A Scheduling Mechanism Approach to Web Servers
based on Processes’ Behavior for Software Evolution

Sukanya Suranauwarat, Taniguchi Hideo and Ushijima Kazuo

Graduate School of Information Science and FElectrical Engineering, Kyushu University

1 Introduction

When considering the total costs of a software system over its lifetime, it turns out that on
average maintenance alone consumes 50-75% of these costs [1, 2]. The IEEE estimates that
companies in the United States spend more than $70 billion annually to maintain existing
software [3]. Therefore, software maintenance is an area where even small improvements to the
process can potentially reap significant benefits [4]. The real maintenance activity, that is the
correction of faults, accounts for only about 25% of the total maintenance effort. Approximately
another 25% of the maintenance effort concerns adapting software to environmental changes
such as new hardware, while half of the maintenance cost is spent on changes to accommodate
changing user requirements such as extra functions to be provided by the system, or increasing
the system’s performance [5]. Changes in both the system’s environment and user requirements
are inevitable. Software models part of reality, and reality changes. So the software has to
change too. It has to evolve. A large percentage of what we are used to calling maintenance is
actually software evolution.

The following idea could be a way to reduce the maintenance cost due to software evolution.
Our idea is that by increasing operating system abilities, operating system could adapt existing
software to new or changed user requirements without making any changes to the existing
software. Qur idea requires that the operating system have abilities to observe the software’s
execution behavior and evolve the software’ s execution behavior based on observed results.
By using these abilities, the operating system could optimize software’s execution behavior
allowing user requirements to be satisfied without making any changes to the existing software
and hardware.

We have already applied this idea to a Web server and the user requirement given considera-
tion was improving response time when the processor of the server machine became bottlenecked.
And We evaluated the performance of a Web server in simple cases, such as when the number
of browsers accessing the Web server ranged from 1 to 3 and just two machines were used. Our
experimental results showed that the response time was improved greatly when the processor
of the server machine became bottlenecked and the parameters set or predicted by our mech-
anism based on the Web server’s execution behavior were used [6]. However, the bottleneck
of the processor in [6] was caused by a coexisting processor-bound process which we used for
simulating the situation that the processor of the server machine is bottlenecked.

In this paper, we give an overview of how we observe and alter a Web server’s execution
behavior, evaluate the performance of a Web server when it is accessed by a lot of browsers at
the same time which is more likely to be a realistic situation and could be the situation that
causes the processor to become bottlenecked, then compare that with [6] especially when the
processor-bound process does not coexist, and verify its effectiveness.

2 Overview

We observe the Web server’s execution behavior through the logging mechanism and alter its
execution behavior by using the process control mechanism. Both mechanisms are integrated

- 929 —

into the operating system.

2.1 logging mechanism

When a Web server is running, a log is collected recording the information necessary to deter-
mine the optimal execution. A log is a sequence of entries describing process identifier, process
state and time. Then a sequence called PF'S (Program Flow Sequence) is created for each pro-
cess. Note that a Web server is normally composed of multiple processes. PFS is a sequence of
entries describing process state and time spent.

2.2 process control mechanism

For this paper, the content of a Web page is pretty basic and simple, which is only composed
of text data and image data. Text data and image data are separately saved in a file written
in HTML (HTML file) and an image-formatted file (Image file) respectively. After making a
request for a Web page, the browser will interpret and process the HTML file sent back by the
Web server it requested and then display the text data. During the interpretation, if the Web
page is also composed of image data, then the browser will request the Web server again for the
Image file. When a Web site becomes busy (i.e., a Web server is accessed by a lot of browsers),
it takes time even for the text data which is normally much smaller than image data to show
up on browsers. This kind of situation could cause users to give up waiting or to get tired of
accessing such popular Web sites. So, while a Web site is busy, we thought that it is much
better if the text data shows up on any browsers relatively faster. Therefore, we considered
improving the time from requesting a Web page until text data displays (response time).

Most processes, except the currently executing process (i.e., process that is in the run state),
are in one of two queues: a ready queue or a sleep queue. Processes that are waiting for the
processor to become available (i.e., in the ready state) are placed on a ready queue, whereas
processes that are blocked awaiting an event (i.e., in the wait state) are located on a sleep
queue associated with the event. When a process is blocked awaiting an event to happen, if
the resources (e.g., a hard disk) needed for the event are being used by any other process, then
that process needs to wait first for those resources to become available. And then that process
needs to wait again for the operation (e.g., input/output) it initiated to be completed. By
reducing the time waiting for the processor to become available at a ready queue or for the
resource needed for an event to become available at a sleep queue, we can achieve enhanced
response time. According to this, we proposed the policies that when a processor (a hard disk
or a network communication) becomes bottlenecked, any server process handling a HTML file
will be moved to the head of the ready queue (sleep queue associated with the event) [6].

