Operating Systems Support for the Evolution of Software:
An Evaluation Using WWW Server Software

Sukanya Suranauwarat

Hideo Taniguchi

Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka 812-8581, Japan
{sukanya,tani}@csce.kyushu-u.ac.jp

Abstract

We believe that improving an operating system’s
support for the evolution of software is vital to our goal
of reducing the significant sum spent on adapting ezist-
ing software to changing user requirements, especially
to improve the performance of software. Therefore, we
proposed the idea that by increasing an operating sys-
tem’s abilities to observe the software’s execution be-
havior and evolve its execution behavior using observed
results, an operating system could adapt existing soft-
ware to changing user requirements without making any
changes to the software. We integrated the above abili-
ties into a CPU scheduling mechanism in an operating
system, and verified the usefulness of our idea using
existing software, i.e., a World Wide Web (WWW)
server. In this case, our scheduling mechanism alters
the execution behavior of a WWW server by giving pref-
erential use of the CPU resource to server processes
handling HTML file requests. This allows the user re-
quirement, which is the enhancement of response time
during periods of high demand, to be satisfied. In or-
der to determine which processes are server processes
handling HTML file requests, we introduced scheduling
parameters SLP and RW. In this paper, we describe
how we predicted and updated parameter RW based on
the observed execution behavior of a WWW server, and
present the experimental validation of our method.

1. Introduction

Estimates of the annual cost of maintaining soft-
ware already written vary widely, but range between
50% and 80% of the total software development bud-
get in any given period [1]-[3]. In other words, for ev-
ery dollar spent on developing software, it is claimed
that at least a further dollar will be spent on software

292

maintenance during the life of the software. There-
fore, software maintenance is an area where even small
improvements to the process can potentially reap sig-
nificant benefits [4].

When looking for a way to reduce the maintenance
cost, it is worth while to take a look at the cost spent
on each maintenance activity; and studies have shown
that over 50% of the cost is spent on changes to ac-
commodate changing user requirements. Changes in
user requirements are inevitable. Software models part
of reality, and reality changes. So the software has to
change too. It has to evolve. Keep this in mind, our
goal is to reduce the significant sum spent on the evo-
lution of software due to changing user requirements,
especially to improve the performance of software. And
this goal could be achieved by using the following idea.
Our idea is that by increasing an operating system’s
abilities to observe the software’s execution behavior
and evolve its execution behavior using observed re-
sults, an operating system could adapt existing soft-
ware to changing user requirements without making any
changes to the software. In other words, by using these
abilities, an operating system could optimize a soft-
ware’s execution behavior allowing user requirements
to be satisfied without any changes to the existing soft-
ware.

We decided to integrate the above abilities into a
CPU scheduling mechanism in an operating system,
and verify the usefulness of our idea using existing soft-
ware, i.e., a World Wide Web (WWW) server. In this
case, our scheduling mechanism alters the execution
behavior of a WWW server by giving preferential use
of the CPU resource to any process of a WWW server
that is predicted to be a server process handling an
HTML file request. This allows users to view text and
the general layout of a WWW page in a timely man-
ner during periods of high demand resulting in the user
requirement, the enhancement of response time when
there is a heavy demand on the server, to be satis-

fied without making any changes to the existing server
software.

In order to predict or determine which processes are
server processes handling HTML file requests, we intro-
duced scheduling parameters SLP and RW. A descrip-
tion of how to predict and update SLP based on the
observed execution behavior of a WWW server that
includes a performance evaluation has already been re-
ported in [5]-[7]. And, our experimental results show
that the response time of the server is improved when
SLP is set using the proposed method. However, the
degree of improvement varies according to how RW is
fixed. To be more precise, the more the value of RW
reflects the actual behavior of server processes han-
dling HTML files, the better the performance enhance-
ment will be. Since the execution behavior of a WWW
server generally changes according to the service de-
mand placed on it (i.e., the files it is requested), fix-
ing RW at some values will only slightly improve the
performance. Therefore, in order to always obtain the
best performance, RW should also be predicted and up-
dated automatically to the changing server’s execution
behavior that we observe.

In this paper, we describe how we predicted and
updated parameter RW and present experimental val-
idation of our method.

