
Secure Log Transfer by Replacing a Library in a
Virtual Machine

Masaya Sato and Toshihiro Yamauchi

Graduate School of Natural Science and Technology, Okayama University,
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan

m-sato@swlab.cs.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp

Abstract. Ensuring the integrity of logs is essential to reliably detect
and counteract attacks, because adversaries tamper with logs to hide
their activities on a computer. Even though some research studies pro-
posed different ways to protect log files, adversaries can tamper with
logs in kernel space with kernel-level malicious software (malware). In
an environment where Virtual Machines (VM) are utilized, VM Intro-
spection (VMI) is capable of collecting logs from VMs. However, VMI is
not optimized for log protection and unnecessary overhead is incurred,
because VMI does not specialize in log collection. To transfer logs out
of a VM securely, we propose a secure log transfer method of replacing
a library. In our proposed method, a process on a VM requests a log
transfer by using the modified library, which contains a trigger for a log
transfer. When a VM Monitor (VMM) detects the trigger, it collects logs
from the VM and sends them to another VM. The proposed method pro-
vides VM-level log isolation and security for the mechanism itself. This
paper describes design, implementation, and evaluation of the proposed
method.

Keywords: Log transfer, log protection, virtual machine, digital foren-
sics.

1 Introduction

Logging information about activities and events in a computer is essential for
troubleshooting and for computer security. Logs are important not only for de-
tecting attacks, but also for understanding the state of the computer when it was
attacked. The importance of logs for computer security is described in Special
Publication [1]. Adversaries tamper with logs to hide their malicious activities
and the installation of malwares on the target computer [2–4]. If logs related
to those activities are tampered with, detection of problems might be delayed,
and the delay could cause further damage to services. In addition, log tampering
impedes the detection, prevention, and avoidance of attacks. With the growth of
cloud computing in recent years, security in VMs has become more important [5,
6]. Especially, log forensics in cloud application has great importance [7]. How-
ever, existing logging methods are not designed for VMs or cloud applications.

2 M. Sato, T. Yamauchi

As described in a paper [8], secure logging using VMs provides integrity and
completeness for logging. Boeck et al. proposed a method to securely transfer
logs utilizing a trusted boot and a late launch [9]. While this method can prevent
attacks to logging daemons, adversaries can still tamper with logs in kernel space.
Logs must go through an Operating System (OS) kernel when transferred out
of the computer. If malware is installed on, logs could be tampered with in
kernel space. SecVisor [10] is a method that prevents the execution of illegal
codes in kernel space. However, these methods depend on the structure of the
OS kernel, making it difficult to adapt to various OSes. In a situation where
a single machine provides many VMs, different OSes could be running on each
VM. VMI [11] can be considered as a logging method for VM. However, VMI
has problems including performance degradation and granularity of information.

These researches are considered as a method of log protection. However, even
though the importance of logging for cloud application is increased [7], there is
no method specialized for logging in VM environment. VM is commonly used
for providing cloud computing environment. Providing services like logging hurts
performance of APs on VMs [8]. Thus, reducing performance overhead incurred
by additional services is an important challenge.

To collect logs from outside the VM securely, we propose a secure log trans-
fer method using library replacement. To trigger a log transfer to a VMM, we
embed an instruction in a library function to cause a VM exit. On Linux and
FreeBSD, we modified the standard C library, libc, which contains standard
logging function. When the VMM detects a VM exit, the VMM collects the
logs generated by APs in the source VM and transfers them to the logging VM,
which stores the logs to a file. We assumed that the modified library is secured
in the memory by the method [12] that protects a specific memory area from
being modified by kernel-level malware.

With the proposed method, adversaries cannot tamper with logs in kernel
space because the VMM collects logs before they reach in kernel space. Because
the modification to a library is kept minimal, adapting different OSes requires
less effort. Performance degradation is minimal because the overhead incurs only
when an AP calls a logging function. The proposed method replaces only a
library, which includes a function to send logs to a syslog daemon. Therefore,
we can make the possibility of bug inclusion low. Additionally, bugs in a library
give less effect than that in a kernel.

This paper also describes evaluations of the proposed system. We evaluate the
system with the standpoint of security of logs, adaptability to various OSes, and
performance overhead. To evaluate the system with the standpoint of security
of logs, we analyze the security of a logging path. Experiments to tamper with
logs in the logging path are also described. Adaptability of the proposed system
is provided with case studies to adapt to various OSes. Performance evaluations
with APs commonly used in servers are described. As described in a paper [13],
VMI causes large overhead. For practical use, performance degradation should
be kept as small. With these evaluations, this paper presents how the proposed
system is practical for generally-used APs and multi-VM environment.

Secure Log Transfer by Replacing a Library in a VM 3

The contributions made in this paper are as follows:

– We propose a secure log transfer method by replacing a library in a VM.
With the proposed system, a kernel-level malware cannot delete or tamper
with logs. Moreover, by comparing collected logs and tampered logs, we can
identify the area that is tampered with.

