (nodes in Figure 1).
This relational information is more general and comparable
than the raw log data or its time-series because the event
dependency is usually derived from network protocols which
is standardized in many cases regardless of device vendors.
Log causal analysis is also effective for root cause analysis of
network troubles as demonstrated in past literature [5].

It is also important to reduce the processing time in causal
log analysis. A number of Internet service providers (ISPs)
include too many network devices to analyze by conventional
causal analysis. Past literature [6] proposed a preprocess-
ing method based on domain knowledge, but this needs to
manually format the domain knowledge, which is a time-
consuming task for large ISPs. In this paper, we propose a
new preprocessing method to merge synchronized time-series
events, which reduces 52% of the processing time without
domain knowledge. With the causal analysis, we apply a
comparative causal analysis to real network log data collected
in two nation-wide ISPs in Japan (ISP A and ISP B).

In this paper, we first explain the log causal analysis
method including the new preprocessing method (section III).
Then, we describe the overview of datasets (section IV) and
validate our new preprocessing method (section V). We finally
demonstrate the results of the comparative causal analysis with
the log data of two ISPs (section VI).

The contributions of this paper are twofold. (1) We demon-
strate that our causal approach is effective for comparative
analysis of network logs obtained from different networks,
and (2) we propose a new preprocessing method for log causal
analysis and confirm that it can decrease the processing time
and improve the reliability of causal analysis without domain
knowledge of the network.

II. RELATED WORK

There are existing works that adopted causal analysis for
system log analysis. Zheng et al. [9] use a causal approach
to analyze log data of a supercomputer system. Zhang et
al. [7] proposed a root cause analysis method for alarm data
of a mobile network. Arya et al. [10] compared multiple
causal analysis approaches with the log data of a benchmark
microservice system. These works only focus on a single
system or network.

In contrast, comparative analysis of log data has not been
widely conducted in past literature. Oliner et al. [11] analyzed
five supercomputer logs from the viewpoint of classification
and correlation. Nagaraj et al. [12] analyzed the log data of
three distributed applications with a number of approaches
including a visualization based on the idea of dependency
networks. These works are similar to our approach in that
they consider relational information of log events (correlation

and dependency). However, these existing works do not intend
to compare network device logs from ISPs. In network log
analysis, we should also consider the communication events
between devices that follow common network protocols, so
we need explicit relational information (i.e., causality).

III. METHODOLOGY

A. Overview

We describe the flow of comparative causal analysis in
Figure 1. The processing flow follows that of our past litera-
ture [5], [6]: (1) generate log templates for input logs automati-
cally, (2) generate time-series events (as input nodes for causal
discovery) of classified log messages with the templates, (3)
apply preprocessing methods to remove or decrease time-
series events, and (4) use causal discovery to determine causal
directed acyclic graph (DAG) structure between the remaining
time-series event nodes.

The key idea of our causal analysis is removing spurious
correlation with the PC algorithm [13]. The PC algorithm
efficiently searches for conditional independence (i.e., spurious
correlation) between input nodes. This algorithm is used in
combination with a conditional independence test method such
as the Fisher-Z test or G square test [14]. The input data of
the PC algorithm is a data matrix of vectors corresponding
to the nodes and the data format depends on the conditional
independence test (e.g., discrete data for G square test).
The PC algorithm is simple but fast compared with other
approaches such as Granger causality [10], so the approach
is suitable for analyzing large-scale data. With this algorithm,
we estimate causal relations between time-series nodes of log
events.

First, we need to generate log templates of the input logs
to classify them as time-series. A log template is a format
of the message part in syslog messages, which consists of
description words (matching with the input messages) and
variable wildcards. There are many log template generation
methods [4], [8], [15], [16]. From the intensive accuracy
comparison of the methods [17], we choose CRFe [17], a
supervised learning method with higher accuracy than unsu-
pervised methods, for the dataset with training data (i.e, the
ground truth of log template generation), and Drain [8], a
state-of-the-art unsupervised method, for the dataset without
training data.

Next, we classify the log messages into time-series events
with the generated templates. We use one-day-long time-series
nodes as the input of causal analysis to focus more on the
temporal behavior of the target network devices (i.e., we obtain
one causal DAG for one-day-long log data). In this step, we
consider a time-series node with a sequence of logs with a
common log template and from a common host device. Here,
we use amulog [17], [18], which can quickly classify the
log messages with log templates automatically generated with
multiple log template generation methods.

