
VMM-Based Log-Tampering and Loss Detection Scheme

Masaya Sato and Toshihiro Yamauchi

Graduate School of Natural Science and Technology

Okayama University

Japan

m-sato@swlab.cs.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp

Abstract

Logging information about the activities that placed in a

computer is essential for understanding its behavior. In

Homeland Security, the reliability of the computers used in

their activities is of paramount importance. However,

attackers can delete logs to hide evidence of their activities.

Additionally, various problems may result in logs being

lost. These problems decrease the dependability of

Homeland Security. To address these problems, we

previously proposed a secure logging scheme using a

virtual machine monitor (VMM). The scheme collects logs

and isolates them from the monitored OS. However, the

scheme cannot store them automatically. Thus, logs in

memory are lost when the computer is shutdown. Further,

if the logs are not stored, it is impossible to detect incidents

of tampering by comparing the logs of the monitored OS

with those of the logging OS. To address these additional

problems, this paper proposes a log-storing module and a

tamper detection scheme. The log-storing module

automatically stores logs collected by the logging module,

and tamper detection is realized by comparing these

stored log files with those of the monitored OS. We

implemented the log-storing module and realized the

tamper detection scheme. Evaluations reveal the

effectiveness of the tamper detection scheme.

Keywords: Log protection, detecting log tampering,

syslog, digital forensics, virtualization technology

1 Introduction
The countermeasure for terrorism is one important topic in

Homeland Security. In the field of counter-terrorism,

enormous quantity of data is gathered and analyzed for the

planning of countermeasures. Computers and networks are

used to gather and analyze data, computer science is

deeply committed to homeland defense and security. In the

field of computer science, countermeasures are considered

for cyber terrorism as an activity in Homeland Security.

Recently, information technology is used as a tool to

control infrastructures. Cyber terrorism is able to cause

critical damage on infrastructures in low cost. Thus, the

countermeasure for cyber terrorism has been discussed.

 However, the countermeasures might be weakened by

attacking on the data gathered for Homeland Security.

Therefore, the protection of the data is important. The

protection of the logs of the APs is also necessary to ensure

the validity of gathered information.

 The computer terrorism has two characters: anonymity

and the lack of evidences of attacks. In computer terrorism,

it is difficult to acquire the information that specifies the

attacker. Because there are no evidences left on attacks

using network, the logs that records the behavior of the

systems are important. For this reason, the protection of

the information is necessary for the prevention and

investigation of computer terrorism.

 Insider threat study is important issue in the field of

Homeland Security [1]. The purpose of insider threat study

is to help understand, detect, and prevent bad insider

activities. Log protection is one of the most important

techniques of insider threat study because logs that contain

records of system are necessary for forensics to specify

attacker's activities [2, 3].

 Digital forensics is a method or technology for

addressing these problems. This is a scientific method or

research technology for court actions, which allows us to

explain the validity of the electronic records. Many

researchers are working in this area of the protection of

logging information [4-8].

 Furthermore, in the United States, the federal chief

information officer announced that the government starts

using cloud computing in the federal government in

September 2009 [9]. The privacy office of the department

of Homeland Security is deeply involved in the initiative

from the beginning. From these reasons, in the field of

Homeland Security, it is strongly required for security

mechanisms to adapt to the cloud computing environment.

A firewall is efficient solution for security of the cloud

computing environment because the users need to connect

to it via network. However, the importance of logs is

remaining because server and network logs are used to

validate or confirm firewall rules [10].

 Syslog is commonly used as a logging program in Linux.

In this case, the logging information generated by the AP

(user log) and kernel (kernel log) is collected by syslog.

Syslog writes logs to file according to the policy, so

attackers can tamper with logs by modifying the policy.

Moreover, if the syslog program itself is attacked, the log

files written are not reliable. In addition, the kernel log is

stored in a ring buffer, and therefore, since the kernel log is

collected on a regular schedule, if many logs are generated

and stored in the ring buffer before the next collecting time,

old logs may be overwritten by new logs. As described

above, the user log and kernel log can be tampered with or

lost.

 To address these problems, we proposed a logging

system to prevent tampering and loss of logs with the

virtual machine monitor (VMM) [11]. In this system, the

OS that should be monitored (the monitored OS) works on

the virtual machine (VM). Logs in the monitored OS are

collected by the VMM without any modification of the

monitored OS’s kernel source codes. Because the system

collects logs just after the output of logs, any possibilities

for tampering are excluded. In addition, no kernel logs are

lost through the buffer being overwritten by new kernel

logs.

 Because the proposed system uses virtualization

technology, it is compatible with cloud computing

environment. Thus, the proposed system is suitable for

providing the federal cloud computing environment with

higher security.

 Our previously proposed system has two problems.

(1) Loss of logged information when the machine is

powered-off or restarted.

(2) Difficulty in detecting incidents of log tampering by

comparing logs.

 The system that we proposed earlier keeps logs of the

monitored OS in the memory region of the VMM. As a

result, logs in the memory are lost when the machine is

powered-off or rebooted. Thus, if loss does occur, it is

unable to detect loss and tampering of logging information.

To solve these problems, this paper proposes a log-storing

module that stores logs collected by the logging module to

files. The log-storing module copies logs to the logging OS

in as soon as they are collected from the monitored OS.

The logging OS receives the logs and stores them in files

via the syslog daemon.