– We design a tamper-resistant system using VMM. We implemented all of
our system inside the VMM because of its attack-resistance.

– The proposed system is implemented with minimal modification to libc.
Although no modification is preferable, modifying the library gives two ad-
vantages: slight overhead and ease of adaptation to varied OSes. This also
reduces the possibility of bug inclusion, and makes the system more secure.

2 Method of Log Transfer

2.1 Existing Log Transfer Methods

In Linux and FreeBSD, syslog is a protocol for system management and security
monitoring. Syslog consists of a syslog library and a syslog daemon. New syslog
daemons and protocols [14–17] have been developed to achieve greater security.
New syslog daemons can transfer logs to out of a computer and can encrypt
syslog traffic using transport layer security (TLS). However, during log transfer,
adversaries can delete or tamper with the log with a kernel-level attack [3].
Other methods using inter-process communications can be attacked in the same
manner. Other malware tamper with logs by replacing syslog daemons [2].

VMI [11] inspects VMs by retrieving hardware information about the target
VM and constructing a semantic view from outside the VM. ReVirt [18] collects
instructions-level information for VM logging and replay. CloudSec [19] performs
a fine-grained inspection of the physical memory used by VMs and detects at-
tacks that modify kernel-level objects. While these methods enable us to collect
information inside VMs, they increase complexity of semantic view reconstruc-
tion and performance overhead. In addition, the reconstruction of a semantic
view strongly depends on the structure of the OS.

To overcome this problem, in-VM monitoring method [13], which inserts an
agent into a VM, is proposed. It protects the agent from attacks from inside the
VM. Inserting an agent is a practical and efficient way to collect information,
however, it is difficult to adapt to various OSes because the implementation of
an agent depends on the structure of the OS. The VMM-based scheme [20] can
collect logs inside VMs without modifying a kernel or inserting agents. However,
it has a large overhead and strong dependency to architecture of OS.

2.2 Problems of Existing Methods

Existing methods have the following four problems:

(1) Transferring log via inter-process communications can be preempted by
kernel-level attacks.

4 M. Sato, T. Yamauchi

(2) Collecting logging information inside a VM by monitoring the behavior of
APs or OSes cause unnecessary performance overhead.

(3) Collecting logging information from various OSes requires efforts to adapt
the method to a variety of OSes.

(4) Additional code increases the likelihood of bugs in the system.

No suitable method is currently available to transfer logs out of the VM.
For security management, a secure logging method is required. Monitoring from
outside the VM is a new approach, because the monitor itself is secured by VM-
level separation. On the other hand, the information obtained by the method is
difficult to translate into a semantic view or is too fine-grained. While VMI and
other introspection methods securely collect information inside a VM, construct-
ing the semantic view of the VM is strongly depends on structure of the target
OSes. Adapting those methods to various OSes is nontrivial work. Inserting an
agent into a VM can cause undesirable effects and make the VM unstable.

3 Secure Log Transfer by Replacing a Library in a VM

3.1 Scope and Assumptions

This paper covers the prevention of log tampering via attacks to the kernel,
to the logging daemon, and to files that contain logs. Attacking specific APs
requires nontrivial work and it cannot tamper with logs completely; therefore,
adversaries attack the point where all logs go through. If we focus our attention
on attacks to APs, preventing log tampering in kernel space and in a logging
daemon is a reasonable challenge.

We assume attacks for a VMM is difficult because the conditions that allow
attacks are limited. Therefore, we assume that a VMM can prevent those attacks.

3.2 Objectives and Requirements

The objectives of this paper are as follows:

Objective 1 To propose a fast and tamper-resistant log transfer method.
Objective 2 To propose a log transfer method that is easy to adapt to various

OSes.

The objective of our research is to address problems detailed in Section 2.2. To
address those problems, providing a tamper-resistant log transfer method is nec-
essary. Specifically, we aim to prevent log tampering from kernel-level malware
like adore-ng [3]. Moreover, low overhead is desired to implement the method to
APs in the real world. Further, an OS-independent method is preferable, because
it is assumed that various OSes are running on each VM.

To achieve the objectives, the followings are required.

Requirement 1 Transfer logs as soon as possible.
Requirement 2 Isolate logs from a VM.

Secure Log Transfer by Replacing a Library in a VM 5

Logging Module Log Storing Module

Logging AP

User Space

Kernel Space

Logging VM

Buffer

Copy logs

Notify/Request for Log Copy
Copy Logs

VMM

Modified Library

AP: Request Log Transfer

Unmodified Library

AP

User Space

Kernel Space

syslog

Function

Target VM

Syslog

Daemon

AP

User Space

Kernel Space

Non-target VM

syslog

Function

Syslog

Daemon

VMM: Copy Logs

Fig. 1. Overview of the proposed system.

Requirement 3 Secure the log transfer mechanism itself.
Requirement 4 Make the log transfer method OS-independent and small.
Requirement 5 Reduce unnecessary overhead related to log transfer.