Then, we apply a number of preprocessing methods to
modify the input time-series events. The methods are intended
to make the causal analysis efficient and reliable. In our

past works, we had proposed a preprocessing method to
decrease periodic or constant time-series [5] and a prepro-
cessing method to use the domain knowledge of the network
environment for reliable causal analysis [6]. In this paper, we
additionally propose a new preprocessing method, discussed in
subsection III-B, that can be used together with these existing
preprocessing methods without any prior domain knowledge.

Finally, we apply the PC algorithm to the time-series nodes.
To handle the sparse log time-series in causal analysis, we first
transform the input time-series into binary values that corre-
spond to the appearance of events in each one-minute time bin.
We use the G square test [14], a conditional independence test
for discrete input, in the PC algorithm. There are a number
of variations of the PC algorithm, and we use the stable-PC
algorithm [19], [20] that is order-independent to the input. The
output of the PC algorithm is a completed partially directed
acyclic graph (CPDAG, a potential DAG including undirected
edges) of the time-series nodes. Therefore, we estimate one
CPDAG from one-day log data obtained from one network.

This analysis flow also has an advantage in computing
resource management. Steps (3) - (4) require node IDs and
their time-series as the input (i.e., no log templates and
hostnames, as far as not applying the preprocessing method
based on domain knowledge). Therefore, we can use external
computing resources for these steps without violating any
data management policies because the input does not include
sensitive information. We later match the output CPDAG with
node specifications (i.e., log templates and hostnames) and
then understand the obtained causal results. For example, we
analyze log data of ISP A in external computation servers with
this technique. The causal analysis approach (including the
external computation) is available in logdag, our open-source
causal analysis platform [21].

B. Preprocessing

Causal discovery methods including the PC algorithm re-
quire large processing time. The computational complexity of
the PC algorithm is more than O(n2) where n is the number of
input nodes. To analyze log data of large-scale networks, we
need to consider efficient preprocessing methods to decrease
the processing time of causal discovery.

We had proposed two preprocessing methods for log causal
analysis. One method decreases periodic or constant com-
ponents in the time-series [5]. If a number of time-series
nodes have periodicity with the same intervals, they form
false causality that cannot be removed as spurious correlation
with causal inference (i.e., conditional independence test). This
preprocessing method removes such periodicity from the time-
series with Fourier analysis and linear regression. This method
effectively decreases the number of input nodes, but we also
need other preprocessing methods because it only focuses on
periodic events.

The other method uses domain knowledge of the network (in
particular, network topology and protocol layers of events) [6]
in causal analysis. This method prunes causal edge candidates
between the input nodes if the candidates are considered

not reasonable on the basis of the domain knowledge. It is
also effective for decreasing the processing time of the PC
algorithm by reducing the number of calculations for the
conditional independence test. However, we need to define
the domain knowledge manually for this method (even for
preliminary analysis), which is time-consuming even for well-
experienced operators. In this paper, we could not use this
preprocessing method for the dataset of ISP A.

Here, we propose a new preprocessing method: merging
multiple nodes with completely synchronized time-series. The
time-series nodes include a number of event pairs with com-
pletely synchronized time-series (i.e., the time-series are equal
or integer multiplying). We consider these synchronized event
pairs as one virtual event and merge the nodes into one node.
By repeating the node merging, we obtain a compressed time-
series input for causal discovery.

The idea of node merging comes from the sparseness of
log time-series. For example, in our preliminary survey, the
median of average time-series appearances is two in the log
time-series of ISP B, which means half of the events only
appear less than twice in a day (though the mean is 19).
In this sparse data, many pairs of nodes have completely
synchronized time-series. It is not against our intuition because
a number of log events should strictly follow other events in
normal situations. However, the stable-PC algorithm outputs
unintuitive results among more than three nodes with the same
time-series; Although these nodes have clear correlation and
intuitively have causality or at least indirect causal relations,
the algorithm removes all the edge candidates between the
nodes because every edge candidate between a pair of nodes is
always considered as spurious correlation given the other node.
This behavior causes the algorithm to estimate shredded causal
results which are ineffective for root cause analysis based on
the estimated causal flows. Unfortunately, any causal inference
methods cannot solve this problem because the reason comes
not from the method but the input data.

