Vol.0 No. 0

Transactions of Information Processing Society of Japan

Evaluation of Process Scheduling Policy for a WWW Server

based on Its Contents

SUKANYA SURANAUWARAT t and HipEo TANIGUCHT*

Traditional process schedulers in operating systems control the sharing of the processor re-
sources among processes using a fixed scheduling policy based on the utilization of a computer
system such as a real-time or a timesharing system. Since the control over processor allocation
is based on a fixed policy, not based on contents or behavior of processes, this can hinder an
effective use of a processor or can extend the processing time of a process unnecessarily. We
have already proposed a process scheduling policy, which responds to the behavior of multiple
processes of a WWW server, in order to improve the response time of a WWW server. This
policy gives any process of a WWW server that is predicted to be a WWW server process
handling a text data request from a browser priority over all other processes by moving it to
the the head of the ready queue where processes waiting for the processor to become available
are placed.

In this paper, we present the experimental evaluation of our proposed process scheduling
policy with regard to the number of simultaneous accesses from browsers and the processor

1959

load of the server machine, and explain the results we obtained.

1. Introduction

Traditional process schedulers in operating
systems control the sharing of the processor re-
sources among processes using a fixed schedul-
ing policy based on the utilization of a com-
puter system such as a real-time or a timeshar-
ing system. A real-time system’s scheduling
policy must be able to analyze or handle data
faster than they come in and it must also re-
spond to time events. There are many appli-
cations in which computations must be com-
pleted before specified deadlines") and missing
these deadlines are catastrophic. Therefore,
scheduling such applications has been an impor-
tant area of research in real-time systems (e.g.,
1)~4)). A timesharing system’s scheduling pol-
icy is to provide good response to interactive
users. Many commonly-used systems such as
Unix, Mach, and Windows NT generally use
conventional priority-based timesharing sched-
ulers®) .

Since the control over processor allocation is
based on a fixed policy which is determined by
the utilization of a computer system, not based
on contents or behavior of processes, where a
process is a program in execution, this can hin-
der an effective use of a processor or can ex-
tend the processing time of a process unneces-
sarily. Therefore, we proposed the idea called

t Graduate School of Information Science and Elec-
trical Engineering, Kyushu University

POS (Program Oriented Schedule)®). The idea
of POS is by increasing operating system ability
to alter the execution behavior of a program ac-
cording to the predicted behavior from the pre-
vious execution(s), the operating system could
optimize the execution behavior of the program
allowing user requirements (e.g., performance
enhancement) to be satisfied without making
any changes to the existing program. In order
to predict the execution behavior of a program,
the idea of POS requires that the operating sys-
tem has the ability to log the execution behav-
ior of the program in terms of process identifier,
process state and time. And based on this log,
the operating system will create the predicted
execution behavior of the program or update it
if it already exists.

One function in Windows 98, which users can
get “faster program start up” as performance
enhancement, uses an idea similar to that of
POS. That is the function improves the perfor-
mance of a user’s programs based on the previ-
ous usage without making any changes to the
programs. In other words, the function creates
a log file to determine which programs a user
runs most frequently. All such frequently used
files are then placed in a single location on the
user’s hard disk, which further reduces the time
needed to start those programs”) . However, the
function does not alter the execution behavior
of programs based on the previous usage which
is what our idea does. So, by using the func-
tion in Windows 98, the operating system can



2 Transactions of Information Processing Society of Japan 1959

control a user’s programs more efficiently until
a user’s programs start up (i.e., the operating
system can locate and open a user’s programs
faster), but it cannot execute or run a user’s
programs more efficiently.

We have already applied POS to the process
scheduler®®) . In 6), we proposed the process
scheduling policy that allows a process to con-
tinue its execution even though its quantum has
already expired when it is predicted that a pro-
cess needs a little bit more processor time to
complete its job. The objective of this policy
is to minimize processing time and/or context
switching cost of the process of the target pro-
gram. However, the target programs of this
policy are the programs that consist of only a
single process. So, we extended our work to
the programs composed of multiple processes
such as servers. Server performance is crucial to
client /server applications?). We used a WWW
server, which is a program that consists of mul-
tiple processes, as a sample server. And we pro-
posed a process scheduling policy for improving
the response time of a WWW server®. This
policy gives any process of a WWW server that
is predicted to be a WWW server process han-
dling a text data request from a browser prior-
ity over all other processes by moving it to the
the head of the ready queue where processes
waiting for the processor to become available
are placed. We also evaluated this policy ex-
perimentally in simple cases for the purpose of
verifying that our scheduling mechanism works
as expected.