In a logging path, logs generated by a process are passed to a kernel because
the kernel provides the ability to send messages to other processes. Therefore,
to prevent log tampering in kernel space, it is necessary to collect logs from
outside the VM before the logs reach kernel space. To prevent tampering of
log files, they must be isolated from the VM. To ensure the security of the log
transfer method itself, install the method outside the VM. With low dependency
on the OS, migration to other OSes becomes easy. Moreover, a smaller program
size helps to reduce the possibility of bugs. A VM exit, which is a CPU-mode
transfer between a VM and a VMM, can cause additional overhead. To adapt
the method to APs in the real world, unnecessary VM exits must be removed.

3.3 Overview of the Proposed Method

The overall design of the proposed system is shown in Figure 1. In the proposed
system, the target VM works on a VMM and the VMM collects logs from the
VM. We assume that all of the VMs fully virtualized by Intel VT-x. An AP on
the target VM can transfer logs with the proposed system as follows:

(1) An AP requests a log transfer to a VMM.
(2) The logging module inside the VMM receives the request and copies logs

from the AP to the buffer inside the VMM.

6 M. Sato, T. Yamauchi

(3) The VMM sends a notification to a logging AP inside the logging VM. Then,
the VMM sends the logs to the logging AP.

(4) The logging AP receives the logs and stores them to a file. The logging VM
accepts logs only from the VMM.

We modified the VMM to transfer logs from the target VM to the logging VM.
The logging module, the log storing module and the buffer VMM are additional
part to the original VMM. We modified libc in the target VM to send a log
transfer request to the VMM in each call of syslog function. The modified library
executes an instruction that causes a VM exit, which triggers a log transfer to
the logging VM before sending logs to the logging daemon in the current VM.
Only a VM that contains the modified library can send the request. In Figure 1,
the target VM requests a log transfer in every syslog function call; on the other
hand, the non-target VM never makes the request.

Collecting logging information immediately after the invocation of the syslog
function fulfills the requirement 1. With this feature, tampering logs in kernel
space is impossible. Using the logging VM to store logs fulfills the requirement 2.
Resources allocated to a VM, such as memory, network, disk space, and others
are separated from resources allocated to another VM, therefore, it is difficult to
tamper with logs outside the VM being attacked. It is also difficult to attack a
VMM from inside a VM; therefore, using a VMM and modifying a library fulfill
the requirement 3. Library modification also makes OS-adaptation easier and
fulfills the requirement 4. Finally, VM exits occur only when a syslog library
function is called; therefore, the requirement 5 is fulfilled.

3.4 Comparison between the Proposed Method and VMI

The proposed method and VMI are similar from the standpoint of collecting
information inside VM. However, there are following differences between them:

– Security of logs.
– Dependency to a data structure in a VM.
– Overhead.

The proposed system can achieve greater security of logs than VMI. VMI
collects information of VMs by monitoring hardware states and some events.
However, it is difficult to detect log generation by monitoring hardware states
or events. Even if VMI can detect log generation, when VMI detects it after a
mode transition to kernel space, logs are tampered by kernel-level malware. By
contrast, kernel-level malware cannot tamper with logs because the trigger of
log transfer is given by a library in the user space of each VM.

To inspect a state of a VM, VMI collects some information strongly related
to a data structure in a VM. Thus, VMI must have enough knowledge of layout
of data structure in the VM. Additionally, to inspect a state of a VM, VMI must
collect a lot of information (e.g. process list, process descriptor). This creates
strong dependency to version of OSes in VMs.

Secure Log Transfer by Replacing a Library in a VM 7

As just described above, VMI can inspect a state of a VM with fine-grained
information; however, it creates strong dependency of data structure in a VM
and some overheads. On the other hand, however the proposed system cannot
collect much information of a VM; it achieves weak dependency of data structure
in a VM and low overheads. VMI has large overhead because it monitors a state
of a VM with various and fine-grained information. A research [13] shows that
VMI causes 690% overhead in monitoring of process creation. On the other
hand, in-VM monitoring causes only 13.7% overhead in that monitoring. Thus,
the approach of the proposed system is efficient because the system can be
considered as one of an in-VM monitoring. Additionally, our proposed system
only monitors invocation of syslog function. Therefore, overhead related to the
proposed system arises only when an AP invokes syslog function.

4 Implementation

4.1 Flow of Log Transfer

Transferring logs from a VM to a VMM takes place in two phases: requesting
the log transfer and copying the log. This section describes the implementation
of each phase in Section 4.2 and Section 4.3. The modified code to libc library
is shown as Figure 4 and explained at Section 5.5. The overall flow is as follows:

(1) An AP in the target VM requests a log transfer.
(2) A VM exit occurs and the VMM receives the request.
(3) The VMM copies logs from the AP to the VMM buffer.
(4) The VMM sends a log storing request to the logging VM.
(5) The logging VM receives the request and notifies the VMM that it is ready

to receive the logs.
(6) The VMM copies the logs to the logging VM.
(7) The logging VM stores the logs to a file.

