A Mechanism that Bounds Execution

Performance for Process Group for Mitigating
CPU Abuse

Toshihiro Yamauchi, Takayuki Hara, and Hideo Taniguchi

Graduate School of Natural Science and Technology, Okayama University,
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
{yamauchi, tani}@cs.okayama-u.ac.jp,hara@swlab.cs.okayama-u.ac.jp

Abstract. Secure OS has been the focus of several studies. However,
CPU resources, which are important resources for executing a program,
are not the object of access control. For preventing the abuse of CPU
resources, we had earlier proposed a new type of execution resource that
controls the maximum CPU usage [5, 6]. The previously proposed mech-
anism can control only one process at a time. Because most services
involve multiple processes, the mechanism should control all the pro-
cesses in each service. In this paper, we propose an improved mechanism
that helps to achieve a bound on the execution performance of a pro-
cess group, in order to limit unnecessary processor usage. We report the
results of an evaluation of our proposed mechanism.

Keywords: Process scheduling, operating system, anti-DoS technique,
execution resource

1 Introduction

The number of computers connected to network has increased with the widespread
use of the Internet. In addition, the number of reports of software vulnerabil-
ities has been increasing every year. This increase in the number of incidents
of software vulnerability can be attributed to the widespread use of automated
attack tools and the increasing number of attacks against systems connected
to the Internet [1]. Therefore, various defense mechanisms against such attacks
have been studied extensively, and these studies have gained a lot of attention.

Various defense mechanisms include firewalls, an Intrusion Detection Sys-
tem (IDS) [2]; buffer overflow protection and access control mechanisms such as
Mandatory Access Control (MAC) and Role Based Access Control (RBAC) [3];
and secure OS are examples of such defense mechanisms.

The secure OS [4] has been the focus of several studies. In particular, Security-
Enhanced Linux (SELinux) has become of major interest. Even if the authority
is taken, secure OS makes the range of the influence a minimum. However, the
CPU resource, which is an important resource for executing a program, is not
the object of the access control. As a result, such OSes cannot control the CPU

2 Toshihiro Yamauchi, Takayuki Hara, and Hideo Taniguchi

usage ratio. For example, a secure OS cannot prevent attackers from carrying
out DoS attacks, which affect the CPU resources. In general, the OSes can only
limit the maximum CPU time for each process and not the proportion of CPU
time allocated to the processes.

In an earlier study, we proposed a new type of execution resource that con-
trols the maximum CPU usage such that the abuse of CPU resources can be
prevented [5, 6]. In order to prevent the abuse of the CPU resources, we propose
an execution resource that can limit the upper bound of CPU usage. The pre-
viously proposed mechanism can control only one process at a time. Because,
most of services involve multiple processes, the mechanism should control all
the processes involved in each service. In this paper, we propose an improved
mechanism for achieving a bound on execution performance of a process group,
in order to limit unnecessary processor use. The proposed mechanism is based
on a previously proposed mechanism. The proposed mechanism introduces ex-
ecution tree which deploy the upper bound of execution resource for the nodes
of execution tree.

2 Execution Resource

In this section, we explain the concept of execution resource on the basis of the
presentation in previous papers [5, 6].

2.1 Overview

A process may be described as a unit of program execution in an existing OS,
and it has a degree of CPU usage. For example, a priority is associated with each
process in UNIX. We have separated the degree of CPU usage from a process.
The degree of CPU usage has been named execution resource. Therefore, only
the execution resource involves the degree of CPU usage, and a process does
not have a degree of CPU usage. Prior to the introduction of the execution
resources, processes are listed on a linked list on the basis of their priority. After
the introduction of the execution resources, it is these execution resources that
are maintained on the linked list on the basis of their priority. Processes are then
linked to executions. A process can be executed by linking it to an execution.

The execution manager points to an execution with the highest degree of
CPU usage. All processes need to be linked to executions to be assigned a CPU
time. The execution manager selects a process from the scheduling queues. When
the state of a process is READY, it is linked to the execution with the highest
priority. The amount of CPU time that is assigned to a process is proportional
to the total amount of CPU usage time required for the executions linked to the
process.

2.2 Types of Execution Resources

There are two types of execution resources. One is execution with performance
and the other is execution with priority.