In this paper, we present the experimental
evaluation of the proposed process scheduling
policy in more complicated and useful cases
compared with those in 8). First, we mea-
sure the performance of a WWW server in
terms of response time and compare the per-
formance of the proposed policy to that of a
conventional priority-based timesharing policy
when the WWW server is accessed by a lot of
browsers simultaneously. For a WWW server,
this kind of situation is more likely to be a real-
istic case compared with those in 8) where the
number of browsers accessing the WWW server
ranged from 1 to 3 and just two machines (a
client machine and a server machine) were used.
And this could be the situation in which it is
most desirable to improve the response time of
a WWW server. Second, we measure the effect
of the number of simultaneous accesses on the
processing ability of the server machine in terms

of response time and processor load. Then, we
find the relation between the number of simul-
taneous accesses and the response time, and the
relation between the number of simultaneous
accesses and the processor load.

The rest of this paper is organized as fol-
lows. Section 2 gives an example of the effect
of POS. Section 3 briefly overviews our schedul-
ing mechanism. Section 4 describes our exper-
iments and explains the results we obtained.
Section 5 offers our conclusions.

2. An Example of the Effect of POS

We used an easy example shown in Fig. 1
to identify how performance will be improved
when POS is applied to the process scheduler.

time-dice 1 second
—

O'ﬁl: 2 3 4 :5 ﬁétime

processA ——  —— —— — (second)
5.5 seconds
process B u— — S
4.1 seconds
(a) normal process switching
processA T — 5 —
55 secon 4 0.1 seconds delay
process B
3.1 seconds
(b) delayed process switching
Fig. 1 An Example of the Effect of POS.

In Fig. 1, process A and process B need re-
spectively 3.4 seconds and 2.1 seconds of pro-
cessor time to accomplish their jobs. Both pro-
cesses have the same priority and a time-slice
of 1 second. Figure 1(a) shows the process-
ing times of process A and process B when
using a conventional priority-based timeshar-
ing scheduler. The processing times of pro-
cess A and process B are 5.5 seconds and 4.1
seconds respectively. On the other hand, Fig-
ure 1(b) shows the processing times of process
A and process B when POS is applied. Based
on the predicted behavior that process B needs
only 0.1 seconds more processor time to com-
plete its job, the process scheduler delays pro-
cess switching by 0.1 seconds to allow process B
to complete its job. Delaying process switching
causes the processing time of process B to be
reduced to 3.1 seconds while that of process A
is still the same as in Fig. 1(a). Moreover, the
context switching cost of process A and B also
decrease.

This example also shows how the process
scheduling policy, we proposed in 6), controls



Vol.0 No. 0

the time-slice length of the object process, and
how the processing time and/or context switch-
ing cost of the object process will decrease when
using this policy.

3. Overview

Our process scheduling mechanism is com-
posed of two parts: the logging mechanism and
the process control mechanism. We log the ex-
ecution behavior of a WWW server and cre-
ate/update the predicted execution behavior
called PFS (Program Flow Sequence) through
the logging mechanism. And we alter the exe-
cution behavior of the WWW server by using
the process control mechanism.

3.1 Logging Mechanism

When a WWW server is running, a log is col-
lected. A log is a sequence of entries describing
process identifier, process state and time. And
based on this log a sequence called PFS, which
is the predicted behavior of a process, is cre-
ated or updated for each process of a WWW
server. Note that a WWW server is normally
composed of multiple processes. PFS is a se-
quence of entries describing process state and
time spent.

3.2 Process Control Mechanism

For this paper, the content of a WWW page
is pretty simple, that is, one which contains just
text data and image data. Text data and im-
age data are separately saved in a file written
in HTML (HTML file) and an image-formatted
file (Image file) respectively. After making a
request for a WWW page, the browser will in-
terpret and process the HTML file sent back
by the WWW server it requested and then dis-
play the text data. During the interpretation,
if the WWW page also contains image data,
then the browser will request the WWW server
again for the Image file. When a WWW server
is accessed by a lot of browsers simultaneously,
it takes time even for the text data which is nor-
mally much smaller than image data to show up
on browsers. This kind of situation could cause
users to give up waiting or to get tired of ac-
cessing such WWW servers. So, while a WWW
server is accessed by a lot of browsers simulta-
neously, it is much better if the text data shows
up faster. Therefore, we considered improving
the time from requesting a WWW page until
text data displays (response time).