When we discussed the process control mechanism that implements the above policy focused
on the bottleneck of the processor [6], we had two problems: how to detect which processes are
server processes handling HTML files, and how to operate the ready queue?

To answer these questions we found that we needed to look at the detailed behavior of a Web
server. We analyzed the Web server’s processes behavior based on PFS and found out that any
server process handling a HTML file has 2 characteristics: runs after waiting for a long time
in the wait state (characteristic 1) and tends to cycle between run state and wait state fewer
times than that of server process handling an Image file (characteristic 2).

To deal with the fist problem, we introduced two parameters into our process control mecha-
nism in order to determine which processes are server processes handling HTML files: long wait
threshold (its value is denoted by SLP) and run state/wait state threshold (its value is denoted
by RW). If the time spent by a process in the wait state before moving to the run state is more
than SLP, and the number of times the process changes between run state and wait state is

—923 -

less than RW, then we determine that it is an server process handling a HTML file. By these
parameters, we can detect which process appears to be a server process handling a HTML file.

To deal with the second problem, our process control mechanism puts any process that has
characteristic 1 at the head of ready queue and moves that process to the back of the ready queue
when that process loses characteristic 2. The reason why processes that loose characteristic 2
are moved to the back of the ready queue is that sometimes server processes handling Image
files are mistaken as server processes handling HTML files because they exhibit characteristic
1.

Our process control mechanism predicts and updates SLP and RW based on PFS automati-
cally every 50 milliseconds. How to predict SLP and RW is described in [6]

3 Performance

In this section, we present experiments designed to evaluate the effectiveness of the process
control mechanism we designed. We start with a description of the experimental setup, and
proceed to present the results of various experiments.

3.1 Experimental Setup

The software used for the Web server and the browser in our experiment was Apache version
1.2.5 and Netscape Navigator version 3.04 respectively. The Web server ran on the personal
computer with a 233 MHz AMD-K6 processor and 64 MB of memory, while browsers ran on
three personal computers, each with a 200MHz Intel Pentium Pro processor and 64 MB of
memory. All machines were running on BSD/UNIX version 2.1 in single user mode and were
connected by a private 10Mb/s Ethernet. During the experiment, the operating system ’s 1/O
buffer cache in the server machine and each browser’s cache were disabled.

The Web server was accessed by three browsers from each of the three machines at the same
time. All browsers accessed unique URLs all of which have the same content. In three different
experiments in which we varied RW in the range from 1 to 10, we measured the time (t1) from
requesting a Web page until text data starts displaying and the time (t2) from requesting a
Web page until image data displays completely for each access, and then found the mean of
the 5 trial times of t1 (response time of text data) and t2 (response time of image data). In
experiment 1, all the browsers accessed the Web server simultaneously every 30 seconds when
the Web server coexisted with a processor-bound process and SLP was fixed at 20 seconds by
our process control mechanism without using PFS. The purpose for this experiment is to know
how the response time of text data would be improved in the situation that is the best for our
process control mechanism. In experiment 2, all the browsers accessed the Web server randomly
without any processor-bound process and SL.P was set in the same way as in experiment 1, while
in experiment 3, SLP was predicted and updated automatically based on PFS by our control
mechanism every 50 milliseconds. The purpose for experiment 2 and 3 are to know how the
response time of text data would be improved when SLP was set not based on and based on
the Web server’s execution behavior respectively in the more realistic situation.

3.2 Experimental Result

Figure 1 shows some examples of the results of experiment 1, when not using and using our
process control mechanism (RW = 3,6,9). Figure 1 plots the URLs in numerical sequence on
the y-axis against the response time of text data to a request in seconds. Figure 1 shows that
the smallest and biggest response times when RW = 3,6,9 are better than when not using our
process control mechanism. It also shows that the range or the distribution of response times
becomes narrower when using our process control mechanism.