A Mechanism that Bounds Execution Performance for Process Group 3

.— time-block
= [B | B =

time-slot

Fig. 1. Time slots and a time block

A1a
(50%)

D2a
(10%)

C2a
(20%)

A2a B2a
(40%) (30%)

O

N rd
NS - -
STz 4Serice AT~ -
- - -
= ==+SerniceAr~-~"

Fig. 2. Relationships between a process group and executions

Execution with performance Execution with performance includes a degree
of CPU usage that indicates the proportion of bare processor performance. The
bare processor performance can be defined as 100%. When a process is linked
to an execution with n% performance, the assigned CPU time is n% of the
bare processor performance. We named a unit of CPU usage as a “time slot.”
We termed a group of time slots as a “time block.” Fig. 1 shows the relation
between time slots and a time block. An execution in which the degree of CPU
usage is n% is assigned n% of the time slots in a time block.

Execution with priority Execution with priority includes the degree of perfor-
mance that indicates the priority. The execution manager assigns the execution
with priority that has the highest priority to the processor. However, execution
with performance takes precedence over execution with priority because the for-
mer is guaranteed an assigned CPU time.

2.3 Hierarchical Execution Tree

The structure of a process group is represented as a tree structure of executions
because the relation between a process group and its processes is represented as
a parent and a child. Fig. 2 shows the relationships between a process group and

4 Toshihiro Yamauchi, Takayuki Hara, and Hideo Taniguchi

A2a B2a C2a
(40%) (30%) (6)

\ A-1 A-2 A-3 ’

\N -
S~ -=|Service A|==""

Fig. 3. T'wo process group executions

executions. The node of an execution tree is called “directory execution” and it
represents the degree of CPU usage for a process group. A leaf is called “leaf
execution”; every leaf execution is linked to a process.

The total assigned CPU time for leaf executions equals the assigned CPU
time for the parent directory execution. The degree of CPU usage for leaf ex-
ecutions indicates the priority or a ratio (%) to assigned CPU time of parent
directory execution. In the leaf execution, the ratio corresponds to the point
where the parent directory execution is defined as 100%. The depth of an execu-
tion tree is greater than one. As a result, it is possible to create a process group
within another process group.

Fig. 3 shows a case where more than one execution is linked to a process
group. When the second execution (Bi,) is linked to a process group, leaf exe-
cutions (Dap, Eap, Fap) have to be created and linked to each process (A, B, C)
in the process group. As a result, each process within the process group is linked
to two leaf executions.

2.4 Operation Interface of Execution Resource

We designed 8 operation interfaces for the execution resource for constructing an
execution tree and controlling a program execution. Table 1 shows the interfaces.

3 Execution Resource with Upper Bound

3.1 Rate-Limiting Mechanism Based on the Use of Execution
Resources

In existing OSes, whose operation is based on the time-sharing technique, the
CPU time used by a process according to its priority does not have an upper

A Mechanism that Bounds Execution Performance for Process Group

Table 1. Operation Interfaces of the execution resource

Form

Contents of operation

creat_execution
(mips)

Create the execution specified by mips and return the execution
identifier execid. When mips is between 1 and 100 it signifies the
performance regulation execution degree (as a percentage with
the performance of the processor itself taken to be 100 percent),
when it is 0 or negative is signifies the priority of the execution
degree (the absolute value is the process priority).

delete_execution
(execid)

Delete the execution execid.

attach_execution
(execid, pid)

Associate the execution execid and the process pid.

detach_execution
(execid, pid)

Remove the association between execution execid and process
pid.

wait_execution

Forbid the assignment of processor [time] to process pid and its

(pid, chan) associated execution[s]; this puts the process in the WAIT state.
wakeup_execution |Make it possible to assign CPU time to the process pid and its
(pid, chan) associated executions; this puts the process in the READY state.
dispatch(pid) Run process pid.

control_execution
(execid, mips)

Change the execution degree of execid to mips. mips is inter-
preted as in creat_execution.

bound. Therefore, the allocation of CPU time to other services is affected when
two or more programs that demand infinite CPU time run simultaneously. In
this case, the performance of the service deteriorates significantly.

To prevent the abuse of the CPU resources, we propose an execution resource
that helps to achieve an upper bound for the CPU usage ratio. In this execution
resource, the CPU time is allocated according to the priority until the usage
reaches a specified ratio in a time slice. When it reaches the specified ratio, the
state of the currently running process is changed to a WAIT state until the
current time slice expires. Even if a process that is linked to an execution for
which the CPU usage is limited by an upper bound suffers a malicious attack,
the execution system can prevent the program from using excessive CPU time.
Moreover, the execution resource can be grouped with a user or a service. There-
fore, the CPU usage ratio of a user or a service can be specified. As a result, the
impact of a DoS attack can be controlled within the process group even if a new
child execution is created, because the execution belongs to the same group.