Most processes, except the currently execut-
ing process (i.e., process that is in the run
state), are in one of two queues: a ready queue

Evaluation of Process Scheduling Policy for a WWW Server based on Its Contents 3

or a sleep queue. Processes that are waiting
for the processor to become available (i.e., in
the ready state) are placed on a ready queue,
whereas processes that are blocked awaiting an
event (i.e., in the wait state) are located on a
sleep queue associated with the event. When a
process is blocked awaiting an event to happen,
if the resources (e.g., a hard disk) needed for
the event are being used by any other process,
then that process needs to wait first for those re-
sources to become available. Next, that process
needs to wait again for the operation (e.g., in-
put/output) it initiated to be completed. By re-
ducing the time waiting for the processor to be-
come available in the ready queue or for the re-
source needed for an event to become available
in the sleep queue, we can achieve an enhanced
response time. According to this, we proposed
the process scheduling policy that when a pro-
cessor (a hard disk or a network communica-
tion) becomes bottlenecked, any WWW server
process handling an HTML file will be moved
to the head of the ready queue (sleep queue as-
sociated with the event)s). Note that the bot-
tleneck of the processor mentioned in this paper
is the situation in which the processor is busy
and there is more than one process waiting in
the ready queue.

When we discussed the process control mech-
anism that implements the above policy focused
on the bottleneck of the processor® , we had two
problems: how to detect which processes are
WWW server processes handling HTML files,
and how to operate the ready queue.

To answer these questions we found that we
needed to look at the detailed execution behav-
ior of a WWW server. We analyzed the behav-
ior of WWW server processes based on PFS and
found out that any WWW server process han-
dling an HTML file has 2 characteristics: it runs
after waiting for a long time in the wait state
(characteristic 1) and it tends to cycle between
run state and wait state fewer times than that
of WWW server process handling an Image file
(characteristic 2).

To deal with the fist problem, we introduced
two parameters into our process control mecha-
nism in order to determine which processes are
WWW server processes handling HTML files:
long wait threshold (its value is denoted by
SLP) and run state/wait state threshold (its
value is denoted by RW). If the time spent by a
process in the wait state before moving to the
run state is more than SLP, and the number



4 Transactions of Information Processing Society of Japan 1959

of times the process changes between run state
and wait state is less than RW, then we deter-
mine that it is a WWW server process handling
an HTML file. By these two parameters, we can
detect which process appears to be a WWW
server process handling an HTML file.

To deal with the second problem, our pro-
cess control mechanism puts any process that
has characteristic 1 at the head of ready queue
and moves that process to the back of the ready
queue when that process loses characteristic 2.
The reason processes that lose characteristic 2
are moved to the back of the ready queue is
that sometimes WWW server processes han-
dling Image files are mistaken as WWW server
processes handling HTML files because they ex-
hibit characteristic 1.

How to predict and update SLP: We analyzed
the execution behavior of a WWW server based
on PFS and found that a WWW server process
handling an HTML file is the process that waits
for a request from a browser. The time it waits
for a request is relatively long. Therefore, the
longest time of each WWW server process in
the wait state is determined from PFS for each
period, then SLP for the next time period is set
to the smallest of these values. SLP is updated
every time period.

How to predict and update RW: We analyzed
the execution behavior of a WWW server based
on PFS and found that the number of times a
WWW server process handling an HTML file
or an Image file changes between run state and
wait state is proportional to the size of the
HTML file and Image file respectively. In fact,
the number of times a WWW server process
handling an Image file changes between run
state and wait state is greater than that of a
WWW server process handling an HTML file,
because in general Image files are bigger than
HTML files. Therefore, the smallest number of
times of each WWW server process changing
between run state and wait state is determined
from PFS for each period, then RW for the next
time period is set to the greatest of these values.
RW is updated every time period.

4. Measures of Performance

4.1 Experimental Setup

Our scheduling mechanism is implemented
on BSD/OS version 2.1. The software used
for the WWW server and the browser in
our experiment was Apache version 1.2.5 and
Netscape Navigator version 3.04 respectively.

The WWW server ran on a personal computer
with a 233 MHz AMD-K6 processor and 64
MB of memory, while browsers ran on three
personal computers, each with a 200MHz Intel
Pentium Pro processor and 64 MB of memory.
All machines were running on BSD/OS version
2.1 and were connected by a private 10Mb/s
Ethernet. All our experiments were conducted
in single user mode, and the operating system’s
/0O buffer cache in the server machine and each
browser’s cache were disabled during the exper-
iments in order to see the effect of our schedul-
ing mechanism clearly.