 The logging module in our previously proposed system

also cannot compare logs directly. Consequently, it is

unable to detect log tampering immediately. This paper

also proposes a log-tampering detection function. The

function compares the logs of the monitored OS with those

of the logging OS. By comparing these log files, we can

detect incidents of log tampering in the monitored OS.

Moreover, if the logs in the monitored OS are tampered

with, our proposed function can detect exactly where and

how the logs were tampered with.

 The contributions made in this paper are as follows:

(1) A log-storing module that enables the VMM to store

logs in files in a separate VM is proposed. The

logging module previously proposed in [11] is not

able to store logs to the VM automatically.

Consequently, accidental shutting down of a

computer before the log-storing command execution

may result in the logs currently in the memory being

lost. The log-storing module enhances the logging

mechanism by ensuring that log files are preserved.

(2) A scheme that detects incidents of log tampering and

loss by comparing logs is proposed. The scheme

enables us to detect incidents of changed or deleted

logs. In addition, the scheme can identify the area

where the change occurred. The results of

experiments confirm that this scheme enables the

detection of incidents of log tampering carried out by

real malware.

 The remainder of this paper is organized as follows:

Section 2 describes the problems of logging with syslog

and gives an overview of the previously proposed log

User
Process

sysklogd

klogd

Store Logs

Load Policy

Remote

sysklogd

Kernel Log
Buffer

Kernel
Logging

Function

User Space

Kernel Space

syslog.conf Log File

Figure 1 Architecture of syslog.

collecting scheme, the problems it addresses, and the

problems it did not resolve. Section 3 describes our

proposed log-storing scheme. Section 4 describes our

proposed method for detecting log tampering. Section 5

discusses the evaluations carried out on our proposed

schemes. Section 6 discusses related work, and section 7

concludes this paper.

2 The Logging Module and Its

Problems
In this section, we describe the architecture of syslog. We

also look at the previously proposed logging scheme based

on the VMM, along with its problems.

2.1 Syslog's Problems and Requirements for

Addressing Problems

Syslog is a protocol for system management and security

monitoring. Syslog consists of a library and a daemon.

Figure 1 shows the architecture of syslog. User and kernel

logs are collected as follows.

 The syslog library provides functions for user program

to send log messages to the syslog daemon. The syslog

function sends messages to /dev/log with the send or write

system call, and the syslog daemon collects logs from

/dev/log with the read system call.

The kernel accumulates logs in internal buffer (kernel

log buffer). The kernel logging daemon (klogd) gathers

logs from the kernel log buffer, and afterwards, klogd

similarly sends logs to the syslog daemon.

 Syslog also has a filtering function. Its policies are

described in the configuration file (syslog.conf).

 Syslog has the following problems:

(1) The behavior of the syslog daemon can be modified

by tampering with the configuration file. In addition,

if the syslog daemon itself is tampered with, its output

can be unreliable.

(2) Users who have permission to access logs can tamper

with them intentionally.

(3) Kernel logs in Linux are accumulated in the ring

buffer and are collected at fixed intervals. Thus, if the

logs are not collected for a long time, old logs can be

overwritten by new ones. Old logs will also be

overwritten if many logs are accumulated in a time

that is shorter than the collecting interval.

 New syslog daemons have been developed with the aim

of achieving greater security [12, 13]. A number of current

research projects are also geared towards the protection of

the logs. These include protection of log files [4-6],

protection of syslog programs [7], and other original

logging method that independent of syslog [8]. However,

no method has yet addressed all of the above problems.

 To address the problems outlined above, we proposed

and implemented a logging mechanism with virtualization

technology that fulfills the following requirements:

(1) Detection of all outputs of log (user and kernel log).

(2) Isolation of log.

(3) Security of logging mechanism.

 Our implemented system is OS independent, adaptable

to various environments, and easy to adapt to newer OS

kernel versions. Although it is necessary for protection of

the log, OS (and version) independence had until this point

proven to be an insurmountable obstacle in the

implementation of this kind of system.

2.2 The Logging Module

2.2.1 Overview of the Logging Module

Figure 2 depicts the architecture of the logging module.

The monitored OS runs in the VM, while the logging

module operates in the VMM (the details are described

below). Here, we use Xen as the VMM [14]. The logging

module collects logs generated by a user process works in

the monitored OS. After that, the collected logs are copied

by the xend daemon, which operates in Domain0.

Domain0 has privileged controls of the VMM. The xend

daemon controls the VMM. It copies the accumulated logs

from the VMM to Domain0 and stores them in files. Our

previous paper [11] details the implementation of this

mechanism.

2.2.2 The User Log Collector

The collector acquires logs when the requirement for

sending user logs occurs. As shown in Figure 2, the

logging module in the VMM hooks the system call that

was invoked for sending logs from the user process to the

syslog daemon.

 To hook system calls in the VM, it is necessary that the

mechanism enable the VMM to detect invocation of

system calls in the VM. Therefore, in the logging module,

we applied a mechanism that causes a page fault when a

system call is invoked [15]. In a fully virtualized

environment, if a page fault occurs on the VM, then the

VMM is raised (VM exit) [16]. After the VMM has been

raised, the logging module acquires the user logs and hides

the occurrence of the page fault. Finally, the VMM raises

the guest OS, which works as if no event has occurred.