As described in a previous paper [5, 6], we can guarantee that the important
processes will be carried out effectively by using the execution resources with a
good performance.

3.2 Execution resource with upper bound for process group

In the previous mechanism, the execution resource with an upper bound was
a leaf execution. Thus, the previous mechanism could be used only to control
a process. We introduce directory execution as an execution resource with an

6 Toshihiro Yamauchi, Takayuki Hara, and Hideo Taniguchi

Timer interrupt

no

(1) Next time slot
assigned to execution?

2) Search execution

found by priority

not found
no (4) Directory
execution?

(5) Search
execution

(3) Idle state, or
return as a failure

success
(6) Run

Fig. 4. Process flow of the process scheduler

upper bound. In order to do so, the process scheduler was changed for the control
of an execution resource with upper bound of directory execution.

The process flow of the new process scheduler is depicted in Fig. 4 and Fig.
5. Fig. 4 shows the process flow of the process scheduler. The search performed
by the process scheduler for the execution resource has the highest priority. If
directory execution is selected in step (4) of the process, (Fig. 4), the process
scheduler searches the leaf executions of the directory execution. Fig. 5 shows
the process flow of the process scheduler when the directory execution is the
execution resource with an upper bound. If a leaf execution resource is assigned
a CPU time slot, the process illustrated in Fig. 5 is successfully completed.

4 Evaluation

We investigated whether the proposed method can control upper bound of the
CPU resources for the services. We performed a basic evaluation and an evalu-
ation for a case involving an attack.

4.1 Basic Evaluation

An execution tree was constructed before the evaluation. This execution tree
included three process groups (services A, B, and C). Each process group in-
volved three processes. Table 2 shows the performance and priority of execution

A Mechanism that Bounds Execution Performance for Process Group 7

%

(1) Search execution
by priority

not found

(2) Increment counter

(3) counter ==
sage-limited number 2

(4) Change to a SUSPEND state

(5) counter ==
ime-slice number 2

no (6) Change to a READY state,
reset the counter,
remove from the top of the priority queue,
and insert at the end of the queue.

SUSPEND
(7) execution state ?

RUN or
READY

O

Fig. 5. Process flow when the directory execution with an upper bound is found

resource of each process group in the execution tree. The execution resource
(directory execution) of service A was given priority. The execution resources
(directory executions) of service B and C were limited by an upper bound. The
upper bounds of these execution resources were varied in this evaluation.

Fig. 6 shows the results of the basic evaluation. These results indicate that
our proposed mechanism can control each process group according to the upper
bound and that our proposed mechanism effectively limits the upper bound for
process groups.

4.2 Evaluation for a Case Involving an Attack

We evaluated the processing time of a normal service A (SA) and an attack ser-
vice B (SB). SB tries to obtain as much CPU time as possible. In this evaluation,
SB was attached to the directory execution with an upper bound. Fig. 7 shows
the behavior of the processing time as the number of processes in SB changes.
The processing time of each service is plotted on the y-axis, and the number of
processes in SB is plotted on the x-axis. The processing time of SA is constant
because the upper bound of SB is restricted by the directory execution with an
upper bound.

8 Toshihiro Yamauchi, Takayuki Hara, and Hideo Taniguchi

Table 2. Degree of execution resource in the basic evaluation

Service A| Service B Service C
case| exec 1 exec 2 exec 3
1 6 6, MAX 100%|6, MAX 100%
2 6 6, MAX 100%| 6, MAX 75%
3 6 6, MAX 100%| 6, MAX 50%
4 6 6, MAX 100%| 6, MAX 25%
5 6 6, MAX 50% | 6, MAX 50%
6 6 6, MAX 50% | 6, MAX 25%
Service A Service B Service C
casel |
case2 |
O execl-1
B execl-2
case3 | O execl-3
B exec2-1
O exec2-2
| O exec2-3
cased | | B exec3-1
O exec3-2
| B exec3-3
caseb | |
caseb |
0% 20% 40% 60% 80% 100%

Ratio of assigned CPU time for each process

Fig. 6. Results of the basic evaluation

Fig. 8 shows the processing time of each service when the upper bound of the
execution resource attached to SB is changed. The upper bound was increased
from 25% to 100%. As the proposed mechanism restricted the deterioration in
the performance of SB, the processing time of SA decreased. These results show
that the proposed mechanism can restrict CPU abuse caused by a malicious
service.