The remainder of this paper is organized as fol-
lows. Section 2 provides background information on
the WWW. Section 3 is a brief overview of our schedul-
ing mechanism. Section 4 describes how to predict and
update RW. Section 5 describes our experiments and
explains the results we obtained. Section 6 offers our
conclusions and future work.

2. The WWW

The WWW is based on the client-server model
[8],[9]. That is, users access WWW pages provided
by WWW servers via WWW clients, mainly browsers.
WWW pages are written in the HyperText Markup
Language (HTML) and stored on a disk as text files
called HTML files. An HTML file contains text data
that users will view and HTML tags that specify struc-
ture for the text data as well as formatting hints. Be-
cause an HTML file uses a text representation, non-
text data such as images are not included directly in
the HTML file. Instead, a tag is placed in the HTML
file to specify the place at which an image should be
inserted and the source of the file that stores it (Image
file). HTML and Image files account for more than 90%
of the total requests to a server [10],[11]. Therefore, the
WWW page in this paper consists of an HTML file and
an Image file.

293

WWW clients. A user can access the information
on the WWW by using a browser, such as Netscape
Navigator, Mosaic, or lynx. When the user selects a
WWW page to retrieve (usually, by clicking a mouse
on a hyperlink), the browser creates a request to be sent
to the corresponding WWW server and then waits for
a response. When the response arrives, the browser
interprets and processes the HTML file sent back by
the server, and then displays the text data for the user
to view. During the interpretation, if the WWW page
also contains other types of data such as an image, then
the browser will request the Image file from the WWW
server.

WWW servers. The purpose of a WWW server is
to provide WWW pages to WWW clients that request
them. The server software we used is Apache version
1.2.5, the pre-forking model server. In this model, a
master process pre-fork a pool of child server processes
to handle requests. However, the master process does
not handle any part of the request. In this paper, we
refer to each child server process as a server process.

3. Overview

Our scheduling mechanism is composed of two parts:
the logging mechanism and the process control mech-
anism. We observe the execution behavior of a soft-
ware application and create/update the observed re-
sults called PF'S (Program Flow Sequence) through the
logging mechanism. And we alter the software applica-
tion’s execution behavior using this PFS through the
process control mechanism. The following sections de-
scribe each mechanism in more detail, with emphasis
on our example software application, which is a WWW
server.

3.1. Logging Mechanism

When a WWW server is running, a log is collected.
A log is a sequence of entries describing process iden-
tifier, process state and time. And based on this log,
a sequence called PFS, which is the predicted behavior
of a process, is created or updated for each server pro-
cess. PFS is a sequence of entries describing process
state and time spent.

3.2. Process Control Mechanism

As the demand placed on a WWW server grows,
the number of simultaneous requests it must handle
increases. As a result, users see slower response times.
To be more precise, it takes a longer time for the text
data stored in an HTML file to show up on browsers so

that users can view the contents. This situation could
be one in which it is most desirable for users to improve
the response time of a WWW server, since they tend to
get frustrated if it takes a long time to view a WWW
page [12]. Hence, in such a situation, our scheduling
goal is to display the text data for the user to view as
soon as possible while the images are trickling in and
also to allow the user to stop loading if the page is not
sufficiently interesting to warrant waiting. A method
to achieve this goal is described below.

Most processes, except the currently executing pro-
cess (i.e., process that is in the run state), are in one of
two queues: a ready queue or a sleep queue. Processes
that are waiting for the CPU to become available (i.e.,
in the readystate) are placed on a ready queue, whereas
processes that are blocked awaiting an event (i.e., in
the wait state) are located on a sleep queue associated
with the event. When a process is blocked awaiting
an event to happen, if the resources (e.g., a hard disk)
needed for the event are being used by any other pro-
cess, then that process needs to wait for those resources
to become available. Next, that process needs to wait
for the operation (e.g., input/output) it initiated to be
completed. By reducing the time waiting for the CPU
to become available in the ready queue or for the re-
source needed for an event to become available in the
sleep queue, we can achieve an enhanced response time.
According to this, we proposed the scheduling policy
that when a CPU (a hard disk or a network communi-
cation) becomes bottlenecked, any server process han-
dling an HTML file will be moved to the head of the
ready queue (sleep queue associated with the event).
Note that the bottleneck of the CPU mentioned in this
paper is the situation in which the CPU is busy and
there is more than one process waiting in the ready
queue.