The proposed preprocessing method has three advantages.
First, the method does not require any additional data than
the input time-series (i.e., using no domain knowledge). We
can apply this method to any dataset or network environment.
Second, it decreases processing time for testing conditional
independence related to the same time-series. We discuss the
effectiveness in section V. Third, it makes the causal results
more reliable. The relations of nodes with synchronized time-
series are represented as “same node” instead of causality or
non-causality. It is valuable information that the relations are
not deterministic in the input data.

In addition, this node-merging method can be used together
with the other two methods. If one uses the node-merging
method and domain-knowledge-based method together, the
node merging needs to consider an additional constraint; the
merged nodes need to be from the same host device and of
the same layer in the domain knowledge. This is because the
input nodes of the domain-knowledge-based method must be
consistent in its host device and layer.

TABLE I
DATASETS

Network #Hostnames Period #Templates #Log lines #Tickets
(day)

ISP A 1,861 92 5,182 56,968,361 36
ISP B 131 365 1,789 34,722,785 88

TABLE II
VALIDATION OF NODE-MERGING METHOD WITH THE DATASET OF ISP B

Method Time (sec) #Nodes #Edges #Tickets
Conventional 76.0 360.1 56.8 70 (80%)
Node-merge 36.3 279.4 49.8 71 (81%)

IV. DATASET AND ANALYSIS SETUP

In this paper, we use network logs from two different ISP
networks, ISP A and ISP B, for the comparative analysis. In
this section, we introduce the two datasets and the methods
to analyze them. Note that we use our best methods for each
dataset (including different methods with each dataset) because
we do not intend to compare their accuracy competitively but
to compare their trends in the viewpoint of causality.

Table I shows the overview of these datasets. #Hostnames
means the number of different hostnames in the syslog header.
The number of hostnames in ISP A is much larger than that
of ISP B, but the number includes multiple virtual routers
and routing engines in a device. #Templates is the number of
log templates generated with different methods: Drain [8] for
ISP A and CRFe [17] for ISP B. This is because we have
sufficient training data of ISP B for supervised learning, but
not that of ISP A. In addition, we use partially different sets of
methods in the preprocessing part of log causal analysis; we
commonly use the periodicity-based method and node-merging
method for both datasets, and we additionally use the domain-
knowledge-based method only for ISP B.

As the ground truth to classify the network behavior found
as the causality, we use trouble tickets recorded by the
operators of each network. We focus on the tickets related
to the target hostnames and of which troubles had lasted more
than 10 minutes (described as “All Tickets” in section VI).
#Tickets in Table I is the number of the focused trouble tickets.
These ground truth data are used mainly in section VI.

V. VALIDATION

In this section, we demonstrate the effectiveness of the
newly proposed preprocessing method based on node-merging
for log causal analysis. We compare two causal analysis results
with and without the node-merging method (Conventional and
Node-merge, respectively) in the dataset of ISP B; we do not
compare them in the dataset of ISP A because the causal
analysis for ISP A does not end in a reasonable time, at least in
two weeks, without the node-merging method. Table II shows
the results. In the table, Time is the average processing time
of causal discovery (including preprocessing) per day. We can
see that our node merging method decreases 23% of nodes
from the causal analysis input. It causes 52% reduction of
processing time for causal discovery because the processing

TABLE III
CAUSAL ANALYSIS RESULTS OF TWO ISPS

Network #Nodes #Edges #Tickets
ISP A 2,758.3 349.8 18 (42%)
ISP B 279.4 49.8 71 (81%)

TABLE IV
CLASSIFICATION OF TROUBLE TICKETS

Network Class #All #Tickets
tickets with edges

ISP A Circuit 22 15 (68%)
Connection 7 0 (0%)

Device 7 3 (43%)
ISP B Circuit 22 14 (63%)

Connection 55 50 (91%)
Device 7 4 (57%)

Blackout 4 3 (75%)

time depends on more than the square of the number of input
nodes as explained in subsection III-B.

In addition, we can see that the node merging method
does not degrade the reliability of causal analysis results.
#Tickets is the number of trouble tickets that our system
provides more than one corresponding edge (i.e., both end
node events are related to the tickets). Both methods estimate
causal edges corresponding to about 80% of tickets, though the
node merging reduces 10% estimated causal edges. Therefore,
we can conclude that the proposed method improves the
performance and the reliability of the causal analysis.

VI. EVALUATION

Here we compare the causal results of ISP A and ISP B.

