

LogDTL: Network Log Template Generation with Deep Transfer Learning

Thieu Nguyen¹, Satoru Kobayashi², and Kensuke Fukuda^{2,*}

nguyenthieu2102@gmail.com, sat@nii.ac.jp, kensuke@nii.ac.jp

¹Hanoi University of Science and Technology, Hanoi, Vietnam

²National Institute of Informatics, Tokyo, Japan

17-May-2021 AnNet 2021 1

System logs (syslog)

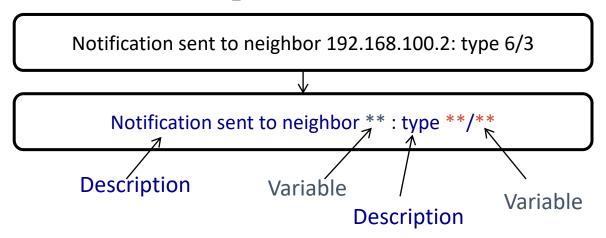
- System Logs is generated by the operating system components, softwares, programs about device changes, device drivers, system changes, events, operations...
- System Logs (Syslog) are used in many important network systems such as:
 Network devices, routers, etc.

May 17 11:15:00 192.168.100.3 [Error] bgp_read_packet error: Connection reset by peer

Error about BGP packet from 192.168.100.3 occurred. BGP connection to 192.168.100.3 was reset by peer.

Log format

- Syslog: Free-format description (due to developer's convenience and flexibility)
 - → Hard to extract
 - + manually information from logs due to the large amount of logs
 - + automatically information due to the data format
 - → Challenge: generated tons of logs (eg: SINET4 70k logs/day average)
- Log Template consists of descriptions and variables



The advantages of Log Template

- Decrease the number of logs to check
 - Can classify logs with log templates

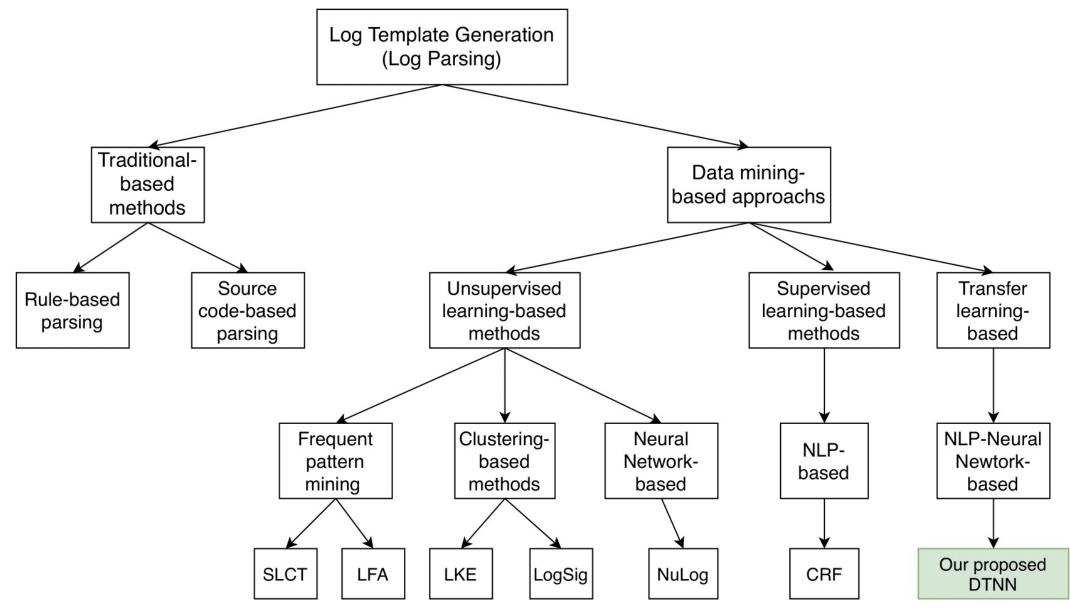
Notification sent to neighbor 192.168.100.2: type 6/3
Notification sent to neighbor 192.168.100.3: type 6/3
stream_read_try: read failed on fd 9: Connection reset by peer
192.168.100.3 [Error] bgp_read_packet error: Connection reset by peer

192.168.100.3 [Error] bgp_read_packet error: Connection reset by peer

Notification sent to neighbor 192.168.100.2: type 6/3

- Find time-series events among log templates
 - Causal relationship estimation
 - Anomaly detection
- The question is: How can we make the log template for the system?