When we discussed the process control mechanism
that implements the above policy focused on the bottle-
neck of the CPU, we had two problems: how to detect
which processes are server processes handling HTML
files, and how to operate the ready queue. To answer
these questions we found that we needed to look at the
detailed execution behavior of a WWW server. We an-
alyzed the behavior of server processes based on PFS
and found that a server process handling an HTML file
is the process that waits for a request from a browser,
and the time it waits for a request is relatively long.
Also, after waiting for a request, it tends to change be-
tween run state and wait state a number of times. This
number of changes is proportional to the size of files it
handles, i.e., HTML files (which are generally smaller
than Image files). In other words, any server process
handling an HTML file has two characteristics: After

294

waiting for a long time in the wait state (characteristic
1), it tends to cycle between run state and wait state a
number of times but fewer times than that of a server
process handling an Image file (characteristic 2).

To deal with the first problem, we introduced
two parameters into our mechanism in order to de-
termine which processes are server processes handling
HTML files: long wait threshold (its value is denoted
by SLP) and run state/wait state threshold (its value
is denoted by RW). If the time spent by a process in
the wait state before moving to the run state is more
than SLP, and the number of times the process changes
between run state and wait state is less than RW, then
we determine that it is a server process handling an
HTML file. By these two parameters, we can detect
which process appears to be a server process handling
an HTML file.

To deal with the second problem, our mecha-
nism puts any process that has characteristic 1 at the
head of ready queue and moves that process to the back
of the ready queue when that process loses character-
istic 2. The reason processes that lose characteristic 2
are moved to the back of the ready queue is that in
the case that server processes handling Image files are
mistaken as server processes handling HTML files be-
cause they exhibit characteristic 1. In other words, a
server process handling an Image file will be treated as
a server process handling an HTML file when it runs
after a long wait, until the number of changes between
run state and wait state is more than RW.

4. Method of Predicting RW

We analyzed the execution behavior of a WWW
server based on its PFS and found that the number
of times a server process changes between run state
and wait state is proportional to the size of the file
it handles (i.e., HTML file or Image file). In other
words, the number of changes is proportional to the
number of disk accesses required to retrieve the re-
quested files. Since HTML files are generally smaller
than Image files, the number of times a server pro-
cess handling an HTML file changes between run state
and wait state is smaller than that of a server process
handling an Image file. Therefore, the smallest num-
ber of times each server process changes between run
state and wait state is determined from its PFS for
each period, then RW for the next time period is set
to the greatest of these values. We describe how to
predict RW, in a more general way, in the following
steps:

When a server process is created, that process
will be registered. For each registered process,

step 1:

a PFS is generated.

step 2: The PFS for registered server processes is gen-
erated once every period, where the period
length is predetermined. The periods are the

same for PFS and RW.

At the end of each period, the PFS for each
registered process will be updated. Based on
the PFS for each process, we find the small-
est number of times each process changed be-
tween run state and wait state. The RW for
the next time period is set to the greatest of
these values.

step 3:

When a registered process terminates, it be-
comes unregistered, in other words, the PFS
for that process will no longer be updated.

step 4:

In step 3, we find the smallest number of times each
process changes between run state and wait state, this
is actually quite an involved process and requires a
more detailed description. First, for each process, each
number of times it changes between run state and wait
state until the time in the wait state exceeds SLPmin
(describe later) is stored in an array called RWbuffer.
Second, we set what the minimum length of time is for a
long wait, SLPmin. Third, we set a minimum threshold
for RW, RWmun, in order to avoid considering the num-
ber of changes due to anything but the number of disk
accesses for requested files, for example, the number of
changes due to multiple server processes calling accept
system call on the same listening descriptor!, which re-
quires one or two changes per occurrence. At the end of
each time period, from the updated PFS, the number
of changes between run state and wait state (counter)
are counted until the time in the wait state exceeds
SLPmin. When SLPmin is exceeded, the counter is
compared to RWmin, if it is greater than RWmin then
the value is stored in the RWbuffer for that process,
otherwise it is discarded. The counter is then reset
and it starts counting from where it left off?>. The mini-
mum values from each process’ RWbuffer are compared
and RW for the next time period is assigned the largest
value. The reasons for using SLPmin, RWmin and RW-
buffer are described below. SLPmin is used so that RW
can be determined independently from SLP. RWmin is
used so that unrelated changes between run state and

1When the first client connection arrives, all those multiple
server processes are awakened. However, only the first process
of those processes to run will obtain the connection and the rest
will all go back to sleep. Note that if a lock of some form around
the call to accept, so that only one process at a time is blocked in
the call to accept, then the remaining processes will be blocked
trying to obtain the lock.

