A Quantitative Causal Analysis for Network Log Data

Richard Jarry¹, <u>Satoru Kobayashi²</u>, Kensuke Fukuda² richard.jarry@grenoble-inp.org, sat@nii.ac.jp, kensuke@nii.ac.jp

¹Grenoble INP Ensimag, ²National Institute of Informatics

ADMNET 2021

Log analysis for automated network operation

- Network log data
 - Important data source for operation
 - Too large, difficult to use manually
- Automated log analysis
 - Anomaly detection
 - Fault localization
 - Root cause analysis

Jul 12 13:00:25 sv1 interface eth1 down
Jul 12 13:00:26 rt2 connection failed to 192.168.1.4
Jul 12 13:02:16 sv1 user sat logged in from 192.168.1.15
Jul 12 13:02:29 sv1 su for root by sat
Jul 12 13:02:58 sv1 interface eth1 up

Relation mining for root cause analysis

- Traditional approach -> Correlation
 - Raise Spurious correlation
 - ➤ Many False Positives
- Recent approach -> Causal Inference
 - Determine causal directions
 - ➤ Help finding root causes
 - Remove spurious correlation by searching conditional independence
 - Focus on important relations

Challenges in causal analysis of network logs

- Past literature: Use PC algorithm [1]
 - Basic causal discovery algorithm
 - Can determine only part of edge directions
 - No quantative weight of edges
- Proposed approach: Use MixedLiNGAM
 - Determine all edge directions
 - Determine weight value of edges

A has 30% chance of raising B

Goal

- Quantitative causal analysis of network logs
 - Use MixedLiNGAM for causal discovery
 - To determine accurate causal direction
 - To determine quantitative weight of causal edges
- Evaluate proposed method
 - With synthetic data
 - For validation and comparison
 - With real network log data
 - For case study and performance measurement

Overview of log causal analysis

Jul 12 13:00:25 sv1 interface eth1 down
Jul 12 13:00:26 rt2 connection failed to 192.168.1.4
Jul 12 13:02:16 sv1 user sat logged in from 192.168.1.15
Jul 12 13:02:29 sv1 su for root by sat
Jul 12 13:02:58 sv1 interface eth1 up
...

Causal Discovery with MixedLiNGAM

LiNGAM (Linear Non-Gaussian Acyclic Model)[3]

- Assumption
 - Linear causal model
 - non-Gaussian disturbance
 - DAG (Directed acyclic model)
- Causal direction can be determined by the data distribution

(B) MixedLiNGAM[4]

- 1. Generate DAG candidates (corresponding to input skeleton)
- Calculate LiNGAM-based likelihood score of each DAG
- 3. Select DAG with best score

(C) Regression to determine causal weight

- Backdoor criterion_[5]: We need to consider all backdoor path to determine the causal effect
- > If all edges are directed, edge weight can be calculated
 - Continuous data input -> Linear regression
 - Discrete (or binary) data input -> Logistic regression

causal flow

to X and Y

Analysis overview

A) Validation with synthetic data

Available in GitHub https://github.com/cpflat/causaltestdata

- Randomly generated time-series data of Poisson Process
- Compare PC algorithm and MixedLiNGAM
- B) Evaluation with real network log data
 - Use log data of nation-wide academic network

- 8 core routers, over 100 L2 switches
- 35M lines in 456 days (of which 30 days used in evaluation)

Validation with synthetic data

Data model		Skeleton	Direction	\mathbf{Weight}	
Size	λ	accuracy	ratio	diff.	
1,440	10	0.878	0.170	_	
1,440	100	0.980	0.272	_	
1,440	1,000	0.993	0.211	_	
10,800	10	0.973	0.271	_	
10,800	100	0.993	0.270	_	
10,800	1,000	0.957	0.283	_	
1,440	10	0.878	0.704	0.198	
1,440	100	0.980	0.651	0.124	
1,440	1,000	0.993	0.296	0.080	
10,800	10	0.973	0.768	0.087	
10,800	100	0.993	0.682	0.097	
10,800	1,000	0.957	0.240	0.242	
	1,440 1,440 10,800 10,800 10,800 1,440 1,440 1,440 10,800 10,800	Size λ 1,440101,4401001,4401,00010,8001010,8001,0001,440101,4401,00010,8001010,8001010,80010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Time-series length (1-day or 7-days)