 In this method, to cause a page fault, we modified some

registers of the monitored OS. A system call using the

sysenter (fast system call) refers the value in

sysenter_eip_msr and jumps to its address to execute the

Monitored OS

VMM

Log File

Kernel

Space

User

Space

Kernel Logging

Function

User

Process
rsyslogdklogd

Kernel Log

Buffer

Domain0

xend

Log File

Logging Module

User Log CollectorKernel Log Collector

Figure 2 Architecture of the logging module.

system call function (sysenter_eip_msr is one of the

machine-specific register (MSR)). Through modification

of this value to another address to which access is not

permitted from the monitored OS, a page fault is made to

occur when a system call is invoked.

2.2.3 The Kernel Log Collector

The collector acquires logs when the kernel logging

function is called in a guest OS. Normally, the VMM

cannot detect a function call in a guest OS. To solve this

problem, the system sets a breakpoint in the guest OS, a

breakpoint exception occurs when some process reaches

this breakpoint. In our previously proposed system, since

the guest OSs are fully virtualized, breakpoint exception is

handled by the VMM. Using the exception as an

opportunity to acquire logs, the VMM can collect kernel

logs.

 When the processing is brought to the VMM, the

logging module checks the state of the kernel log buffer of

the monitored OS. If new logs have accumulated in the

buffer, the logging module collects them. After that, the

VMM returns the processing to the guest OS. Since these

processes have no effect on the state of the guest OS, the

guest OS can continue to write to the kernel log.

 In this method, since kernel logs are collected when a

kernel logging function is called, newer ones never

overwrite old logs.

2.3 Logging Module Problems

The logs collected by the logging module are stored in the

memory region managed by the VMM, logs are never

copied without a request from Domain0. In this situation,

logs in the memory will be lost when the machine is

powered off or rebooted.

 In addition, if the machine is powered off without the logs

being saved to a file, the system loses the resources needed

for log comparison and the detection of tampering.

3 The Log-Storing Module

3.1 Requirements

To address the problems outlined at Section 2.3, this paper

proposes a log-storing module that automatically stores

VMM

Logging OS

Logging

AP

Log File

Logging Module

Modified

rsyslogd

Log-Storing Module

Monitored OS

Log File

Kernel

Space

User

Space

Kernel Logging

Function

User

Process
rsyslogdklogd

Kernel Log

Buffer

Figure 3 Architecture of the log-storing Module.

logs to disks. The module automatically transfers logs

from the VMM to the logging OS, and the logging AP

operating in the logging OS saves the logs to disks. This

module enhances the logging mechanism by ensuring that

log files are preserved.

 There are two requirements that need to be met in order

for the log-storing module to address the problems

outlined in Section 2.3. These requirements as follows:

(1) Assured reception and storing of the logs from the

VMM to files in the logging OS.

(2) Keeping the overheads that arise in the log-storing

module at a minimum.

Requirement (1) is necessary for ensuring that the logs are

indeed preserved, while requirement (2) is necessary

because the overheads that arise in the log-storing module

affect the performance of the monitored OS.

3.2 Overview of the Log-Storing Module

Figure 3 depicts the architecture of the log-storing module.

In the Figure 3, arrows indicate the path of the logs as they

are collected by the proposed system. The arrows with the

closely spaced broken lines (black) indicate the

conventional logging path used by the syslog daemon. The

arrow with the more widely spaced broken line (light blue)

indicates the collaboration between the logging AP and the

log-storing module.

Figure 4 depicts the flow of the log storing. The flow

divided into two parts: the accumulating part and the

storing part. In the accumulating part, when the logging

module detects system call invocation in the monitored OS,

the logging module copies logs from the monitored OS to

the VMM. The log-storing module then notifies the

logging AP that logs has been collected. The Detail of the

notification is described in Section 3.3. After the

notification, the logging module returns processing to the

monitored OS. In the storing part, the logging AP requests

a copy of the logs. To respond to the request, the VMM

copies logs to the logging AP and the AP transfers the logs

to the modified syslog daemon, which stores them to files.

Here, the syslog daemon in the logging OS uses the

same logging policy as that used by the syslog daemon in

the monitored OS. In storing the logs to files, the logs are

compressed and the messages sorted based on this syslog

daemon policy. If the logging AP had directly stored the

logs to files, it would have been difficult to compare them

to the logs in the monitored OS. Using the same policy in

(A) The accumulating part

begin

end

Detect an invoking of system
call in the monitored OS

Copy logs from the
monitored OS to the VMM

Send a event to
the logging OS for

notification

Fix register’s value

Return processing to the
monitored OS

Is it send or
write?

The target is
the syslog?

Yes

Yes

No

No

Already sent
event?

Yes

No

begin

end

Receive an event from the
logging OS

Copy logs from the buffer to
the VMCS for the logging OS

VM Enter to the logging OS
(Logs contained is the VMCS
are automatically copied to

the logging OS)

The logging AP sends logs to
the syslog daemon works on

the logging OS

The syslog daemon stores
logs to the file

Log copying
is required?

Logs are left
in the VMM?

Yes

Yes

No

No

(B) The storing part

Figure 4 The flow of log storing.

the logging OS as the monitored OS enables us to compare

logs easily.

3.3 Communication between the VMM and the

Logging AP

An event channel is used for communication between the

VMM and the logging AP. Events are the standard

mechanism for delivering notifications from the

hypervisor to guests, or between guests. Events fall into

three categories; inter-VM events, physical IRQ, and

virtual IRQs. We use the inter-VM events in

communication between the logging AP and the VMM.