The WWW server was accessed by three
browsers from each of the three machines si-
multaneously. All browsers accessed unique
URLs all of which have the same content. In
three different experiments in which we var-
ied RW in the range from 1 to 10, we mea-
sured the time (t1) from requesting a WWW
page until text data starts displaying and the
time (t2) from requesting a WWW page un-
til image data displays completely for each ac-
cess, and then found the mean of the 5 trial
times of t1 (response time of text data) and
t2 (response time of image data). In experi-
ment 1, all the browsers accessed the WWW
server simultaneously every 30 seconds when
the WWW server coexisted with a processor-
bound process and SLP was fixed at 20 seconds.
The purpose of this experiment is to know how
the response time of text data would be im-
proved in the situation that is the best for our
scheduling mechanism (i.e., the processor of the
server machine is bottlenecked [caused by a co-
existing processor-bound process] and accesses
from browsers are set in such a way that SLP
will be predicted 100% correctly). In experi-
ment 2, all the browsers accessed the WWW
server randomly at the same time and SLP was
fixed at 20 seconds, while in experiment 3, SLP
was predicted and updated automatically based
on PFS every 500 milliseconds. There was no
processor-bound process in experiments 2 and
3. The purpose of experiments 2 and 3 is to
know how in a more realistic situation (i.e., no
processor-bound process coexists and accesses
from browsers are random) the response time
of text data would be improved when SLP was
fixed and when SLP dynamically varies accord-
ing to the execution behavior of the WWW
server.

4.2 Experimental Result

Figure 2 shows some examples of the re-



Vol.0 No. 0

sults of experiment 1, when not using and us-
ing our scheduling mechanism (RW = 3,6,9).
We used a conventional priority-based time-
sharing mechanism when not using ours. Fig-
ure 2 plots the URLs in numerical sequence
on the y-axis against the response time of text
data to a request in seconds. Figure 2 shows
that the smallest and biggest response times
when RW = 3,6,9 are better than when not
using our scheduling mechanism. Tt also shows
that the range or the variance of response times
becomes narrower when using our scheduling
mechanism.

Figure 3(a) illustrates the mean and the
range of response times of text data from Fig. 2
into one graph. This figure shows that the
mean response times of text data when RW
= 3,6,9 are improved 33.8%, 21.3% and 26.6%
respectively. These figures are calculated by
"T_b % 100% where a and b are the mean response
times when not using and using our scheduling
mechanism respectively. This case produced
the most improvement of the response time
of text data, because the coexisting processor-
bound process always caused the processor to
become bottlenecked and the WWW server
processes waiting for HTML file requests from
browsers were always in the wait state at least
30 seconds which was more than SLP (20 sec-
onds).

The rest of the experimental results will be
shown like Fig. 3(a).

Figure 3(b) illustrates the mean and the
range of response times of image data to a re-
quest in seconds. This figure shows that the
smallest response times when RW = 3,6,9 and
the mean response times are not as fast as when
not using our scheduling mechanism. This is
expected and is due to our policy of giving
processes handling HTML files priority over all
other processes including WWW server pro-
cesses handling Image files.

Figure 4 and Figure 5 show respectively
the results of experiments 2 and 3 when not us-
ing and using our scheduling mechanism (RW
= 3,6,9). Figure 4(a) and Figure 5(a) il-
lustrate the mean and the range of response
times of text data to a request in seconds. In
Fig. 4(a), we did not notice any consistent im-
provement when using our scheduling mecha-
nism even though the mean response time of
text data when RW = 9 is faster than when
not using it. On the other hand, in Fig. 5(a),
although the smallest response times for RW

Evaluation of Process Scheduling Policy for a WWW Server based on Its Contents 5

17 *

16 o unused

15 - .

14 - *

13 r .

12 - *

11 + >
o :

I *

Ssr o

7+ .

6

5+ *

4 -

3t .

2 .