2The counter is independent of the PFS update period (ie.,
the counter continues counting even when the time period ends).

295

wait state will be disregarded. RWbuffer is used so that
RW for the next time period is based more on a recent
history of the processes rather than just the latest pe-
riod’s behavior. Also by using RWhbuffer, if processes
run abnormally for a short period of time, then RW
will not be effected also it tends to cause RW to reflect
the behavior of the server processes more accurately.

5. Experimental Evaluation

We performed experiments to evaluate the effective-
ness of our scheduling mechanism when RW is pre-
dicted and updated based on PFS automatically every
500 milliseconds. Our mechanism was implemented as
modifications to the BSD/OS 2.1 kernel.

5.1. Experimental Setup

In all experiments, the server machine was a
233MHz AMD-K6 PC, with 64MB of memory, running
our modified version of BSD/OS 2.1. The client ma-
chines were 200MHz Pentium Pro PCs, with 64MB of
memory, running BSD/OS 2.1. Our server and client
software were Apache 1.2.5. and Netscape Navigator
3.04 respectively. All experiments were conducted in
single user mode, and the operating system’s 1/O buffer
cache in the server machine as well as each browser’s
cache were disabled during the experiments, in order
to see the effect of our scheduling mechanism clearly.
Also, RWhbuffer is set to store up to 5 values. RWmin
is set to 2. SLPmin is set to 200 milliseconds.

5.2. Experimental Results

5.2.1. Validation of Our Scheduling Mechanism

In this section, our experiment was designed to verify
that our scheduling mechanism with the new embedded
function to predict RW works as expected. This exper-
iment was conducted using one client machine and the
server machine in a 10 Mbps Ethernet environment. In
order to see the effect of our method clearly, we ran a
computation intensive background process that bottle-
necked the CPU throughout the experiment. And, we
set the browser to access the WWW server in such a
way that SLP would be predicted 100% correctly, that
is, it accessed the WWW server every 30 seconds while
SLP was fixed at 20 seconds.

First experiment. In this experiment, we var-
ied the size of the HTML files from 1, 3, 5, and 7
times the original size (1,772 bytes) while the size of
the Image file was fixed at 43,770 bytes. For each
size of the HTML files, we measured the 5 trial times

Table 1. The number of disk access(es) re-
quired to retrieve an HTML file.

the number of disk accesses

size of HTML file

consecutive | non-consecutive
1 time (1,772 bytes) 1 time 1 time
3 times (5,316 bytes) 1 time 2 times
5 times (8,860 bytes) | 2 times 3 times
7 times (12,404 bytes) | 2 times 4 times

of timel and time2, when RW was fixed at 1, 3, 5
(RW=1,3,5) and when RW was set automatically based
on PFS (RW=auto). Timel is the time from requesting
a WWW page until text data starts displaying. Time2
is the time from requesting a WWW page until image
data displays completely. We will refer to the averages
of 5 trial times of timel and time2 as response times of
text data and image data respectively.

Figure 1 shows experimental results plotted with the
response time on the y-axis normalized by the response
time when using a conventional time-sharing mecha-
nism. To analyze the obtained results, the file read-
ahead operation in the operating system needs to be
taken into consideration. Since it will have an effect on
the number of disk accesses required to retrieve HTML
or Image files, which consequently affects the number
of times a corresponding process changes between run
state and wait state.

In UNIX systems, files are stored on the disk as a
number of blocks, each of which has a size of 4 KB.
In order to improve performance, operating systems
usually perform a file read-ahead, that is, operating
systems will asynchronously prefetch the next block of
file data with each read request if a requested file is
stored in consecutive blocks (in this case, 8 KB of data
will be read instead of 4KB). Table 1 summarizes the
number of disk accesses required to retrieve HTML files
when they are stored in consecutive blocks and when
they are not.