 Communications between the VMM and the logging OS

consists of the VMM notifying the logging OS that logs

have been collected by the logging module. In this case,

there are two types of events that the logging AP can be

made aware of. In the first type of event, a notification is

given for each logs collected, while the other type of event

is triggered when the size of the accumulated logs exceeds

a specified limit. The latter has little overheads than the

former because the number of copy is less than that of the

former. However, the latter has a risk for losing large

amounts of logs. If the machine is powered off without the

logs being stored to the files in the logging OS, all of the

logs in the VMM are lost. This situation largely affects the

latter more than the former. Thus, from the viewpoint of

log preservation assurance, the former is better than the

latter.

 Further, the latter requires that a large amount of

memory be reserved in the VMM region. This

over-reservation of memory in the VMM reduces the

space available for VMs.

 For these reasons, we selected the former notification

technique for use with the logging AP.

3.4 Copying Logs to the Logging AP

3.4.1 Timing of Event Delivery

The event is not delivered instantaneously. An event is

first queued to the target OS, after which the target OS is

scheduled and queued events delivered. Thus, some

amounts of delay in event delivery should be taken into

consideration in log collection notification.

 To compensate the delay of event delivering, the

log-storing module should buffers logs in the memory. In

contrast to buffering, our module sends an event

immediately as each log is collected from the monitored

OS because we need to store the logs as quickly as possible.

Therefore, as soon as a notification reaches to the logging

OS, the logging AP copies the logs from the VMM to its

own memory region.

3.4.2 Reducing Copy Overheads

To fulfill the requirement (2), the overheads that arise

during the copying of the logs must be kept to a minimum.

Until the request hypercall reaches to the VMM, logs are

buffered in the VMM. When the hypercall is invoked by

the logging OS, all buffered logs are copied to the logging

OS.

Currently, our proposed method buffers logs only when

many events are queued to the logging OS. The logging

module sends an event when the module detects log

sending on the monitored OS. An event is asynchronously

reaches to a guest OS. Thus, logs are copied from the

VMM to the logging OS when the logging OS invokes

hypercall to require log copying. In this case, if the logging

module sends an event in every time of detection of log

sending on the monitored OS, the logging OS may invoke

hypercalls in every event. However, the log-storing

module copies all logs accumulated in the VMM at one

time. Thus, the logging OS invokes unnecessary

hypercalls. The transition between a guest OS and the

VMM takes about two microseconds. Thus, unnecessary

hypercall invocation degrades performance.

To address this problem, the logging module reduces

sending of unnecessary event. The logging module does

not send an event if logs are accumulated in the VMM’s

memory region and the logging module already sent an

event. With this mechanism, the VMM can copy logs to

the logging OS with an event and a hypercall. Thus, there

are only necessary event and hypercall exist. Figure 5

shows the reduction of unnecessary events. Incidentally,

the reduction of unnecessary events does not degrade the

log preservation assurance referred in Section 3.3.

To reduce the overheads, it is effective to minimize

the number of copy. To minimize the copy overheads,

log-buffering mechanism referred in Section 3.3 is

effective. However, it is a challenging problem and not

implemented in current our proposed system.

3.5 Log-Storing in the Logging OS

Figure 6 depicts the overview of the log storing procedure

in the logging OS. To store logs to files, the logging AP

and the modified syslog daemon are works on the logging

OS. The logging AP receives logs of the monitored OS via

the storing module works in the VMM. The modified

VMM The Logging OS

event

event

event

hypercall

log copy

hypercall
(unnecessary)

hypercall
(unnecessary)

Do not care about
unnecessary events

VMM The Logging OS

event

event

event

hypercall

log copy

Reducing
unnecessary events

Reduced action

Action

Time

Figure 5 Reducing unnecessary events.

Logging OS

/ (root directory)

var
log

var

log

monitored_OS

mail.log

messages

user.log

kern.log

Modified

rsyslogd

mail.log

messages

user.log

rsyslogd

kern.log

Logs stored by

normal rsyslogd.

Logs stored by

modified rsyslogd.

User Space

Kernel Space

User

Process

Logging

AP

/dev/xllog/dev/log

Figure 6 Log-storing with modified syslog daemon.

syslog daemon stores logs to files. The reason why we

modified the syslog daemon in the logging OS is to avoid

mixing of logs between the monitored OS and the logging

OS. Normal syslog daemon receives logs via the /dev/log

socket file. Meanwhile, the modified syslog daemon

receives logs via the /dev/xllog socket file. The logging AP

sends the collected logs to the /dev/xllog socket file and

the modified syslog daemon receives logs via the socket

file. In this method, the collected logs from the VMM are

stored separately from the log files stored by the normal

syslog daemon. In this situation, two syslog daemons

(normal one and modified one) are running in the logging

OS.

Furthermore, for ease of comparison, the modified

daemon loads the policy of the syslog daemon operates in

the monitored OS. At this time, if the policy loads by the

modified syslog daemon is completely same as the policy

loads by the normal one, the log files stored in the logging

OS contains both logs of the monitored OS and those of the

logging OS. If both logs are stored together, it is difficult to

find out the logs collected by the logging AP.

 For these reasons, we change the directory used for

storing the logs collected by the logging AP. For example,

we change the policy as stores the logs that are originally

stored to the /var/log/messages to the

/var/log/monitored_OS/var/log/messages. In this case, the

modified syslog daemon in the logging OS assumes the

root directory as the /var/log/monitored_OS. With this

change, we can compare log files in the monitored OS with

those in the logging OS easily.