1+ B

0

0.042 1042 2042 3042 4042 5042 6.042

Response Time (sec)

17 +

16 . used (RW=3)
15 r *
14 »
13 |
12
B
I *
30 .
I *
=] 7L .
6 *
5
4 |
3.
2 r *
1+ .
0 L P
0042 1042 2042 3.042 4042 5042 6.042

Response Time (sec)

16 . used (RW=6)
15 .
14 (&
13
12 e
11 .
LB .
T I *
8 I .
=) oI .
6 3
5 .
4 +e
3
2+ .
1+ *
0 -
0042 1.042 2042 3.042 4042 5042 6.042
Response Time (sec)
17 *
16 . used (RW=9)
15 *
14 ¢
13 -
12 »
11 .
LB .
T I *
8 I .
=) oI .
6 3
56
4 e
3.
2+ .
1+ *
0 L Ly
0042 1042 2042 3.042 4042 5042 6.042

Response Time (sec)

Fig. 2 Response Time of Text Data in Experiment 1.

= 6 and 9 are not better than when not us-
ing our scheduling mechanism, the range of
response times is narrower and the mean re-
sponse times of text data when RW = 3,6,9 are
improved 22.2%, 17.9% and 6.7% respectively.
Even though a processor-bound process caus-
ing the bottleneck of the server machine does



6 Transactions of Information Processing Society of Japan 1959

6.042 - + MEAN

5042 |

Response Time (sec
BN WA
E B R B

0.042

unused  used(RW=3) used(RW=6) used(RW=9)
(a) Response Time of Text Data

10.572 + MEAN

Response Time (sec)
o ©
(4] 1
N N
N N

N

4

N

N
T

6.572

unused  used(RW=3) used(RW=6) used(RW=9)
(b) Response Time of Image Data

Fig. 3 The Effect of Our Scheduling Mechanism in
Experiment 1.

not coexist in Fig. 5(a), our sheduling mecha-
nism still produces a good improvement. This
might imply that a lot of simultaneous accesses
from browsers could cause the processor of the
server machine to become bottlenecked. From
now on,our explanations about experiments 2
and 3 will be done on the supposition that a lot
of simultaneous accesses from browsers cause
the processor of the server machine to become
bottlenecked.

The only difference between experiments 2
and 3 is the way SLP was set. In experiment 2,
the results of response times of text data shown
in Fig. 4(a) indicate that the WWW server
processes waiting for HTML file requests from
browsers might not be in the wait state more
than SLP, because SLP was fixed at 20 seconds
while browsers accessed the WWW server ran-
domly. On the other hand, the improvement
of response times of text data in experiment
3 shown in Fig. 5(a) means that SLP is accu-
rately predicted and updated by our scheduling
mechanism based on the execution behavior of
the WWW server, because SLP is predicted and
updated automatically based on PFS every 500
milliseconds.

Figure 4(b) and Figure 5(b) illustrate the
mean and the range of response times of im-
age data to a request in seconds respectively. In

o
3

N
R

R

2042 -

Response Time (sec)

1.042 +

0.042

unused  used(RW=3) used(RW=6) used(RW=9)
(a) Response Time of Text Data

9.321 - + MEAN

5321

Response Time (sec)
(2]
8
[

unused used(RW=3) used(RW=6) used(RW=9)
(b) Response Time of Image Data

Fig. 4 The Effect of Our Scheduling Mechanism in
Experiment 2.

Fig. 4(b), the mean reponse times of image data
are improved. This could be because sometimes
WWW server processes handling Image files
were mistaken as WWW server processes han-
dling HTML files when they were in the wait
state more than SLP (20 seconds). In Fig. 5(b),
the mean response times of image data when
RW = 3,6,9 are not so different from when our
scheduling mechanism is not being used as in
experiments 1 and 2 (cf. Fig. 3(b), Fig. 4(b)).
However, the results when RW = 3 and 9 show
that sometimes WWW server processes han-
dling Image files were mistaken as WWW server
processes handling HTML files when they were
in the wait state more than the predicted SLP.

Summarize experimental results pertaining to
response time of text data: The results of ex-
periment 1 show that the mean response times
of text data are improved greatly (up to 33.8%
when RW=3) when the processor of the server
machine is bottlenecked which is the condition
that our mechanism favors and SLP is predicted
100% correctly. The results of experiment 2
shows that the mean response times of text data
are not improved at all when SLP is fixed, while
those of text data in experiment 3 are improved
(up to 22.2% when RW=3) when SLP is pre-
dicted and updated based on PFS. In exper-
iment 3, even though a processor-bound pro-



Vol.0 No. 0

5.038 [

~4.038

esponse Time (Sec)
N w
]
[e¢] [o5]

© 1038

0.038

unused  used(RW=3) used(RW=6) used(RW=9)
(a) Response Time of Text Data

o N ©

@ o2} o2}

® ® ®
T T T

Response Time (sec)
2
[e5]