Table 1 shows that the number of disk accesses is
at most 3 when the size of the HTML files is in the
range of 1 to 5 times the original size. As a result,
the response times of text data when RW=3 and when
RW=5 are about the same as shown in Figure 1(a). In
the same way, the response times when RW=auto are
improved. However, when the size of the HTML file is
7 times the original size, the improvement when RW=5
is better than when RW=3. This could be because the
HTML file in this case is split up into non-consecutive
blocks causing the disk to be accessed 4 times (which
is more than the RW value of 3) as shown in Table 1.

296

3 ti : -1 —
% 16F (a) Response time of text data swz% g
EL14f RWeao - |
S12f 1
o 1f B—
o8]
Bo6|]
04r P I
& 0.2 ;’/_,.—4' 4
01 3 5 7
Size of HTML file (x1772 bytes)
§1.8

| (b) Response time of image data swi% ol

RW=5 &
RW=auto -»-

Size of HTML file (x1772 bytes)

Figure 1. The effect of RW for various sizes of
HTML files (1, 3, 5 and 7 times the original
size).

On the other hand, the results when RW=5 and when

RW=auto are about the same.

Figure 1(b) shows that the response times of image
data are improved. This could be because our pol-
icy also gives favorable treatment to any server process
handling an Image file that has waited for a long time
in the wait state, over other processes including the
computation intensive background process.

However, we did not notice any difference in the
degree of improvement between the results when
RW=auto and the results when RW=5b in which our
mechanism produces the best improvement among
fixed values of RW. So, we decided to measure the
server performance when the size of the HTML files
is increased more, which results in an increase in the
number of times a server process handling an HTML
file changes between run state and wait state. And our
results show that the response times of text data when
RW=auto are better than when RW=5, after the sizes
of HTML files are more than 40 times the original size
at which the number of disk accesses whether the file
are stored in consecutive blocks or not is more than
the RW value of 5. Therefore, it can be said that RW
is accurately predicted and set by our mechanism, and
setting RW based on PFS reflects the behavior of server
processes.

6r -, time-sharing | 16[* L,Rw=1 | 16 . " RW=3]
14r . . 1 14r . . 1 ar- 1
12r . . 12r . i 1 12r .t 1
% 101 L 1 g0, - 1 101 - . 1
O 8r . 4 D 8re 4 D 8r . 4
6 . 1 6 © ., 1 6 .. 1
4r . . 1 4r . . 1 4r .. 1
2r . T .12 1
o o o e
01 2 3 456 7 01 2 3 456 7 01 2 3 456 7
Response time (sec) Response time (sec) Response time (sec)
16 - Rw=5 | 16; RW=auito |
14 . 1 14r . 1
12 . , 12+ . . i
& 101 e 1 g 101 . . J
D 8« 4 D 8» 4
6 * . 1 6 . 1
4r <, 1 4r . . 1
2r .. 1 2 . . 1
o L ot
01 2 3 456 7 01 2 3 456 7

Response time (sec)

Response time (sec)

Figure 2. The distribution of response times of text data when the size of HTML file is the original

size.

5.2.2. Response Time During A Number of Si-
multaneous Requests

In this section, all experiments were designed to exam-
ine the performance of the server when it is accessed
by many requests simultaneously. All tests were con-
ducted using three client machines and the server ma-
chine in a 10 Mbps Ethernet environment. Generally,
HTML files are small [13],[14], so varying the sizes of
HTML files in the same range as in the first experiment
should be sufficient for the rest of the experiments.

Second experiment. In this experiment, we mea-
sured the response times when HTML files and Image
file are respectively varied and fixed in the same way as
in the first experiment. In order to see the effect of our
predicting RW method clearly, we ran three browsers
from each of the three machines simultaneously; this
number can cause bottleneck of the CPU, which is in-
dicated by the non-zero length of the ready queue, dur-
ing the short period of simultaneous accesses [6]. And,
we set all of the browsers to access the WWW server
simultaneous every 30 seconds while SLP was fixed at
20 seconds, so that SLP would be predicted 100% cor-
rectly. Note that all browsers accessed 18 unique URLs
(Uniform Resource Locator), all of which have the same
content. The experimental results are shown in Figures
2 to 5.