4.2 Request of Log Transfer

We embed a cpuid instruction in a library to request a log transfer to the VMM
from an AP. The instruction does not affect the CPU state; however, if executed
in a virtualized environment, the instruction causes a VM exit. Therefore, we
embedded the instruction into a library to request the copying of logs to the
external VMM before sending the logs to a logging daemon. The interface of log
transfer request is shown in Table 1. The embedded codes set the appropriate
values to the registers and execute the cpuid instruction. Additional codes are
shown in Section 5.5. We utilize cpuid instruction to counteract detection of
our approach that scans memory or a library file. One of a typical instruction to
call a VMM is vmcall. If we use vmcall instruction as a trigger of log transfer,
adversaries easily detect our approach by scanning a memory because the in-
struction is not used in regular APs. To make detection of our approach harder,
we utilize cpuid instruction.

8 M. Sato, T. Yamauchi

(2) Store the beginning address of

the buffer that contains the log in

the rbx register.

(3) Store the length of the log in

the rcx register.

(1) Store 0xffff in the rax register.

(4) Execute cpuid instruction.

Fig. 2. Flow of a log transfer request.

Table 1. Interface of log transfer.

Register Explanations

rax 0xffff: the value represents a log transfer request.

rbx Address of the buffer that contains logs to transfer.

rcx Length of logs to transfer.

Figure 2 depicts the flow of a log transfer request. At first, the AP on the
target VM stores 0xffff in the rax register, the beginning address of the buffer in
the rbx register, and the length of the buffer in the rcx register. Then, the AP
executes cpuid instruction to request a log transfer.

4.3 Log Copying from a VM to a VMM

Figure 3 depicts the flow of log copying by a VMM. A cpuid instruction is a
trigger for log transfer. After detected the instruction, the VMM copies logs
from the AP and notifies to the logging VM if the value contained in the guest’s
rax register is 0xffff. If not, the VMM do not copy logs and only emulates the
instruction. The buffer inside the VMM is implemented as a ring buffer to reduce
the loss of logs in a high-load situation. Step (4) only sends notification. Log
copying to the logging VM is made asynchronously. Thus, the time of log copying
is kept as short as possible.

5 Evaluation

5.1 Purpose and Environment

We evaluated the proposed system at following standpoints:

Secure Log Transfer by Replacing a Library in a VM 9

(3) The VMM copies logs from the

VM to a buffer inside the VMM.

(4) The VMM notifies the logging

VM about the log copying.

(1) A VM exit occurs by cpuid

instruction in a VM.

(7) Processing returns to the VM.

(2) The value in

rax is 0xffff?

(5) Emulate cpuid instruction.

(6) Store the result of the cpuid

instruction to the registers.

No

Yes

Additional part to the original VMM.

Fig. 3. Flow of log copying from the AP to the VMM.

– Security of logs in a logging path
To evaluate the ability of prevention of log tampering, we inserted a malware
into the kernel running on a VM.

– Prevention of log tampering and loss
To check whether the proposed method can prevent log tampering and loss,
we tried to prohibit log storing procedure with malware and some attacks.

– Completeness of log collection
By sending a massive number of log transfer requests from an AP in the
target VM, we tested the system in a high-load environment.

– Efforts for adapting various OSes
Ease of adaptation to various OSes was also evaluated.

– Performance evaluation
Performance overhead in Database Management System (DBMS) is also
evaluated.

– Performance in multi-VM environment
We measured performance of a web server with many VMs to clarify perfor-
mance overhead incurred by the proposed system in multi-VM environment.

Software used for evaluation is described in Table 2. We implemented a pro-
totype of the proposed system with Xen [21] hypervisor.

10 M. Sato, T. Yamauchi

Table 2. Software used for evaluation.

VMM Xen 4.2.0

OS (The logging VM) Debian (Linux 3.5.0 64-bit)
OS (The target VM) FreeBSD 9.0.0 64-bit, Debian (Linux 2.6.32 64-bit)

Web server thttpd 2.25b
Database management system PostgreSQL 9.2.4
Syslog daemon rsyslogd 4.6.4

Benchmark ApacheBench 2.3
pgbench 9.2.4 (included with PostgreSQL 9.2.4)
LMbench version 3

5.2 Security of Logs in a Logging Path

Logs can be tampered with at the following point: (1) The time when a process
generates a log, (2) The time between the sending of a log and its receipt by a
syslog daemon, (3) The time between the receipt of a log and storing it to a file,
and (4) The time after the output of a log.

Kernel-level malware like adore-ng [3] can tamper with logs in time (2) and
(3). Attacks for syslog daemon like tuxkit [2] can tamper with logs in time (3).
Adversaries who have privileges to write to the log file can tamper with logs in
time (4). Our proposed method can prevent attacks in time (2), (3), and (4)
because logs are transferred to outside of the VM before it reaches in a kernel.