5 Related Work

Most defense techniques against Internet-originated DoS attacks have targeted
the transport and network layers of the TCP/IP protocol stack [7]. Our research
focuses on the access control mechanism of and the rate limiting technique for
CPU resources.

A Mechanism that Bounds Execution Performance for Process Group 9

2,500 r
——3SA
—a—SB
2,000
£
+
v 1,900
<
2
“8’ 1,000 [
a
0 1 1 1 1
1 2 3 4 5

Number of processes in SB

Fig. 7. Behavior of processing time as the number of processes in SB changes

In the past decade, resource accounting techniques and resource protection
techniques for defending against DoS attacks have been proposed, and these
techniques have been successfully utilized to counter DoS attacks. The Scout
operating system has an accounting mechanism for all the resources employed
by each I/O path [8]. Scout also has a separate protection domain for each path.
The present research focuses on the I/O paths and not on the access control of
CPU resources.

Resource containers [9] have been proposed, and they can be used to account
for and limit the usage of kernel memory. This container mechanism supports
a multilevel scheduling policy; however, it only supports fixed-share scheduling
and regular time-shared scheduling.

Execution resources with upper bounds are classified under resource account-
ing techniques [10]. The execution resource can control the maximum extent of
CPU usage of programs for preventing abuse of CPU resources. The policy of
rate limiting can be enforced for a CPU resource by using an access control
mechanism for the execution resource. In addition, the proposed access control
model can be applied to general OSes and secure OSes.

6 Conclusion

We proposed an improved mechanism for achieving a bound on the execution
performance of process groups, in order to limit unnecessary processor use. We
improved the previously proposed mechanism used for controlling the upper
bound for a process. We introduced directory execution as an execution resource
with an upper bound. In order to do so, the process scheduler was changed for
the control of an execution resource with upper bound of directory execution.
The results of evaluations show that our proposed mechanism can control
each process group according to the upper bound. These results also show that

10

Toshihiro Yamauchi, Takayuki Hara, and Hideo Taniguchi

3000
—o—SA
g
5 2000
2
5 1500
w
3
© 1000
o
500 ’/‘/0—’—‘
0 1 1 1 1
25% 50% 75% 100%
Upper bound of execution resource attached

to SB

Fig. 8. Processing time when the upper bound of the execution resource attached to
SB is changed

our proposed mechanism is effective in limiting the upper bound for the process
groups.

References

1.
2.

10.

“CERT/CC Statistics 1988-2005,” http://www.cert.org/stats/

R. Sekar, M. Bendre, P. Bollineni and D. Dhurjati, “A Fast Automaton-Based
Method for Detecting Anomalous Program Behaviors,” Proc. of IEEE Symposium
on Security and Privacy, pp. 144-155, (2001)

R. S. Sandhu, E.J. Coyne, H.L. Feinstein and C.E. Youman, “Role-Based Access
Control Models,” IEEE Computer, vol. 29, no. 2, pp. 38-47, (1996)
“Security-Enhanced Linux,” http://www.nsa.gov/selinux/

T. Tabata, S. Hakomori, K. Yokoyama, H. Taniguchi, “Controlling CPU Usage
for Processes with Execution Resource for Mitigating CPU DoS Attack,” In: 2007
International Conference on Multimedia and Ubiquitous Engineering (MUE 2007),
pp. 141-146, (2007)

T. Tabata, S. Hakomori, K. Yokoyama, H. Taniguchi, “A CPU Usage Control
Mechanism for Processes with Execution Resource for Mitigating CPU DoS At-
tack,” International Journal of Smart Home, vol. 1, no. 2, pp. 109-128 (2007)

A. Garg and A. Reddy, “Mitigation of DoS attacks through QoS regulation,” In:
IEEE International Workshop on Quality of Service IWQoS), pp.45-53, (2002)

. O. Spatscheck and L. L. Petersen, “Defending Against Denial of Service Attacks

in Scout,” In: 3rd Symp. on Operating Systems Design and Implementation, pp.
59-72 (1999)

G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A new facility for
resource management in server systems,” In: the Third Symposium on Operating
Systems Design and Implementation (OSDI ’'99), pp. 45-58 (1999)

J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense mecha-
nisms,” ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 39-53 (2004)