A. Classification of trouble tickets

First, we compare the quantitative aspects of the causal
analysis results, as shown in Table III. “#Nodes” and “#Edges”
are the average numbers in one output CPDAG respectively.
We can see that the number of edges is much smaller than
that of nodes in both networks. This means we require less
effort for checking causal edges than for checking log events
that are classified with log templates and hosts.

To understand the estimated causal edges in detail, we
manually annotate the causal edges with related trouble tickets
(mainly on the basis mainly of message descriptions and the
locality of event time-series).

We show the overview of causal analysis results with
the classification of tickets annotating the edges. Table IV
shows the classification of trouble tickets corresponding to
the estimated causal edges. The tickets are manually classified
into four classes in the table. Circuit tickets correspond to
the link down of circuits in the network. Connection tickets
include connection errors (except link down) between the
devices. Device tickets are related to errors that are confined
to a single device. Blackout tickets come from scheduled
blackouts, which is not our focus in this analysis.

Our method finds causal edges related to about two-thirds
of the Circuit tickets, which is a common trend in ISP A and

TABLE V
CLASSIFICATION OF ADJACENT NODES OF EDGES RELATED TO CIRCUIT

TICKETS

Network Node label Days Days Days w/ tickets
w/ logs w/ edges (edges/tickets)

ISP A MPLS 88 69 12 (17%)
(92 days) System 92 92 5 (5%)

Interface 92 92 5 (5%)
Monitor 90 53 4 (4%)

OSPF 61 5 1 (20%)
ISP B Monitor 191 60 10 (17%)

(365 days) MPLS 39 13 4 (31%)
BGP 315 291 4 (1%)

Interface 318 211 3 (1%)
OSPF 54 1 1(100%)

TABLE VI
CLASSIFICATION OF EDGES RELATED TO CIRCUIT TICKETS

Network Label 1 Label 2 Same Days Days w/ tickets
host w/ edges (edges/tickets)

ISP A MPLS MPLS ✓ 11 5 (45%)
(92 days) System System ✓ 91 3 (3%)

MPLS MPLS 28 5 (18%)
Monitor Monitor 22 3 (14%)
System System 13 2 (15%)

Interface Interface 59 3 (5%)
Monitor OSPF 1 1 (100%)

Interface OSPF ✓ 1 1 (100%)
Interface Monitor 1 1 (100%)

System MPLS 2 2 (100%)
System Interface 3 1 (33%)

Interface Monitor ✓ 1 1 (100%)
Monitor Monitor ✓ 1 1 (100%)
Monitor MPLS 1 1 (100%)

ISP B Monitor Monitor ✓ 28 9 (32%)
(365 days) BGP BGP ✓ 215 4 (2%)

Monitor MPLS ✓ 5 4 (80%)
Interface Interface ✓ 166 3 (2%)
Monitor BGP ✓ 3 1 (33%)
Monitor MPLS 1 1 (100%)

MPLS MPLS ✓ 1 1 (100%)
MPLS MPLS 3 1 (33%)
OSPF OSPF ✓ 1 1 (100%)

ISP B. However, the trends related to Connection tickets are
significantly different in ISP A and ISP B. This comes from
the different policies to report trouble tickets between ISP A
and ISP B. In our manual survey, Connection tickets in ISP B
include many connection troubles caused by peering partners,
which are not included in ISP A tickets. On Device tickets,
the trends of the two networks are close numerically. Still,
the included tickets are significantly different and disparate
because ISP A and ISP B use different vendors or network
device models.

B. Details in causal edges

Considering these findings, we next focus on Circuit tickets
because they are more comparable than other classes in the
different network environments. To understand the network
events related to these tickets, we manually annotated these
event nodes with six labels on the basis of their log templates.
“System” events consist of hardware events and self-contained
events. “Interface” events are related to network interfaces
on the network devices. “Monitor” events include secondary

events for monitoring or management such as SNMP, STP,
and NTP. The other three labels (“BGP”, “MPLS”, “OSPF”)
correspond to the communicative events of their respective
network protocol names.