Without hypervisor-based software runtime memory protection mechanism
[12], we cannot prevent log tampering in time (1). A kernel-level malware can
manipulate memory of user processes; therefore, it tampers with logs before they
are transferred to out of a VM. With the memory protection mechanism [12], a
kernel-level malware cannot tamper with logs of user processes. Thus, to prevent
log tampering in time (1), the memory protection mechanism [12] is necessary.

5.3 Prevention of Log Tampering and Loss

To check whether the proposed method can prevent log tampering or not, we
tried to tamper with logs. First, we used adore-ng [3], which is a kernel-level mal-
ware that tamper with logs sent to the syslog daemon, to check if the proposed
system can prevent log tampering in kernel space. The adore-ng patches runtime
memory of kernel code to tamper with logs. The adore-ng monitors inter-process
communication using socket function and deletes a message if it contains disad-
vantageous words for the adversary. This experiment proves that the proposed
method can prevent log tampering by the kernel-level malware. Logs sent to the
VMM with the proposed method were not tampered with while logs stored in
the target VM is tampered with. Moreover, we can find log tampering by com-
paring logs between the target VM and the logging VM. With this comparison,
we can estimate a purpose of the adversary.

Third, we tampered with a policy file of syslog daemon as no logs are written
to files. The policy file is loaded by the syslog daemon at a start-up. By this

Secure Log Transfer by Replacing a Library in a VM 11

attack, no logs are written even if a syslog daemon is running. In this situation,
we confirmed that the proposed system collects logs with no modification or
loss. This result shows that the proposed system is resistant to attack for policy
file of syslog daemon. The result also shows that log tampering by replacing a
syslog daemon has no effect in a log collected by the proposed system. Thus, the
proposed system is resistant to attacks like tuxkit [2].

Fourth, we stopped a syslog daemon on a target VM to prevent logging.
Obviously, no logs are transferred to the syslog daemon. We also confirmed
that the proposed system can collect logs completely. However, its completeness
depends on a flow of the log transfer. In GNU libc, a syslog function aborts log
transfer when the establishment of a connection is failed. Our prototype used
for evaluation requests log transfer before establishing a connection to the syslog
daemon; therefore we can collect logs completely. This implies that logs might
be lost if the library requests log transfer after establishing connection.

Finally, we tampered with a log file. This type of attack is used in LastDoor
backdoor [4]. It wipes specific entries in log files. Because the logs written to the
file are already transferred to the logging VM, while logs in the target VM are
tampered with, there is no effect to the log file in the logging VM.

These results show that the proposed system can collect almost all logs and
collected logs are not affected by attacks on the target VM. Additionally, adver-
saries tend to install log tampering malware to a place where all logs go through.
For example, adore-ng [3] is installed to a kernel function and tuxkit [2] is in-
stalled to a syslog daemon. All logs sent by syslog library function go through
that kernel function and syslog daemon. From the reason, we can estimate that
log tampering attacks to an AP, which is a source of logs, is rare.

5.4 Completeness of Log Collection

To ensure that the proposed system can collect all logs in the target VM with
no loss, we tested the proposed system in a high-load environment. In an ex-
periment, we sent a log transfer request 10,000 times within approximately 0.26
seconds. The length of the log in each request was approximately 30 bytes. All
logs were successfully transferred to the logging VM. No logs were incomplete or
lost. This result shows that our proposal is sufficient in terms of completeness
of log collection in a high-load environment.

5.5 Efforts for Adapting Various OSes

In the prototype, we implemented the proposed method with FreeBSD and Linux
as a target VM and Xen as a VMM. To adapt to various OSes, modification to
the target VM must be minimal. We added 20 additional lines of codes to libc

on FreeBSD and Linux. Figure 4 shows the result of diff command. As shown
is Figure 4, we can adapt the proposed system to the libc library by inserting
cpuid_logxfer() function before invocation of a send system call. The rest of
the additional codes are definition of the regs structure and the cpuid_logxfer

12 M. Sato, T. Yamauchi

void
__vsyslog_chk(int pri, int flag, const char *fmt, va_list ap)
{

int saved_errno = errno;
char failbuf[3 * sizeof (pid_t) + sizeof "out of memory []"];

+ reg_t regs;
+ regs.rax = 0xffff;
+
#define INTERNALLOG LOG_ERR|LOG_CONS|LOG_PERROR|LOG_PID

/* Check for invalid bits. */
if (pri & ~(LOG_PRIMASK|LOG_FACMASK)) {

*** 278,283 ****
--- 297,308 ----

if (LogType == SOCK_STREAM)
++bufsize;

+ regs.rbx = (unsigned long)buf;
+ regs.rcx = bufsize;
+
+ cpuid_logxfer(regs.rax, ®s);
+ regs.rax = regs.rbx = regs.rcx = 0;
+

if (!connected || __send(LogFile, buf, bufsize, send_flags) < 0)
{
if (connected)

Fig. 4. The result of diff command between source codes of the unmodified library and
the modified library.

function. These additional lines consist of (1) setting the registers with the ap-
propriate values and (2) executing the cpuid instruction. Based on the size of
the additional code, adapting the proposed system to various OSes would be a
small effort.