4 Detection of Log Tampering
To detect incidents of log tampering, we compares the logs

in the monitored OS with those of the logging OS. For

fine-grained analysis, a file comparing method is useful. In

this section, we describe the method to detect incidents of

log tampering and loss by comparing log files.

Figure 7 depicts the flow of tampering detection. First,

we replace hostname column of the log file in the logging

OS as the hostname of the monitored OS because the file

contains the hostname of the logging OS. Second, we

mount the disk image of the monitored OS. Then, we

extract log entries that we want to compare, and finally,

compare log files between the monitored OS and the

logging OS. In this process, if a difference is detected, that

is the part tampered with.

4.1 Requirements for Detection of Log Tampering

To detect tampering by means of log file comparison, the

following entries are required.

(1) Hostname.

(2) Timestamp.

(3) Username.

(4) Log message.

The reason is as follows. A hostname is needed in order to

determine the source of log. A timestamp, a username, and

a log message are necessary to ascertain the veracity of the

environment containing the log. Attackers tamper with

logs to hide the time of command execution and the

identity of the who executed the command. A log message

is needed in order to determine what changes were caused

by attacks.

By comparing these entries between the monitored OS

and the logging OS, we can detect what and how those

entries were tampered with.

4.2 Comparing Logs

Acquire log files in the monitored OS and compare them

with log files those are stored by logging AP. To get the

logs in the monitored OS, we mounted the disk image that

the monitored OS currently using. Thus, the comparison

can be done even if the monitored OS is working on.

 In comparing log files, diff is useful tool. However, it is

difficult to compare logs in untouched format because the

difference between logs in the monitored OS and the

logging OS. If there are many differences in each log file,

diff cannot give us efficient information. Thus we

modified the syslog daemon in the logging OS to use the

policy in the monitored OS. If the syslog daemon loads and

uses the policy in the monitored OS, we can easily detect

begin

end

Replace hostname column

Mount disk image of the monitored OS

Compare log files between the
monitored OS and the logging OS

Extract log entries what we want to
compare

Figure 7 The flow of tampering detection.

/

bin
boot

var
cache

lib

log
dmesg

lastlog

messages

user.log

var

log

monitored_OS

mail.log

messages

user.log

kern.log

Logging OS

/

bin
boot

var
cache

lib

log
mail.log

messages

user.log

kern.log

Monitored OS

Figure 8 Directory tree in each OS.

tampering by comparing log files in each OS.

 Figure 8 depicts the directory trees in each OS. As

shown in Figure 8, to detect tampering, we just compare

log files in each OS. The /var/log/monitored_OS/var/log/

directory in the logging OS corresponds to the /var/log/

directory in the monitored OS.

4.3 Log Formatting

The logs stored by the modified syslog daemon contain the

hostname of the logging OS (not the hostname of the

monitored OS), while other required entries are correctly

stored. To address this problem, we format the logs in the

logging OS collected by the logging AP to replace the

hostname of the logging OS to that of the monitored OS.

4.4 Advantage

Incidents of log tampering are detected by comparing log

files. If a log in the monitored OS is tampered with, the

comparison enables us to detect this occurrence. The

comparison also enables us to detect exactly where and

how the log was tampered with.

 Tripwire [17] can detect any changes in a designated set

of files and directories. However, Tripwire’s detection

mechanism uses signature comparison. As a result, it is

unable to indicate what part of the file has changed. In

Figure 9 Result of diff command applied to auth.log in the monitored OS and the logging OS.

Table 1 Software used for evaluation.

OS

(Debian 5.0.3)

Domain0 Linux 2.6.18-xen

HVM domain
Linux 2.6.26

Not virtualized

VMM Xen 3.4.1

Syslog daemon rsyslogd 3.18.6

order to achieve this, a method such as content comparison

is needed. Our proposed detection method incorporates

content comparison to detect file changes.

 Our proposed method, however, is not suitable for

instantaneous tamper detection. Thus, we recommend that

our method be combined with a method that

instantaneously detects file changes to provide

comprehensive, efficient means of detecting and analyzing

properties changes.

5 Evaluation

5.1 Purpose

We evaluated the system from three points of view:

completeness of the collected logs, ability to detect

tampering, and the overheads that arise in our proposed

system. Table 1 indicates software used for evaluation.

5.2 Completeness of Collected Logs

To confirm the ability of the log-storing module to store

logs completely, we used ApacheBench benchmark tool.

With the tool, we requested a file 500 times in a short time.

Here, the concurrency of the connection by the tool is 1

and the length of each log entry is 104, total length of these

lines is 52,000. The web server outputs logs in each access

and the log-storing module attempts to store logs in each

output of log.

 After the experiment, we checked the log file stored in

the logging OS. The file contains all of log entries and it

indicates the total time consumed by the experiment is less

than 1 second. With this result, it is considered that the

proposed log-storing module have enough ability to store

logs with no loss of logs even in high-load situation.

5.3 Detection of Log Tampering

To detect log tampering by our proposed logging module

and the log-storing module, we tamper with logs by a log

wiper program. After that, comparing each log to detect

tampering and file changes.

We use Vanish as a log wiper written for educational

purpose. Vanish remove a log entry that contains a

designated username, hostname and IP address.

 For detection of log tampering, we delete log entries in

the auth.log log file in the monitored OS with Vanish. We

add a new user “thief” in the monitored OS. Here, we

assume that the user “thief” can use sudo command. After

logged in as “thief”, we use sudo. The execution of sudo is

logged to auth.log. Finally, we tampered with logs by

Vanish to delete log entries that contain “thief”. To detect

this file change, we compared the auth.log in the

monitored OS and that in the logging OS.