Table V and Table VI demonstrate the detailed feature of
edges annotated with Circuit tickets. In Table V, the values are
aggregated with the adjacent nodes of the edges. In Table VI,
the values are aggregated with the pair of end nodes and their
host relations (same hostnames or different hostnames) of the
edges (considering no direction of edges but node pairs only).
In these tables, each row corresponds to a group of edges
identified with the event labels and has multiple count values
aggregated by days (i.e., the number of estimated CPDAGs).
“Days w/ logs” (only in Table V) is the number of days
with more than one corresponding log event appearance (not
considering the causal analysis results). “Days w/ edges” is the
number of days that include the same edges as ones related to
the Circuit tickets. If “Days w/ edges” and “Days w/ logs” are
equal, the events are always related to a number of other events
(i.e., within a regular state transition). “Days w/ tickets” is the
number of days corresponding to the edges related to Circuit
tickets (listed with its ratio to “Days w/ edges” in percentage).
If the ratio of “Days w/ tickets” to “Days w/ edges” is close to
100%, the edges only appear when there is a Circuit trouble.
Therefore, we consider the groups with a large value of this
ratio as important and valuable events in Circuit troubles.

We can see there are four common node labels in the two
networks in Table V. “MPLS” nodes frequently appear in
common with the tickets, but the specificity is different: these
MPLS events are specific to Circuit troubles in ISP B, but
not in ISP A. This is due to the usage difference of MPLS
functions in these networks. We can also see that “OSPF”
events rarely form causal edges though their logs appear
frequently. These “OSPF” related edges are strongly tied to
Circuit troubles in both networks, so they can be valuable
information with Circuit troubles. Other node events regularly
appear as adjacent nodes of edges.

In Table VI, most of the edges are between the same event
labels (orange-colored). As the causal analysis does not focus
on anomalies or outliers, the causal edges include normal (and
sometimes self-evident) state changes. There are also many
edges between different event labels (blue-colored), and we
can see they are adjacent to Monitor or Interface event nodes
in many cases. Monitor and Interface events are subordinate
functions to the original network services, so they often have
some dependency (i.e., causality) with other functions.

Figure 2 shows the causal edges related to a Circuit ticket
in ISP B. In this ticket, there is a circuit break between
two routers (routers A and B) in different datacenters. In
Figure 2, we can see two edges of different event labels
between different devices: MPLS (RSVP) to Monitor (SNMP)
and BGP to Monitor (NTP). The event pair of MPLS and
Monitor also exists in ISP A, so this is more important than
the other one (BGP to Monitor) as transferable knowledge in
future collaborative analysis.

DC A DC B

Router A Router B

MPLS
(RSVP)

MPLS
(RSVP)

Monitor
(SNMP)

BGP Monitor
(NTP)

Monitor
(NTP)

BGP BGP

MPLS
(path)

MPLS
(LSP)

OSPF

OSPF

Monitor
(STP)

Monitor
(STP)

Monitor
(SNMP)

Monitor
(SNMP)

Monitor
(SNMP)

Monitor
(SNMP)

Fig. 2. Example of CPDAG corresponding to a Circuit ticket in ISP B

C. Summary and findings

Finally, we discuss the effectiveness of the causal approach
in comparative analysis. As shown in subsection VI-A, we can
quickly figure out the mutual behaviors in network devices by
focusing on causal edges. In particular, focusing on Circuit
troubles, the related log events regularly appear in Table V
(see “Days w/ logs”), so it is difficult to identify the important
log events for the troubles without relational approaches. In
contrast, with causal edges, we can successfully find many
types of event pairs specific to Circuit troubles in Table VI.
We can compare valuable knowledge of different networks
hidden in regular events with causal analysis.

In this evaluation, we focus on Circuit troubles. It is
difficult to compare causality related to other trouble tickets
(Connection and Device) in these logs. Connection tickets
consist of connection errors without circuit breaks and they
often include protocol-specific errors that largely depend on
the network architecture. Device tickets are related to internal
errors depending on the device’s hardware or software. In
the comparison of ISP A and ISP B, these conditions are
significantly different. If one uses network log data from many
more ISPs for collaborative analysis, these troubles can include
useful information because a number of the ISPs consist of
similar network architecture or devices.

VII. CONCLUSION

In this paper, we demonstrated a comparative analysis of
log data obtained from two different ISPs. We proposed a
causality approach for the comparative analysis that estimates
causal relations between log time-series events. To decrease
the processing time for causal analysis without any domain
knowledge, we proposed a new preprocessing method for
causal discovery that merges nodes of the synchronized time-
series. The method successfully decreased more than half
of the processing time in the log data of ISP B. We then
investigated the obtained causal results with trouble tickets and
demonstrated the effectiveness of the causal approach in com-
parative log analysis. Through the analysis, we demonstrated
that the causal approach determines relational information
hidden in straightforward log analysis.