Figure 2 shows the response times of text data when
the size of HTML file is the original size. For compar-

297

ison, we also measured the performance with a con-
ventional time-sharing mechanism. Figure 2 plots the
URLs in numerical sequence on the y-axis against the
response time of text data to a request in seconds. This
figure shows that the distributions are skew toward the
small values when using our mechanism.

In order to make the experimental results easier to
understand and discuss, we put all the data shown in
Figure 2 into one graph as shown in Figure 3(a). Figure
3(a) illustrates the minimum, the maximum, the mean,
the median values, and the range or the distribution of
the response times of text data to a request in seconds.
Note that the median value can be skew if we calculated
it from the response times of text data, each of which is
an average of 5 trial times of timel. So we calculated it
directly from the raw data, that is, we found the mean
of the two middle values from 90 trial times of timel
arranged in order of magnitude. Figure 3(a) shows that
the mean response times of text data when RW=1, 3, 5
and auto are improved 22.9%, 21.0%, 19.0% and 31.8%
respectively, while the median response times are im-
proved 20.4%, 14.4%, 15.3% and 36.5% respectively.
These figures are calculated by "T_b x 100%, where a
and b are the mean (or the median) values when not us-
ing and using our mechanism respectively. Besides, the
maximum response times are also pressed down when
using our mechanism, especially when RW=auto.

The experimental results pertaining to image data
shown in Figure 3(b) are plotted in the same way. This

7 ‘ ‘ ‘ ‘ ‘
(a) Responsetime of text data ~ max =
~—~ 67 mean o
i ! c e
~— 5 | . . x .
(0] ' * '
S ST S
g’ 2r ¢ f s s @]
1t ‘ : : 1 1
0 * x I X %
unused RW=1 RW=3 RW=5 RW=auto

14 ‘ ‘ ‘ ‘

121 (b) Response time of image data |
] 10} AR S
g - g § s .

; 8r ; x B : 4

S 6F . b

o

g_ 4r x max x |

o rgd% o
2r m min x|
0

unused RW=1 RW=3 RW=5 RW=auto

Figure 3. The response times when the size
of HTML. file is the original size.

figure shows that the mean and the median response
times when using our mechanism are not fast as when
not using ours. This is expected and is due to our pol-
icy of giving favorable treatment to processes handling
HTML files over all other processes including server
processes handling Image files.

In order to compare and discuss each set of results,
we plotted the minimum, the maximum, the mean and
the median values of response times for each size of
the HTML files as shown in Figures 4 and 5. Note
that each response time on the y-axis is normalized
by its response time for a conventional time-sharing
mechanism.

Figure 4 shows that the maximum response times of
text data are pinned down when using our mechanism
even though the minimum values are higher in some
cases. In addition, the mean and the median values for
each size of HTML files become smaller. The results
imply that the service of the WWW server will be more
equally distributed among users and users will perceive
a faster response when using our mechanism. Also, our
mechanism produces the best improvement for every
case when RW=auto.

Figure 5 shows that the affect of unfairness due
to our policy of giving favorable treatment to server
processes handling HTML files on the max, the mean
and the median response times of image data are rela-
tively small. This means that the server processes han-
dling Image files pay little penalty under our scheduling

298

mechanism.

Third experiment. This experiment measured the
performance of the server in a more realistic situation,
that is, when it is accessed randomly by multiple re-
quests at the same time. This test was conducted in the
same environment as in the second experiment, except
the browsers were set to access the WWW server ran-
domly but at the same time. In this experiment, not
only RW but also SLP were set automatically every 500
milliseconds due to the random accesses from browsers.
Also, our previous work [6] has already showed that
SLP is effectively predicted and updated by our mech-
anism based on the execution behavior of the WWW
server. Therefore, the affect on the results of auto-
matically setting SLP based on PFS can be thought as
small. The experimental results are shown in Figures
6 and 7.