5.6 Performance Evaluation

Measured Items and Environment We measured the performance of the
syslog function, some system calls, and an AP. We also measured performance
overhead in multi-VM environment. The performance measurements of both
the syslog function and an AP show the additional overhead incurred by the
proposed system. On the other hand, the performance measurement of some
system calls shows that the proposed system causes additional overhead only
when the syslog function is called.

We measured the performance with a computer, which has Core i7-2600
(3.40 GHz, 4-cores) and 16 GB memory. In each measurement, one virtual CPU
(VCPU) is provided and 1 GB memory is allocated to each VM. Hyper-threading
is disabled. Each VCPU is pinned to physical CPU core to avoid the instability
of measurement. If many VMs work on one physical CPU, performance of APs
on those VMs would be instable. Each VM has one VCPU and 1 GB memory.

Secure Log Transfer by Replacing a Library in a VM 13

Table 3. Performance comparison of the syslog function.

Time (µs) Overhead (µs (%))

Xen 31.47 −
Proposed system 33.38 1.91 (6.08%)

Table 4. Frequency of library function calls when providing a web page with thttpd
web server.

Function name Count Rate (%) Function name Count Rate (%)

strncasecmp 1600 17.77 strftime 200 2.22
strlen 1400 15.55 accept 200 2.22
strcpy 800 8.89 gmtime 200 2.22

vsnprintf 600 6.67 errno location 200 2.22
memmove 400 4.44 time 100 1.11

strchr 400 4.44 close 100 1.11
select 301 3.34 read 100 1.11

gettimeofday 301 3.34 getnameinfo 100 1.11
strstr 300 3.33 strcat 100 1.11
fcntl 300 3.33 readlink 100 1.11

strpbrk 300 3.33 strrchr 100 1.11
strcasecmp 200 2.22 syslog 100 1.11

xstat 200 2.22 writev 100 1.11
strspn 200 2.22

Syslog Function and System Call In the proposed system, the modified
library requests log transfer when an AP called syslog function. To clarify the
overhead incurred by the proposed system, we measured and compared the per-
formance of syslog function with unmodified Xen and the proposed system. Table
3 compares the performance of the syslog function between Xen and the pro-
posed system. In the proposed system, the additional overhead of the syslog
function is 1.91 µs (6.08%), which is small enough, because the function is not
called frequently.

Table 4 shows counts of function call in thttpd accessed by ApacheBench
for 100 times. We measured the number of counts of library function call by
ltrace. Table 4 shows the ratio of syslog function call in thttpd is about 1%.
Additionally, we measured a performance impact of library functions in thttpd
with the same workload. Table 5 shows the result of measurement. These results
are measured in Ubuntu 13.04. The function named __syslog_chk is same as
syslog. As shown in Table 5, performance impact of syslog function is only
0.18%, thereby it can be considered as 6.08% of overhead in syslog function has
limited impact of the performance of APs.

Additionally, we measured the performance of some system calls by LMbench,
which measures the performance of file creation and deletion, process creation,
system call overhead, and other processes. In this measurement, the additional
overhead is not significant.

14 M. Sato, T. Yamauchi

Table 5. Performance impact of library functions in thttpd.

Function name Rate (%) Function name Rate (%)

writev 76.90 memmove 0.13
poll 17.71 gmtime 0.10

strncasecmp 0.82 strcasecmp 0.10
strlen 0.81 strftime 0.10
strcpy 0.51 strspn 0.09
close 0.30 strcat 0.09

vsnprintf chk 0.30 read 0.08
xstat 0.23 getnameinfo 0.05
strchr 0.22 memcpy 0.05
fcntl 0.22 time 0.05

syslog chk 0.18 strrchr 0.05
accept 0.17 strcpy chk 0.04

readlink 0.15 malloc 0.02
strpbrk 0.14 mmap 0.00
strstr 0.14 open 0.00

errno location 0.14 realloc 0.00
gettimeofday 0.14

Table 6. Performance comparison of a PostgreSQL.

tmpfs VMM TPS Relative performance

disabled
Xen 400.37 –
Proposed system 395.76 0.99

enabled
Xen 1,448.80 –
Proposed system 1,372.60 0.95

Performance of AP We measured performance overhead by the proposed sys-
tem on a DBMS. To measure the performance overhead caused by the proposed
system in DBMS, we used PostgreSQL as a DBMS. We configured PostgreSQL
to call syslog function in each transaction. We used pgbench to measure per-
formance of PostgreSQL. The workload with pgbench includes five commands
per transaction. The benchmark measures transactions per second (TPS) of a
DBMS. The concurrency of transactions is set to one.