As future work, we will focus on collaborative analysis
approaches of network log data on the basis of findings from
the comparative analysis in different networks. We will also
explore measures for network operators to easily compare
network logs or anonymized time-series events.

ACKNOWLEDGEMENTS

This work is supported by the MIC/SCOPE #191603009.

REFERENCES

[1] K. Otomo, S. Kobayashi, K. Fukuda, and H. Esaki, “Latent variable
based anomaly detection in network system logs,” IEICE Transactions
on Information and Systems, vol. E102-D, no. 9, pp. 1644–1652, 9 2019.

[2] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in IJCAI
International Joint Conference on Artificial Intelligence, 2019, pp. 4739–
4745.

[3] S. Huang, Y. Liu, C. Fung, R. He, and Y. Zhao, “HitAnomaly :
Hierarchical Transformers for Anomaly Detection in System Log,” IEEE
Transactions on Network and Service Management, vol. 17, no. 4, pp.
2064–2076, 2020.

[4] T. Kimura, K. Ishibashi, T. Mori, H. Sawada, T. Toyono, K. Nishi-
matsu, A. Watanabe, A. Shimoda, and K. Shiomoto, “Spatio-temporal
factorization of log data for understanding network events,” in IEEE
INFOCOM’14, 2014, pp. 610–618.

[5] S. Kobayashi, K. Otomo, K. Fukuda, and H. Esaki, “Mining causes of
network events in log data with causal inference,” IEEE Transactions
on Network and Service Management, vol. 15, no. 1, pp. 53–67, 2018.

[6] ——, “Causal analysis of network logs with layered protocols and
topology knowledge,” in Proceedings of CNSM’19, 2019, pp. 1–8.

[7] K. Zhang, M. Kalander, M. Zhou, X. Zhang, and J. Ye, “An Influence-
Based Approach for Root Cause Alarm Discovery in Telecom,” in
Proceedings of ICSOC 2020. Springer, 2020, pp. 124–136.

[8] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proceedings of IEEE ICWS’17.
IEEE, 2017, pp. 33–40.

[9] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-Dimensional root cause
diagnosis via co-analysis,” in Proceedings of ICAC’12, 2012, p. 181.

[10] V. Arya, K. Shanmugam, P. Aggarwal, Q. Wang, P. Mohapatra, and
S. Nagar, “Evaluation of Causal Inference Techniques for AIOps,” in
ACM SIGKDD CODS COMAD 2021, 2021, pp. 188–192.

[11] A. Oliner and J. Stearley, “What Supercomputers Say: A Study of Five
System Logs,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07). IEEE, 2007, pp. 575–
584.

[12] K. Nagaraj, C. Killian, and J. Neville, “Structured Comparative Analysis
of Systems Logs to Diagnose Performance Problems,” in Proceedings
NSDI’12, 2012, pp. 1–14.

[13] P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and
search. MIT press, 2000.

[14] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2004.
[15] R. Vaarandi, “A data clustering algorithm for mining patterns from event

logs,” in Proceedings of IPOM’03, 2003, pp. 119–126.
[16] S. Kobayashi, K. Fukuda, and H. Esaki, “Towards an NLP-based log

template generation algorithm for system log analysis,” in Proceedings
of CFI’14, 2014, pp. 1–4.

[17] S. Kobayashi, Y. Yamashiro, K. Otomo, and K. Fukuda, “amulog: A
general log analysis framework for comparison and combination of
diverse template generation methods,” International Journal of Network
Management, 2021, http://doi.org/10.1002/nem.2195.

[18] S. Kobayashi, Y. Yamashiro, K. Otomo, K. Fukuda, and H. Esaki,
“amulog: A General Log Analysis Framework for Diverse Template
Generation Methods,” in Proceedings of CNSM’20, 2019, pp. 1–5.

[19] D. Colombo and M. H. Maathuis, “Order-independent constraint-based
causal structure learning,” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 3741–3782, 2014.

[20] T. Le, T. Hoang, J. Li, L. Liu, H. Liu, and S. Hu, “A fast PC algorithm
for high dimensional causal discovery with multi-core PCs,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 13,
no. 9, pp. 1–13, 2014.

[21] “logdag,” https://github.com/cpflat/logdag.

	Introduction
	Related work
	Methodology
	Overview
	Preprocessing

	Dataset and analysis setup
	Validation
	Evaluation
	Classification of trouble tickets
	Details in causal edges
	Summary and findings

	Conclusion
	References