Figures 6 and 7 show that the trend of the results is
similar to those in the previous experiment. That is, in
Figure 6, the maximum response times of text data are
pinned down when using our mechanism even though
the minimum values are higher in some cases. And,
Figure 7 shows that the affect of unfairness due to our
policy on the max, the mean and the median response
times of image data are relatively small. Also, in this
experiment our mechanism generally produces the best
improvement when RW=auto.

However, unlike the results in Figure 4(d), the me-
dian values in Figure 6(d) when RW=1 and 3 and the
size of HTML file is 3 times the original size are bigger
than when not using our mechanism. In this case, we
decided to look at each data (i.e., each timel of the 90
trial times) in detail, besides the two middle values we
used to calculate the median. And we found that the
percentage of the number of timel’s for RW=1 and 3
that are faster than those at the same order when not
using our mechanism are respectively 84% and 75%.
However, those numbers used to calculate the median
response times for both RW=1 and 3 are unfortunately
not in this large percentage. As a result, the median
response times for RW=1 and 3 in this case are higher
while their mean response times shown in Figure 6(c)
are smaller. Also, for all sizes of the HTML files, the
percentage of the number of timel’s when using our
mechanism that are faster than those when not using
our mechanism, are in the range of 74% to 100% for
this experiment and in the range of 66% to 98% for the
previous experiment.

Therefore, by using our scheduling mechanism the
user requirement, which is the enhancement of response
time during periods of high demand, can be satisfied
without making any changes to the existing WWW
server software.

(8) max

RW=1 -— |
RW=3 &-
RW=5 =
RW=auto -»-

Size of HTML file (x1772 bytes)

() mean RW=1 o

Size of HTML file (x1772 bytes)

gL (®) min RWoL +
= 14r RW=3 &-
® RW=5 -
§ 12 RW=auto -»- 7
210t »]
E 8 *
§ 66\'\]
S 4r ™S 1
g 2““"—“-:5\:\ ,___,__..___.-_-_-_—_'_—.Q-—_-.—_-_—_-_—_._,_‘:ii

o1 3 5 7

Size of HTML file (x1772 bytes)

gL8 (d) median 1 oo
816 RW=1
®

Size of HTML file (x1772 bytes)

Figure 4. The effect of our mechanism on response times of text data, when browsers access the
server every 30 seconds at the same time.

’3?1.8

(8) max

2o et
0.4 R_W;S -
D:02 RW=auto -*-

o1 3 5 7
Size of HTML file (x1772 bytes)
=18
(c) mean =1 o
Si6 RW=1

x 0.2

3 5 7
Size of HTML file (x1772 bytes)

Response time (normalized)

x 0.2

(b) min RW=1 o

1 3 5 7
Size of HTML file (x1772 bytes)
(d) median RW=1 ~—
[RW=3 =&- |
L RW=5 - |
RW=auto -x
%rg = _‘_i R S S
1 3 5 7

Size of HTML file (x1772 bytes)

Figure 5. The effect of our mechanism on response times of image data, when browsers access the
server every 30 seconds at the same time.

299

g18 " (@max 1 o g9 " ®min 1 o
EL14r RW=auito - | g 7] RW=aLito -x-- |
g 6 1
@ 5[1
gl -
g 3
g. 2
g1
0
Size of HTML file (x1772 bytes) Size of HTML file (x1772 bytes)
g18 " (9 men 1 o g18 " (d) median 1 o
El4] RW=auito - | gl4r RW=auito - |
§1.2
o 1)
£os!
go.e
047 1
r0.2] 1
01 3 5 7
Size of HTML file (x1772 bytes) Size of HTML file (x1772 bytes)

Figure 6. The effect of our mechanism on response times of text data, when browsers access the
server randomly at the same time.

@1.8 T (3 max

=1 - (b) min —1 o
£ 1471 RW=aLito - | RW=aLito - |
§1.2 r 1
o 1& ST oy S———

-g 081 1
go.e i 1
0471 1
r02] 1
0y 3 5 7 7
Size of HTML file (x1772 bytes) Size of HTML file (x1772 bytes)
=18 =18 ‘ "
(c) mean =1 o -8 (d) median =1 o
El4] RW=auto -x- | gl4r RW=auto -x- |

01 3 5 7 01 3 5 7
Size of HTML file (x1772 bytes) Size of HTML file (x1772 bytes)

Figure 7. The effect of our mechanism on response times of image data, when browsers access the
server randomly at the same time.