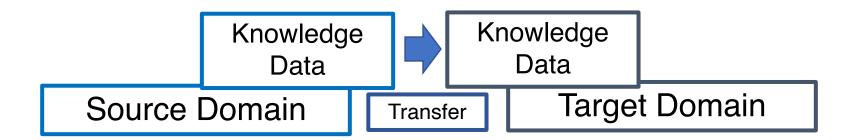
Overview of past literature



Pros and Cons of past literature

- Traditional way:
 - time-consuming and error-prone pain
 - manually writing ad-hoc rules to parse a huge volume of logs
- Data mining-based:
 - NOT need any software information
 - Unsupervised learning-based:
 - Difficult to distinguish Variable from Description automatically, therefor low accuracy
 - Supervised learning-based:
 - High accuracy but require more labeling training data
- How?
 - Using fewer logs and less human power
 - Generate correct log templates
- Idea: Transfer Learning

What is Transfer Learning?



- Similar to target topic
- But not the same
- Sufficient knowledge

- Target topic
- Want to solve this
- <u>Insufficient</u> knowledge

Transferring knowledge/data of source domain, solve the problem of target domain with a high precision

Transfer Learning for log template generation

Source domain

bgpd %ADJCHANGE: neighbor ** Down **

- Open source software
 - can make correct log templates from source code
 - can make learning data easily from log templates
- Target domain
 - Proprietary software

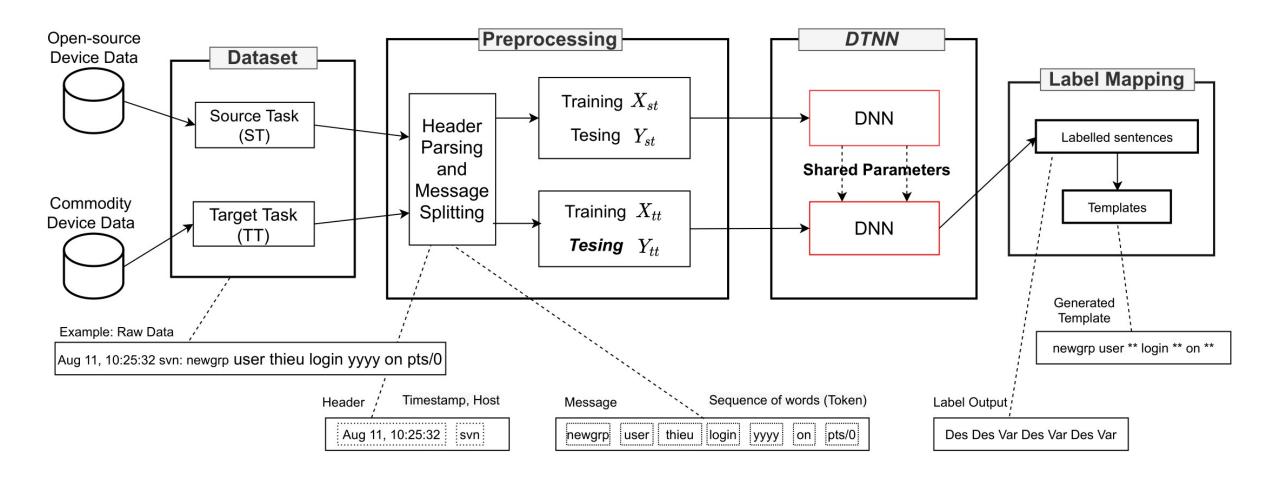
junos

vyatta

%BGP-5-ADJCHANGE neighbor ** ** BGP Notification sent

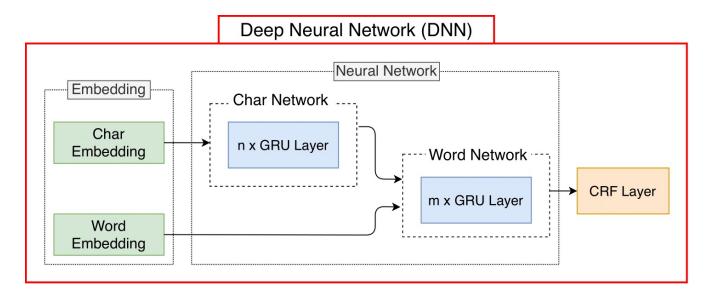
- Noted: Source and target usually follow common network protocols
- Transfer learning solves the problems[4]:
 - → Make learning data for proprietary software.
 - → Using fewer log-data and handicraft work
 - → Solve the target task problems with high precision