 Figure 9 shows the output of diff command applied to

the auth.log in the monitored OS and the logging OS. Log

entries shown in Figure 9 are not appeared in the auth.log

in the monitored OS because those are deleted by Vanish.

 From the result, our proposed logging scheme

prevented tampering of log files by isolating logs from the

monitored OS. Moreover, the scheme can detect the file

changes in the log files in the monitored OS.

5.4 Security of the Logging Path

To guarantee the integrity of a log, it is necessary to ensure

the security of the logging path. Here, we compare the

security of the logging paths of the existing and the

proposed system.

 First, we analyze the logging path of a user log. A user

log might be attacked at the following points:

(1) The time when a user process generates a log.

(2) The time between the sending of a log and its receipt

by the syslog daemon.

(3) The time between the reception by the syslog daemon

and storing it to a file.

(4) After the output of a log.

 The existing system cannot detect and prevent

tampering or the loss of logs at any time. In contrast, in the

proposed system, time (1) is the only possible time when

attacks might be suffered. To protect the logs in the time

(1), it is necessary to ensure the integrity of all programs

that generate logs. In this case, DigSig [18] is suitable but

this method does not satisfy our demand because it

modifies the kernel codes. Moreover, this method cases a

large overhead.

 Second, we analyze the logging path of a kernel log. A

kernel log might be attacked at the following moments:

(1) The time to generate a kernel log in a kernel.

(2) The time to output the log to a kernel log buffer.

(3) While stored in the kernel log buffer.

(4) The time during which a kernel logging daemon

gathers a log.

(5) While the kernel logging daemon sends the log to

syslog.

(6) While syslog stores the log to a file.

(7) After the output of a log.

5,9d4
< Nov 27 22:56:22 debian sudo : user : TTY=pts/0 ; PWD=/home/user ; USER=root ; COMMAND=/bin/login thief
< Nov 27 22:56:24 debian login[2626]: pam_unix (login:session): session opened for user thief by user(uid =0)
< Nov 27 22:56:51 debian sudo : thief : TTY=pts/0 ; PWD=/home/thief/vanish ; USER=root ; COMMAND=/bin/bash
< Nov 27 22:58:08 debian sudo : thief : TTY=pts/0 ; PWD=/home/thief/vanish ; USER=root ; COMMAND=./vanish
thief thief - host thief - addr

Table 3 Performance comparison in each environment.

1 KB File 100 KB File

(A) Linux (B) Xen
(C) The logging

module
(A) Linux (B) Xen

(C) The logging
module

(1) Linux 1 1.88 1.97 1 1.24 1.27

(2) Xen 0.53 1 1.05 0.80 1 1.02

(3) The logging module 0.51 0.96 1 0.79 0.98 1

(4) The logging module

 and the log-storing

 module
0.37 0.69 0.72 0.70 0.86 0.88

Table 2 Environment used for measurement.

CPU

 Server Machine Client Machine

Core 2 Duo
(2.40 GHz)

Pentium 4
(3.00 GHz)

Memory
The Logging OS 1 GB

2 GB 1 GB
The Monitored OS 1 GB

Bandwidth 100 Mbps 100 Mbps

Software thttpd 2.25b

ApacheBench 2.3

Requests 100

Concurrency 1

 In the existing system, it is impossible to protect a log

from an attack by a rootkit at any time. Furthermore, there

is a possibility of attack similar to the logging of a user log

if the kernel is safe. The proposed system gathers a log at

time (2). We can consider tampering with the kernel

logging function as an example of an attack at time (2).

However, the log gathered by the proposed system is the

previous one. Therefore, the logs might be attacked at time

(3). Thus, the proposed system can address attacks on and

after time (4). The improvement of the proposed system

for gathering a log immediately after its output enables it

to address time (3) as well.

5.5 Overheads

We measured the overheads that arise in our proposed

system. To evaluate the effects for APs, we used thttpd

web server and ApacheBench benchmark tool for

measurement of throughputs of the web server. Since

thttpd uses syslog function for logging, it is suite for

evaluation of our proposed system.

 Table 2 shows the environment used for measurement.

In the environment, thttpd operates on the monitored OS

and ApacheBench is executed on the client machine. The

concurrency of the connection is 1 and the number of total

requests is 100. We requested 1 KB and 100 KB files and

measured throughputs in both experiments.

 Figure 10 shows the results of the measurement. Table 3

compares the performance in each environment. From the

comparison, the log-storing module causes large

overheads. The throughput of 1 KB transfer in the

environment (4) is about 37% to that in the environment

(1). The throughput of 100 KB file transfer of the

environment (4) is about 70% to that in the environment

(1). The relative performance in 100 KB file transfer is

better than that in 1 KB file transfer. It is considered that

the ratio of file transfer becomes greater in total workload

in the case of 100 KB file transfer. From these

measurements, it is found that reducing the overheads that

arise in our proposed system is a challenge for the future.

1897.32

109.23

1009.92

87.88

964.81

86.3

697.79

76

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1KB File 100KB File

Linux

Xen

Logging Module

Logging Module + Log Storing Module

Figure 10 Throughputs of web server in each

environment (file size: 1 KB).