300

6. Conclusions

This paper described how we predicted and auto-
matically updated scheduling parameter RW, which is
one of the two scheduling parameters used to determine
which processes are server processes handling HTML
file requests, based on the observed execution behavior
of a WWW server called PFS. We also verified the ef-
fectiveness of our proposed method by evaluating the
performance of the WWW server experimentally when
it 1s accessed by many requests at the same time.

Our experimental results when browsers access the
server periodically at the same time show that the
maximum response times of text data when using our
scheduling mechanism are pinned down compared with
those when not using our scheduling mechanism, even
though the minimum values are higher in some cases.
Besides, the mean response times become smaller and
the number of smaller response times increases. These
results imply that the service of the WWW server will
be more equally distributed among users and users will
perceive a faster response when using our scheduling
mechanism. Also, our scheduling mechanism generally
produces the best improvement when RW is predicted
and updated automatically based on PFS. Moreover,
the effect of unfairness due to our policy of giving fa-
vorable treatment to server processes handling HTML
files on the response times of other types of data, in this
case, image data, are relatively small. In a more realis-
tic situation, that is, when the WWW server is accessed
randomly by multiple requests at the same time, the
experimental results also show the same trend. There-
fore, by using our scheduling mechanism the user re-
quirement, which is the enhancement of response time
during periods of high demand, can be satisfied with-
out making any changes to the existing WWW server
software.

Future work will evaluate the usefulness of our idea
using other existing software applications, and build a
model of the software application using the evaluated
results, and generalize our scheduling mechanism to
support the evolution of the software applications we
model.

Acknowledgements

We would like to thank James Michael Perry for his
assistance in proofreading this paper.

References

[1] N.J. Ford and M. Woodroffe. Introducing Software
Engineering. Prentice-Hall, 1994.

301

[2] R. S. Pressman. Software Engineering: A Practi-
tioner’s Approach, 3rd ed.. McGrawHill, 1992.

[3]

I. Sommerville. Software Engineering, 4th ed..

AddisonWesley, 1992.

C. F. Kemerer. A longitudinal empirical analysis
of software evolution. In Proc. of the 1998 Inter-
national Workshop on Principles of Software Evo-
lution, 1998.

S. Suranauwarat and H. Taniguchi. Process
scheduling policy for a WWW server based on its
contents. Trans. IPSJ, 40(6):2510-2522, 1999. (in

Japanese)

S. Suranauwarat and H. Taniguchi. Evaluation of
process scheduling policy for a WWW server based
on its contents. In Proc. of the 1999 IPSJ Com-
puter System Symposium, 1999.

S. Suranauwarat, H. Taniguchi, and K. Ushijima.
Evaluation of process scheduling mechanism for a
Web server based on its behavior while executing.
In Proc. of the 6th Asia Pacific Software Engineer-
ing Conference, 1999.

D. E. Comer. Computer Networks and Internets,
2nd ed.. Prentice-Hall,1999.

3rd ed..

A. Tanenbaum. Computer Networks,
Prentice-Hall, 1996.

M. F. Arlitt and C. L. Williamson. Internet Web
servers: Workload characterization and perfor-
mance implications. IEEE/ACM Trans. Network-
ing, 5(5): 631-645, 1997.

[10]

[11] C. Cunha, A. Bestavros, and M. Crovella. Char-
acteristics of WWW client-based traces. Tech.
Rep. BU-CS-95-010, Computer Science Depart-

ment, Boston University, 1995.

C. Musciano. Tuning Uniz for Web
Service. URL:http://www.sunworld.com/swol-01-
webmaster.html, 1996.

[12]

[13] M. E. Crovella and A. Bestavros. Self-similarity

in world wild web traffic: Evidence and possi-
ble causes. In Proc. of the 1996 ACM SIGMET-
RICS International Conference on Measurement
and Modeling of Computer Systems, 1996.

[14] J. M. Almeida, V. Almeida, and D. J. Yates. Mea-
suring the behavior of a World-Wide Web server.
Tech. Rep. BU-CS-96-025, Computer Science De-

partment, Boston University, 1996.