Average appearance per 1 day

Validation with synthetic data

$\begin{array}{ c c c c c c c c } \hline \textbf{PC algorithm} & \textbf{Size} & \lambda & \textbf{accuracy} & \textbf{ratio} & \textbf{diff.} \\ \hline \textbf{PC algorithm} & 1,440 & 10 & 0.878 & 0.170 & - \\ & 1,440 & 100 & 0.980 & 0.272 & - \\ & 1,440 & 1,000 & 0.993 & 0.211 & - \\ & 10,800 & 10 & 0.973 & 0.271 & - \\ & 10,800 & 100 & 0.993 & 0.270 & - \\ & 10,800 & 1,000 & 0.957 & 0.283 & - \\ \hline \hline \textbf{MixedLiNGAM} & 1,440 & 10 & 0.878 & 0.704 & 0.198 \\ & 1,440 & 100 & 0.980 & 0.651 & 0.124 \\ & 1,440 & 1,000 & 0.993 & 0.296 & 0.080 \\ & 10,800 & 10 & 0.973 & 0.768 & 0.087 \\ & 10,800 & 100 & 0.993 & 0.682 & 0.097 \\ & 10,800 & 1,000 & 0.993 & 0.682 & 0.097 \\ & 10,800 & 1,000 & 0.957 & 0.240 & 0.242 \\ \hline \hline \end{array}$	\mathbf{Method}	Data model		Skeleton	Direction	\mathbf{Weight}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Size	λ	accuracy	ratio	diff.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PC algorithm	1,440	10	0.878	0.170	_	
10,800 10 0.973 0.271 - 10,800 100 0.993 0.270 - 10,800 1,000 0.957 0.283 - MixedLiNGAM 1,440 10 0.878 0.704 0.198 1,440 100 0.980 0.651 0.124 1,440 1,000 0.993 0.296 0.080 10,800 10 0.973 0.768 0.087 10,800 100 0.993 0.682 0.097		1,440	100	0.980	0.272	_	
10,800 100 0.993 0.270 - 10,800 1,000 0.957 0.283 - MixedLiNGAM 1,440 10 0.878 0.704 0.198 1,440 100 0.980 0.651 0.124 1,440 1,000 0.993 0.296 0.080 10,800 10 0.973 0.768 0.087 10,800 100 0.993 0.682 0.097		1,440	1,000	0.993	0.211	_	
MixedLiNGAM 1,000 0.957 0.283 — MixedLiNGAM 1,440 10 0.878 0.704 0.198 1,440 100 0.980 0.651 0.124 1,440 1,000 0.993 0.296 0.080 10,800 10 0.973 0.768 0.087 10,800 100 0.993 0.682 0.097		10,800	10	0.973	0.271	_	
MixedLiNGAM 1,440 10 0.878 0.704 0.198 1,440 100 0.980 0.651 0.124 1,440 1,000 0.993 0.296 0.080 10,800 10 0.973 0.768 0.087 10,800 100 0.993 0.682 0.097		10,800	100	0.993	0.270	_	
1,440 100 0.980 0.651 0.124 1,440 1,000 0.993 0.296 0.080 10,800 10 0.973 0.768 0.087 10,800 100 0.993 0.682 0.097		10,800	1,000	0.957	0.283	_	
1,440 1,000 0.993 0.296 0.080 10,800 10 0.973 0.768 0.087 10,800 100 0.993 0.682 0.097	MixedLiNGAM	1,440	10	0.878	0.704	0.198	
10,800 10 0.973 0.768 0.087 10,800 100 0.993 0.682 0.097		1,440	100	0.980	0.651	0.124	
10,800 100 0.993 0.682 0.097		1,440	1,000	0.993	0.296	0.080	
,		10,800	10	0.973	0.768	0.087	
$\begin{bmatrix} 10.800 & 1.000 & 0.957 & 0.240 & 0.242 \end{bmatrix}$		10,800	100	0.993	0.682	0.097	
10,000 1,000 0.210 0.212		10,800	1,000	0.957	0.240	0.242	

Same method, same result

MixedLiNGAM is better in direction part

Evaluation with real network logs

- Macroscopic analysis
 - Causal analysis per day (1 DAG for 1 day data)
 - Use 30-days logs (8,605 nodes in total)

${f Algorithm}$	$\# \mathrm{edges}$	#directed edges	ave. weight	stdev
Original PC	1289	121	_	_
MixedLingam	1289	1240	0.856	0.248

- 40 edges undirected?
- Edges with too small weight (nearly 0)

Most edges are weighted nearly 1.0

Case study

Performance measurement

Concluding remarks

- We proposed a quantative causal analysis method
 - Based on MixedLiNGAM
- We demonstrated effectiveness of the proposed method
 - Validation with synthetic data -> Improved edge directions
 - Evaluation with network logs -> Appropriate results
- Future works
 - Improve performance for analysis with larger dataset
 - Automated root cause analysis based on obtained weighted DAGs