Architecture overview



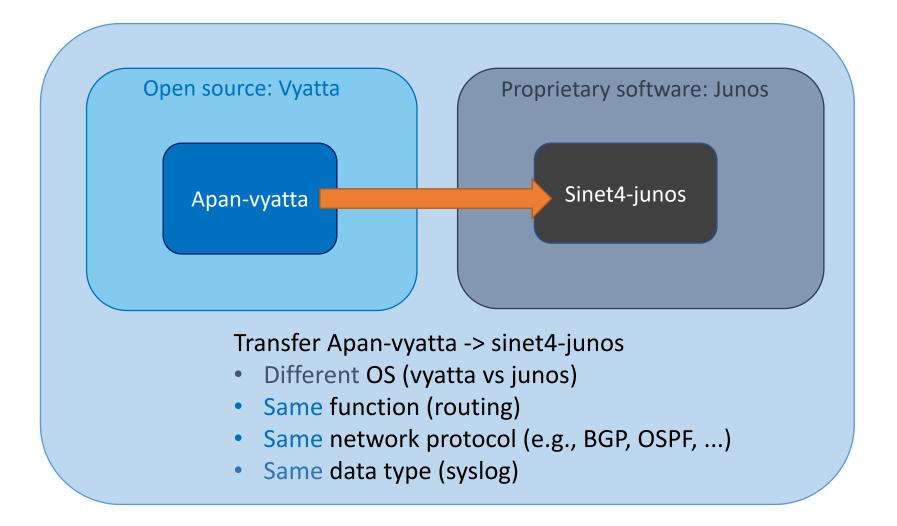
LogDTL: Log template generation using Deep Transfer Learning

Deep transfer neural network



- Based on three ideas:
 - Extension of simple Conditional Random Field (CRF)_[5]
 - Transfer Learning based on Deep Neural Network_[6]
 - Semantic with word-level and character-level in NLP
- Transfer learning happens by transfer the knowledge (the weights of network) learned from source domain and apply it to target domain

Dataset overview (source and target)



Training and testing dataset

Attributes	Source Task (AV dataset) (Open source software)		Target Task (S4 dataset) (Proprietary software)	
	Training (SX)	Testing (SY)	Training (TX)	Testing (TY)
#Sentences	100000	100000	74496	74910
#Clusters	38	45	41	75

- The 1st goal is to generate log templates for proprietary network equipment based on transfer learning → log template of S4 dataset will be learned from known templates and features of AV dataset.
- We sampled 1, 10, 100, 1000, 10000 training data (TX) of target task
 - To validate how many labeled training data do we need to prepare

Baselines and metrics

Comparison models

- Simple Conditional Random Field (CRF)
- Deep Neural Network (DNN)
- Deep Transfer Neural Network (DTNN)

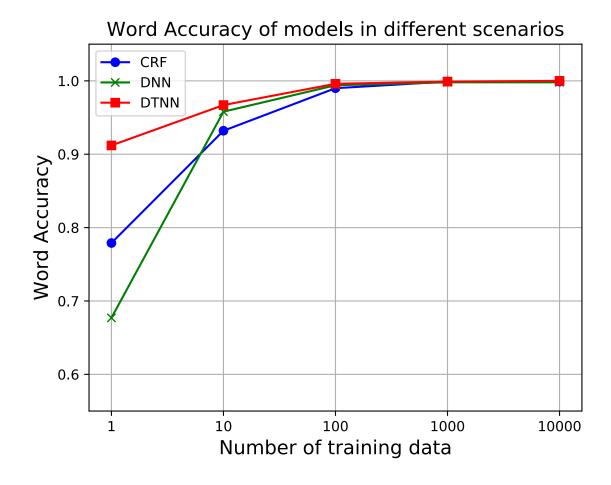
$$WA = \frac{\sum_{i=1}^{N} W_i^C}{\sum_{i=1}^{N} W_i}$$

$$TWA = \frac{\sum_{i=1}^{N} W_i^C}{N}$$

Performance metrics

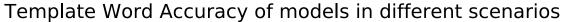
- Word Accuracy (WA): simply count the number of correctly predicted word (W_i^C) per the total of word in testing dataset.
- Template Word Accuracy (TWA): measure the average of the scores for each log templates.
- Both WA and TWA evaluate whether each word is labeled (i.e., classified as Description or Variable) correctly or not.