5.6 Case Study

Assuming the situation that an attacker intruded into the

virtual machine, which contains large amount of

information related to Homeland Security. In ordinary

circumstances, it is difficult to intrude into those virtual

machines. At this time, we assume insider threats. If the

insider intruded into the virtual machine, he firstly try to

terminate or fake the logging daemon to hide his activities.

In here, we assume the attacker alter the logging daemon

that are modified to do not output logs related to his

malicious activities. After successfully altered the daemon,

he operates some malicious work and delete their activities

related to the intrusion. Finally, he collects some important

information and restores the logging daemon.

In this case, if the administrator of the virtual machine

installed the tripwire, he can detect the modification of log

files but he cannot prevent modification of files.

If the proposed system is installed in the virtual

machine monitor lying under the virtual machine, he can

prevent tampering of the log files because the VMM

collects logs to the other virtual machine. Thus, the

administrator can also detect tampering with log files.

6 Related Work
In this section, we discuss work related our research

outlined in this paper. Section 6.1 describes a file integrity

checking method, while Sections 6.2 to 6.4 describe log

protection methods.

6.1 File Integrity Check

Tripwire [17] can detect changes in a designated set of

files and directories. However, because the detection is

carried out by comparing file signatures, it is unable to

detect where in a file the change occurred, or how the file

was changed. Kim and Spafford [17] state that the file

comparison method is better than signature comparison

and has fine detection capabilities. However, they also

allege that the file comparison method is resource and time

intensive. Our proposed tamper detection method detects

and copies only those logs used by syslog and kernel

logging function. Thus, there is no need to copy an entire

file. Moreover, the method detects and copies only new

logs-which require minimal overheads. For these reasons,

we believe that our proposed method includes none of

problems outlined in [17].

 Our proposed method, however, is not suitable for

instantaneous tamper detection. Thus, we recommend that

our method be combined with a method that

instantaneously detects file changes to provide a

comprehensive, efficient means of detecting and analyzing

property changes.

6.2 Protection of Log File

Some research has been carried out on the protection of

files by the file system. The system NIGELOG has been

proposed for protecting log files [4]. This method has a

tolerance for file deletion. It produces multiple backups of

a log file, keeps them in the file system, and periodically

moves them to other directories. By comparing the original

file and the backups, any tampering with the log file can be

detected. Moreover, if any tampering is detected, the

information that has been tampered with can be restored

from these backups.

 The protection of files with the file system is still

vulnerable to attacks that analyze the file system.

Therefore, a log-protection method using virtualization

has been proposed [5]. This method protects logs by

saving them to another VM, so it is impossible to tamper

with the logs from other VM. However, this method aims

to protect the log of a journaling file system, so the scope

of the protection target is different from that in our

research.

 The hysteresis signature is used to achieve the integrity

of files. However, it is known that the algorithm of the

hysteresis signature has a critical weak point. Although the

hysteresis signature can detect the tampering and deletion

of files, it cannot prevent tampering and deletion.

Moreover, the manager of the signature generation

histories can tamper with the histories and files. Therefore,

a mechanism to solve this problem using a security device

has been proposed [6]. Because this method constructs a

trust chain from the data in the tamper-tolerant area of the

security device, the source of the trust chain is protected

from attackers. Nevertheless, this method is not versatile

because it uses the special device..

6.3 Protection of Syslog

The methods mentioned above are protecting log files.

However, they cannot protect logs before storing of them.

Thus, a method to guarantee syslog’s integrity has been

proposed [7], which uses a Trusted Platform Module

(TPM) and a late launch by a Secure Virtual Machine

(SVM) to ensure the validity of syslog. The validated

syslog receives logs and sends them to a remote syslog.

Table 4 Security comparison between the

proposed system and related works.

Prevention
of log-

tampering

Prevention

of log loss

Detection of
log-tampering

and loss

The proposed system X X X

Tripwire [17] X

NIGELOG [4] X (X) X

Security device and

 hysteresis signature [5]
(X) X

Protect the log of a

journaling file system

using virtualization [6]

(X) (X) X

Protection of syslog with

TPM and SVM [7]
(X) (X)

LSM-based secure
system monitoring [8]

X X

6.4 Other Logging Method

An original logging method, independent of syslog, has

been proposed for audit [8]. This method uses Linux

Security Modules (LSM) to collect the logs, and

Mandatory Access Control (MAC) to ensure their validity.

The system also uses SecVisor [19], and DigSig [18].

SecVisor ensures the security of the logging framework,

and DigSig prevents rootkit from making modifications to

access permissions. DigSig adds a signature to a program,

and prevents the execution of an unknown program by

verifying its signature. This method collects logs in its own

way, but the method modifies the kernel source codes. In

general, kernel modification is difficult and complex, so

the method lacks versatility. In addition, the method uses

variety of mechanisms, the overheads arising from them

have large effect on daily operations on computers.

6.5 Comparison between the proposed system and

related works

Table 4 shows the comparison between our proposed

system and related works. The comparison noticed on

prevention of log tampering, prevention of log loss, and

detection of log tampering and loss.

 The proposed system can prevent log tampering and

loss and detect them. Protection of the logs of journaling

file system [6] is secure than other methods. However, the

protection method only protects the log of journaling file

system. Other methods only prevent tampering or loss, and

many other methods aims to detect tampering and loss.

7 Conclusion
In this paper, we proposed and described a log-storing

module that stores logs collected by the logging module in

a separate VM. We also described our log tampering

detection technique, which is based on log comparison.

 Evaluations of our proposed method’s ability to detect

tampering by real malware were also described with the

results of the evaluations confirming that our

log-tampering detection function has enough ability to

detect this kind of tampering.