Table 6 shows the comparison of a performance of the PostgreSQL DBMS.
Higher TPS is better. Performance degradation with the proposed method is less
than 1%. The proposed method degrades performance of a CPU intensive pro-
cess. Because PostgreSQL accesses to disk heavily, the overhead incurred with
the proposed method becomes small. To clarify that the proposed system is CPU
intensive, we measure the performance with tmpfs, which provides a memory
file system. Transactions do not require access to disk; therefore, performance
overhead with the proposed method would be higher. Table 6 shows that the
relative performance to unmodified Xen with tmpfs is about 5%. The perfor-
mance degradation is higher than that in the case without tmpfs. If a processing
is I/O intensive, performance degradation with the proposed method becomes

Secure Log Transfer by Replacing a Library in a VM 15

Table 7. Throughputs of a web server (request/s) in multi-VM environment.

File size VMM
Number of VM

0 2 4 6 8 10 12

1 KB
Xen 1396.9 1329.27 1295.61 1225.22 1171.51 1231.72 1172.15

Proposed system 1231.06 1150.54 1057.95 1017.53 987.24 1015.69 946.61
Relative performance 0.88 0.87 0.81 0.83 0.84 0.82 0.8

10 KB
Xen 680.61 658.15 639.76 627.9 628.56 609.45 615.64

Proposed system 664.48 626.12 612.93 559.02 582.24 578.89 589.58
Relative performance 0.98 0.95 0.89 0.92 0.93 1.00 0.96

1,000 KB
Xen 11.41 11.41 11.4 11.39 11.38 11.39 11.39

Proposed system 11.41 11.41 11.4 11.39 11.37 11.39 11.06
Relative performance 1.00 1.00 1.00 1.00 1.00 1.00 0.98

less. Thus, the proposed method is suitable for I/O intensive APs. In this mea-
surement, we configured PostgreSQL to call syslog in each transaction, however,
logging frequency in general use of DBMS becomes less. Thus, the performance
degradation can be assumed as almost negligible in normal use.

Performance in Multi-VM Environment To examine the ability of our
proposal to scale to its target of many domains, we measured a performance of
a web server in a VM with many other VMs. These VMs have a process that
sends logs using syslog function every second. This evaluation is experimented
with the machine that has four CPU cores; the logging VM is placed on the core
0, a VM that has a web server is placed on core 1, and other VMs are placed on
core 2 and core 3 to measure the pure performance changes of the web server.
We placed 2, 4, 6, 8, 10 and 12 VMs on core 2 and core 3. The number of VMs
on core 2 and core 3 is same. Scheduling priority of each VM is configured as
same. The performance is measured by ApacheBench on a remote machine with
1 Gbps network.

Table 7 shows performance in each environment. Figure 5 shows changes of
performance in each environment. If the number of VM increases, the perfor-
mance of the web server degrades. Performance degradation with the proposed
system is less than about 10% when the file size is larger than 10 KB. Espe-
cially, when the file size is 1,000 KB, performance degradation is nearly 0. From
the result, we can estimate that change of relative performance related to the
number of VM is small enough. Despite the number of VM changes, change
of relative performance is approximately same. For this reason, the proposed
system is efficient in multi-VM environment.

6 Related Works

6.1 Secure Logging

Accorsi classified and analyzed secure logging protocols [22]. In that paper, ex-
tensions of syslog, including syslog-ng [15], syslog-sign [16], and reliable syslog

16 M. Sato, T. Yamauchi

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12

Requests/second

of VM

Xen (1 KB)

Proposed system (1 KB)

Xen (10 KB)

Proposed system (10 KB)

Xen (1,000 KB)

Proposed system (1,000 KB)

Fig. 5. Performance comparison in multi-VM environment. Horizontal axis shows the
number of other VM. Vertical axis shows throughput of a web server in request/s;
higher measurements are better.

[17] are distinguished as a protocol that provides security in transmission of log
messages, not for storage phase. We focus on transmission phase because our
proposal is highly related to that phase. Accorsi described that only reliable sys-
log fulfills security requirements that guarantee the authenticity of audit trails.
Even if those protocols can detect and verify log message as not tampered, they
cannot prevent deletion or tampering of logs. At this point, those protocols are
different from our proposal. Therefore, this paper proposes a protection of log
messages from a viewpoint of system security. By combining our proposal and
existing secure logging protocol, we can increase security of logged data.

6.2 Logging with Virtual Machine

ReVirt [18] logs non-deterministic events on a VM for replay. Because it logs
events for analysis of attacks, types of data are different from our proposal. While
ReVirt logs instruction-level information, our proposal collects log messages for
syslog. With our proposal, we can easily monitor the target VM without deep
analysis of logged information because those logs are already formatted.

Virtual machine is also used to separate logged information [23]. While refer-
ence [23] separates information about file system logs, our proposal separates logs
for syslog. They utilized split device driver model of Xen and it is provided for
para-virtualization, thus, their proposal can be applied only for para-virtualized
environment. Our prototype is implemented with fully virtualized environment;
however, implementing in para-virtualized environment is easy.

