
Proposal of Kernel Rootkit Detection by Monitoring Branches Using Hardware Features
Yohei Akao and Toshihiro Yamauchi

■ Concept
Previous researches indicate that many kernel rootkits
employ control-flow modification, making branches
different from usual. Then, our method detects kernel
rootkits by monitoring branch records in kernel space and
by detecting control-flow modification. Our method uses
Last Branch Record (LBR), a recent feature of Intel
processors for monitoring the branch records.

• We proposed the efficient way to
detect kernel rootkits using
hardware features.

• Our method detects kernel rootkits
by monitoring branch records in
kernel space using LBR.

• Our method resolves all problems
(1) – (4) simultaneously.

Email: akao@swlab.cs.okayama-u.ac.jp

• When a computer system is infected with a kernel rootkit,
attack detection is difficult

• Traditional kernel rootkit detection methods do not resolve
all of the following problems simultaneously:

 (1) cannot detect kernel rootkits immediately

 (2) cannot keep the scalability of the OS kernel

 (3) cannot extend to different OS and OS versions

 (4) cannot detect kernel rootkits that use instructions that

 do not push data into the kernel stack (e.g., jmp)

• Many kernel rootkits make branches that differ from the
usual branches in kernel space

System call
handler

Malicious
code

System call
service routine

(a) System call not infected
 with the kernel rootkits

 (b) System call infected with the
kernel rootkits

AP
User space

Kernel space

■ Last Branch Record
When LBR is enabled, the CPU records the address of a
branch instruction and its target instruction. LBR can store
16 entries. When more than 16 entries are recorded, the
oldest stack data is overwritten. Monitoring branch
records using LBR has the following advantages:

(1) It can record all branch records in the kernel.

 Therefore, it can monitor branch records recorded by
instruction that do not push data into the kernel stack.

(2) It is transparent to the OS structure.

(3) It generates minimal overhead.

AP

Is it monitored
system call?

Enable LBR

User space

Kernel space

System call
handler

Is it monitored
system call?

Disable LBR

Check the LBR stack

Clear the LBR stack entry

System call
service routine

Branch records

(1)

(2)

(3)

(3-A) YES

(4)

NO

(3-B)

(5)

YES (5-A)

(6)

(7)

(8)

NO

(5-B)

Our method’s
control-flow

Original
control-flow

clear

get

(Graduate School of Natural Science and Technology, Okayama University)

■ How to detect kernel rootkit

• Our method monitors the branch records between the invoking a
system call and the transition to each system call service routine.

1. Introduction

2. Kernel Rootkit Detection by Monitoring Branches Using Hardware Features

Our method detects kernel rootkits that modify the control-flow of the
system call by monitoring an increase in a quantity of branch records.

3. Conclusion

System call
service routine

System call
handler

• When a computer system is infected with a kernel rootkit, a

 quantity of branch records recorded by LBR increases.

Figure 1. Changes in the control-flow when system call
control-flow is modified

Figure 2. Processing flow of our method

AP