 An evaluation of the impact of our proposed method on

the performance of the monitored OS was also concluded.

The evaluation shows that the proposed method decreases

the performance of thttpd web server to 37% of that

operates in not-virtualized environment in a worst case.

From the evaluation, it is found that reducing the

overheads that arise in our proposed system is a challenge

for the future.

Acknowledgment
This research was partially supported by Grant-in-Aid for

Scientific Research 21700034 and a grant from the

Telecommunications Advancement Foundation (TAF).

References
[1] Marisa Reddy Randazzo, Michelle Keeney, Eileen

Kowalski, Dawn M. Cappelli and Andrew P. Moore,

Insider Threat Study: Illicit Cyber Activity in the

Banking and Finance Sector, Carnegie Mellon

University Technical Report CMU/SEI-2004-TR-021,

2005.

[2] Karen Kent and Murugiah Souppaya, Guide to

Computer Security Log Management, NIST Special

Publication 800-92, 2006.

[3] Jeffrey Hunker and Christian W. Probst, Insiders and

Insider Threats - An Overview of Definitions and

Mitigation Techniques, Journal of Wireless Mobile

Networks, Ubiquitous Computing, and Dependable

Applications (JoWUA), 2011, pp.4-27.

[4] Tetsuji Takada and Hideki Koike, NIGELOG:

Protecting Logging Information by Hiding Multiple

Backups in Directories, International Workshop on

Database and Expert Systems Applications, 1999,

pp.874–878.

[5] Siqin Zhao, Kang Chen and Weimin Zheng, Secure

Logging for Auditable File System using Separate

Virtual Machines, Proc. IEEE International

Symposium on Parallel and Distributed Processing

with Applications, 2009, pp.153 –160.

[6] Yuki Ashino and Ryoichi Sasaki, Proposal of Digital

Forensic System using Security Device and

Hysteresis Signature, Proc. Third Inter-national

Conference on International Information Hiding and

Multimedia Signal Processing (IIH-MSP 2007) – Vol.

02, 2007, pp.3–7.

[7] Benjamin Boeck, David Huemer, A Min Tjoa,

Towards More Trustable Log Files for Digital

Forensics by Means of “Trusted Computing”, Proc.

24th IEEE International Conference on Advanced

Information Networking and Applications (AINA),

2010, pp.1020–1027.

[8] Takamasa Isohara, Keisuke Takemori, Yutaka

Miyake, Ning Qu and Adrian Perrig, LSM-Based

Secure System Monitoring using Kernel Protection

Schemes, Proc. International Conference on

Availability, Reliability, and Security, 2010,

pp.591–596.

[9] Vivek Kundra, Streaming at 1:00: In the Cloud,

http://www.whitehouse.gov/blog/Streaming-at-100-I

n-the-Cloud/, 2009.

[10] Muhammad Abedin, Syeda Nessa, Latifur Khan,

Ehab Al-Shaer and Mamoun Awad, Analysis of

firewall policy rules using traffic mining techniques,

International Journal of Internet Protocol

Technology (IJIPT), Vol.5, No.1/2, 2010, pp.3–22.

[11] Masaya Sato and Toshihiro Yamauchi, VMBLS:

Virtual Machine Based Logging Scheme for

Prevention of Tampering and Loss, 2011

International Workshop on Security and Cognitive

Informatics for Homeland Defense (SeCIHD'11),

Lecture Notes in Computer Science, Vol.6908, 2011,

pp.176–190.

[12] Adiscon’s Rsyslog, The enhanced syslogd for Linux

and Unix rsyslog, http://www.rsyslog.com/

[13] The free software company BalaBit, Syslog Server |

syslog-ng Logging System,

http://www.balabit.com/network-security/syslog-ng/

[14] Paul Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt and Andrew Warfield, Xen and the Art of

Virtualization, Proc. 19th ACM Symposium on

Operating Systems Principles, 2003, pp.164–177.

[15] Artem Dinaburg, Paul Royal, Monirul Sharif and

Wenke Lee, Ether: Malware Analysis via Hardware

Virtualization Extensions, Proc. 15th ACM

conference on Computer and Communications

Security, 2008, pp.51–62.

[16] Intel, Intel 64 and IA-32 Architectures Software

Developer’s Manual Volume 3B: System

Programming Guide, Part 2,

http://www.intel.com/Assets/PDF/manual/253669.pd

f (2009).

[17] Gene H. Kim and Eugene Howard Spafford, The

Design and Implementation of Tripwire: A File

System Integrity Checker, Proc. 2nd ACM

Conference on Computer and Communications

Security, 1994, pp.18–29.

[18] Axelle Apvrille, David Gordon, Serge Hallyn, Makan

Pourzandi and Vincent Roy, DigSig: Run-time

Authentication of Binaries at Kernel Level. Proc. 18th

USENIX Conference on System Administration, 2004,

pp.59–66.

[19] Arvind Seshadri, Mark Luk, Ning Qu and Adrian

Perrig, SecVisor: A Tiny Hypervisor to Provide

Lifetime Kernel Code Integrity for Commodity OSes,

Proc. 21st ACM SIGOPS Symposium on Operating

Systems Principles, 2007, pp.335–350.

http://www.whitehouse.gov/blog/Streaming-at-100-In-the-Cloud/
http://www.whitehouse.gov/blog/Streaming-at-100-In-the-Cloud/