VMI [11] and other introspection method [13] can be considered as a logging
method with a VM. In that regard, these methods are similar to our proposal.
However, information gathered by those methods are not formatted like syslog,
therefore, to analyze these data, existing tools are unavailable. In contrast, with

Secure Log Transfer by Replacing a Library in a VM 17

our proposal, existing tools work well without modification because the format
of information gathered by our proposal is same as messages produced by syslog.
Our previous work [20] can gather information from a VM without modification
to a library in that VM. However, to adapt to various OSes, it requires modifi-
cation to a VMM. Modification to a VMM requires restart of all VMs on that
VMM. Besides, it causes measurable overheads. By contrast, although modifi-
cation to a library on a VM is required, our proposal in this paper requires no
modification to a VMM to adapt to various OSes and has less overhead.

7 Conclusions

The secure log transfer method by replacing a library in a VM provides processes
on a VM with an ability to transfer logs without involving the VM kernel. Thus,
even though kernel-level malware tamper with logs on that VM, logs gathered by
our proposal have no effect. In addition, we implemented the proposed system
with VMM, therefore, attacking the proposed system from a target VM is diffi-
cult enough because of the property of a VMM. Further, adapting the method
to various OSes is easy because of its implementation with library modifications.
Evaluation of resistance for log tampering shows that tampering of logs from the
target VM is difficult enough. From the experiment of adapting different OSes
showed that an effort of adaptation is only 20 lines of additional code to libc

library. Performance evaluation shows that performance degradation of syslog
function is only about 6%. Performance degradation is negligible if a processing
of an AP is I/O intensive. Performance evaluation in multi-VM environment
shows that the proposed system has enough performance with many VMs.

References

1. Kent, K., Souppaya, M.: Guide to computer security log management, special
publication 800-92 (September 2006)

2. spoonfork: Analysis of a rootkit: Tuxkit.
http://www.ossec.net/doc/rootcheck/analysis-tuxkit.html

3. stealth: Announcing full functional adore-ng rootkit for 2.6 kernel. http://lwn.

net/Articles/75991/

4. Symantec: Backdoor.lastdoor. http://www.symantec.com/security_response/

writeup.jsp?docid=2002-090517-3251-99

5. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. Journal of Network and Computer Applications 34(1) (2011)
1–11

6. Grobauer, B., Walloschek, T., Stocker, E.: Understanding cloud computing vul-
nerabilities. IEEE Security & Privacy 9(2) (march-april 2011) 50–57

7. Marty, R.: Cloud application logging for forensics. In: Proceedings of the 2011
ACM Symposium on Applied Computing. SAC ’11 (2011) 178–184

8. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems. HOTOS ’01, Washington,
DC, USA, IEEE Computer Society (2001) 133–138

18 M. Sato, T. Yamauchi

9. Boeck, B., Huemer, D., Tjoa, A.M.: Towards more trustable log files for digital
forensics by means of “trusted computing”. International Conference on Advanced
Information Networking and Applications (2010) 1020–1027

10. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. SIGOPS Oper. Syst. Rev. 41(6)
(October 2007) 335–350

11. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: In Proc. Network and Distributed Systems Security
Symposium. (2003) 191–206

12. Dewan, P., Durham, D., Khosravi, H., Long, M., Nagabhushan, G.: A hypervisor-
based system for protecting software runtime memory and persistent storage. In:
Proceedings of the 2008 Spring simulation multiconference. SpringSim ’08 (2008)
828–835

13. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware
virtualization. In: Proceedings of the 16th ACM conference on Computer and
communications security. CCS ’09 (2009) 477–487

14. Adiscon: rsyslog. http://www.rsyslog.com/
15. Security, B.I.: Syslog server — syslog-ng logging system. http://www.balabit.

com/network-security/syslog-ng

16. Kelsey, J., Callas, J., Clemm, A.: Signed syslog messages. http://tools.ietf.

org/html/rfc5848 (May 2010)
17. New, D., Rose, M.: Reliable delivery for syslog. http://www.ietf.org/rfc/

rfc3195.txt (November 2001)
18. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling

intrusion analysis through virtual-machine logging and replay. SIGOPS Oper. Syst.
Rev. 36(SI) (December 2002) 211–224

19. Ibrahim, A., Hamlyn-Harris, J., Grundy, J., Almorsy, M.: Cloudsec: A security
monitoring appliance for virtual machines in the iaas cloud model. In: 2011 5th
International Conference on Network and System Security. (Sep. 2011) 113–120

20. Sato, M., Yamauchi, T.: Vmm-based log-tampering and loss detection scheme.
Journal of Internet Technology 13(4) (July 2012) 655–666

21. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst.
Rev. 37(5) (October 2003) 164–177

22. Accorsi, R.: Log data as digital evidence: What secure logging protocols have
to offer? In: Proceedings of the 2009 33rd Annual IEEE International Computer
Software and Applications Conference - Volume 02. (2009) 398–403

23. Zhao, S., Chen, K., Zheng, W.: Secure logging for auditable file system using
separate virtual machines. In: 2009 IEEE International Symposium on Parallel
and Distributed Processing with Applications. (2009) 153–160