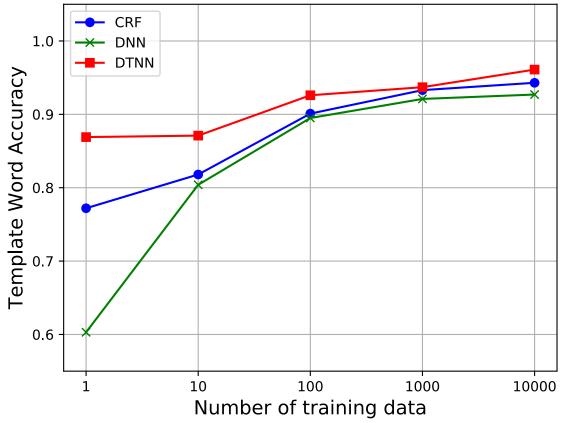
Word Accuracy



- DTNN is better than both DNN and CRF in most cases, even with low number of training data.
- CRF performs better than DNN with lower training data, but when having enough training data, both CRF and DNN get similar results.

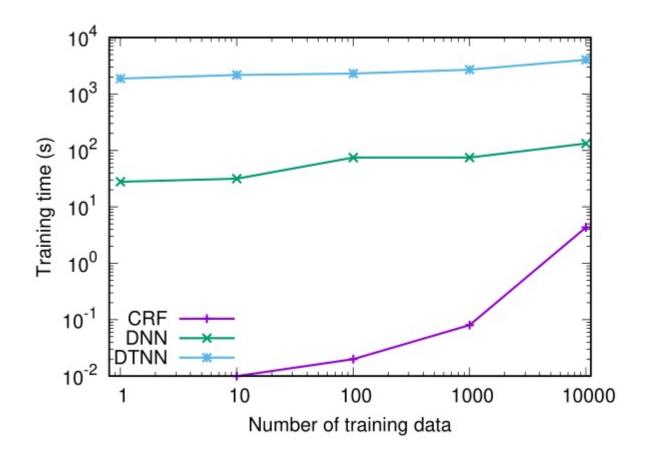
Template Word Accuracy

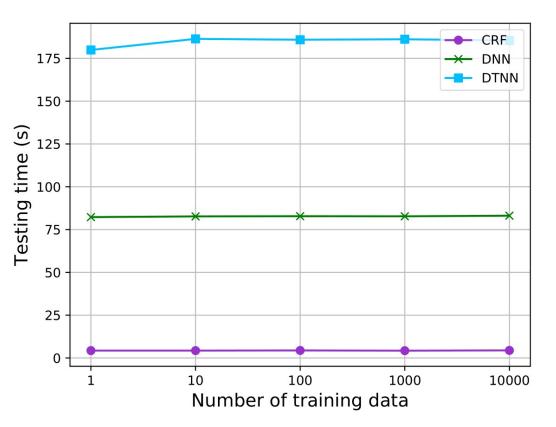




- DTNN outperform both DNN and CRF in all cases.
- CRF is better DNN in all cases.

Training and Testing time





Case Study

Method	Template 1	Template 2
Ground truth	rpd ** EVENT MTU ** index ** Up Broadcast P2P Multicast addr ** **	/kernel MTU for ** reduced to **
CRF	rpd ** EVENT MTU (ifname) index ** Up Broadcast P2P Multicast addr ** (v6 addr)	/kernel MTU for (v6 addr) reduced to **
DNN	** ** EVENT MTU ** ** ** Up Broadcast ** ** ** (num) **	/kernel MTU for ** reduced to **
DTNN	rpd ** EVENT MTU ** index ** Up Broadcast P2P Multicast addr ** **	/kernel MTU for ** reduced to **

- Our proposed DTNN be able to predict correctly both template 1 and 2
- DNN predicted template 2 correctly but wrongly with template 1
- CRF failed to predict both templates.

Conclusion

Proposal: Proprietary software's log-template estimation with deep transfer learning

- An extension of simple Conditional Random Field (CRF)
- Transfer Learning based on Deep Neural Network
- Semantic with both word-level and character-level in NLP

Good result even with different domains

- Our proposed DTNN outperforms cutting-edge DNN and CRF models with different test cases and different performance metrics.
- DTNN works in reasonable processing time for testing phase
- Could use DTNN model to generated labeling training dataset for other models.

Future works

Investigating the validity of our approach for the larger class of log template categories

https://github.com/fukuda-lab/LogDTL

Thank you for listening!

This work is supported by MIC/SCOPE #191603009.