— 24 —

6| e unused 16 . used (RW=3)
15 . 15 .
14 - . 14 o
13 + L4 13
12 - . 12 o
11 + . 11 - e
10 + . 10 + .
=49 | * = 9 + *
% 8 * % 8 + *
7 r . 7 r *
6 o 6 04
5 r . 5
4 - - 4 le
3 r . 3
2 L - 2 r .
1+ - 1+ .
0 * 0 I !
0.042 1.042 2042 3042 4042 5042 6.042 0.042 1042 2042 3.042 4042 5042 6.042
Response Time (sec) Response Time (sec)
17 * 17 *
16 . used (RW=6) 16 . used (RW=9)
15 + . 15 - .
14 (e 14 ¢
13 13
12 re 12 »
1 + . 11 + .
S0 ¢ S180 *
- * r *
58t . 58
7+ * 7 + *
6 - * 6 *
5 - * 5
4 +e 4 e
3 3 »
2+ * 2 r *
1+ * 1+ *
O - 0 | Ly
0.042 1.042 2042 3042 4042 5042 6.042 0.042 1.042 2042 3.042 4.042 5042 6.042

Response Time (sec) Response Time (sec)

Figure 1 Response Time of Text Data in Experiment 1

Figure 2(a) illustrates the mean and the range of response times of text data from Figure
1 into one graph and shows that the mean response time of text data when using our process
control mechanism is faster than when not using it. This case produced the best improvement
of the response time of text data for this experiment and in the past [6], because the coexisting
processor-bound process always caused the processor to become bottlenecked and the server
processes waiting for HTML files requests from browsers were always in the wait state at least
30 seconds which was more than SLP (20 seconds).

6042 1 + MEAN 10572 + MEAN
gS.O42 r 'g
= — 9572
E 4.042 + .g |
= =
®3.042) & 8572 |- 1
c c
o) o
g2042 | ! 1 7]
o X 7572 -

1.042 -

0.042 6.572

unused used(RW=3) used(RW=6) used(RW=9) unused used(RW=3) used(RW=6) used(RW=9)
(a) Response Time of Text Data (b) Response Time of Image Data

Figure 2 The Effect of Our Process Control Mechanism in Experiment 1

The rest of the experimental results will be shown like figure 2(a).

Figure 2(b) illustrates the response time of image data to a request in seconds. This figure
shows that the smallest response times when RW = 3,6,9 and the mean response times are not
as fast as when not using our process control mechanism. This is expected and is due to our
policy of giving processes handling HTML files priority over all other processes including server
processes handling Image files.

— 925 —

In experiment 2 and 3, the results were desirable. Unfortunately, there is not sufficient space
to discuss the results in this extended abstract. So, if this extended abstract gets accepted, we
will also discuss the rest of the experimental results in the full paper.

The experimental results show that a lot of accesses from browsers at the same time can cause
the processor of the server machine to become bottlenecked. Also, the parameter SLP is effec-
tively predicted and updated based on the Web server’s execution behavior by our mechanism,
and is comparable to experiment 1 which for our process control mechanism produces the best
improvement.

4 Conclusion

The total cost of system maintenance is estimated to comprise at least 50% of total life cycle
costs. Half of the maintenance cost is spent on changes to accommodate changing user require-
ments. The following idea could be a way to reduce the maintenance cost due to adapting
the software to new or changed user requirements. Our idea is that by increasing operating
system abilities to observe the software’s execution behavior and alter the software’s execution
behavior based on observed results, the operating system could optimize software execution
behavior allowing user requirements to be satisfied without making any changes to the existing
software and hardware. We have already applied this idea to a Web server and evaluated the
performance of a Web server in simple cases [6] and the user requirement given consideration
was improving response time when the processor of the server machine became bottlenecked.
In this paper, we evaluated the performance of a Web server when it is busy which is a more
realistic situation. The experimental results showed that the performance of the Web server was
improved greatly. This means that a lot of accesses from browsers at the same time can cause
the processor of the server to become bottlenecked and the parameter we used to determine the
optimal execution of the Web server was effectively predicted and updated based on the Web
server’s execution behavior by our mechanism.

References

[1] B.W. Boehm, Software engineering, IEEE Transactions on Computer C-25, pp.1226-
1241,December 1976.

[2] B.P. Lientz and E.B. Swanson, Software Maintenance Maintenance Management, Addison-

Wesley, 1980.

[3] Sutherland, J., “Business Objects in Corporate Information Systems”, ACM Computing
Surveys, 27(2), pp.274-276, June 1995.

[4] Chris F. Kemerer, A Longitudinal Empirical Analysis of Software Evolution, International
Workshop on Principles of Software Evolution, pp. 23-28, April 1998.

[5] Hans Van Vliet, Software engineering:Principles and Practice, John Wiley & Sons Ltd,
1992.

[6] Sukanya Suranauwarat and Hideo Taniguchi, Process Scheduling Policy for a WWW Server
Based on its Contents, Trans. of IPSJ Vol.40, No.6 (to appear) (In Japanese).

— 26 —