»

o2}

©
T

+ MEAN

3.68

unused  used(RW=3) used(RW=6) used(RW=9)
(b) Response Time of Image Data

Fig. 5 The Effect of Our Scheduling Mechanism in
Experiment 3.

cess causing the bottleneck of the server ma-
chine does not coexist, our scheduling mecha-
nism still produces a good improvement. This
might imply that a lot of simultaneous accesses
from browsers could cause the processor of the
server machine to become bottlenecked. If this
supposition is true, then the improvement in ex-
periment 3 means that SLP is accurately pre-
dicted and updated by our scheduling mecha-
nism based on the execution behavior of the
WWW server, because the only difference be-
tween experiments 2 and 3 is the way SLP was
set.

4.3 Processor Load

In order to prove our supposition about ex-
periment 3, we decided to find the relation be-
tween the number of simultaneous accesses and
the response time, and the relation between the
number of simultaneous accesses and the pro-
cessor load (PL) or the length of ready queue
(LRQ) by setting up experiment 4.

In experiment 4, we varied the number of
client machines from 1 to 4 in which each ma-
chine has the same specification described in 4.1
and runs three browsers, we measured the re-
sponse times of text data, PL and LRQ of the
server machine under the same conditions as in
experiment 3. PL is measured by checking if the
processor is busy or idle every 10 milliseconds.

Evaluation of Process Scheduling Policy for a WWW Server based on Its Contents 7

If the processor is busy, PL is incremented. The
PL ratio is the ratio of PL when the number of
client machines is 1,2,3 and 4 to PL when the
number of client machines is 1. LRQ is deter-
mined by the summation of the total number of
processes in the ready queue every 10 millisec-
onds. The LRQ ratio is the ratio of LRQ when
the number of machines is 1,2,3 and 4 to LRQ
when the number of machines is 1.

r M processor |oad ratio

[ length of ready queue ratio \

Ratio
O FRP N W MO ON 0O O
.

Number of simultaneous accesses

Fig. 6 The Relation between the Number of Simulta-
neous Accesses and the Processor Load or the
Length of Ready Queue.

4
35 - = unused .
- -+ used (rw=3 |
3 37 -+ used (rw=6
2, -e-used (rw=9
32.5 r |2 used (best)
8 2/
%1.5 r
x 1r
05
0
3 6 9 12

Number of simultaneous accesses

Fig. 7 The Relation between the Number of Simulta-
neous Accesses and the Response Time.

The results of experiment 4 are shown in
Fig. 6 and Fig. 7. Figure 6 plots the
PL ratio (1:2.52:3.54:5.44) and the LRQ ratio
(1:2.46:3.54:8). These ratios show that PL and
LRQ increased at almost the same rate except
when the number of simultaneous accesses is
12. Figure 6 shows that the more simultane-
ous accesses there are, the more PL and LRQ
will increase. Therefore, a lot of simultaneous
accesses cause the processor to become busy or
bottlenecked and also increase LRQ. Figure 7
shows the mean response times of text data
while not using our scheduling mechanism, us-
ing our scheduling mechanism for RW = 3,6,9
and when our mechanism produced the best



8 Transactions of Information Processing Society of Japan 1959

result. Figure 7 shows that the more simul-
taneous accesses there are, the worse response
time will be. Due to our policy of moving any
server process handling an HTML file to the
head of the ready queue when the processor be-
comes bottlenecked, which in this experiment is
caused by the simultaneous accesses as shown
in Fig. 6, the mean response times when using
our scheduling mechanism shown in Fig. 7 are
always better than when not using it. And this
is the reason for the improvement in experiment
3.

In addition, in Fig. 7, the best mean response
times, when the number of simultaneous ac-
cesses is 3,6,9 and 12, are improved 65.7%,
44.4%, 24.2% and 22.3% respectively. However,
this improvement declined as the increase in the
number of simultaneous accesses caused PL to
increase. On the other hand, the effect of PL
on the improvement dropped significantly when
the number of simultaneous accesses was 12, by
that point LRQ was increasing at a higher rate
than PL. And this could be the result of our
scheduling policy’s manipulation on the ready
queue.

According to our experimental results, any
WWW server which experiences a lot of simul-
taneous accesses from browsers would benefit
from our scheduling mechanism.

5. Conclusions

We evaluated the effectiveness of our pro-
posed process scheduling policy by measuring
the response time of a WWW server when it
is accessed by a lot of browsers simultaneously,
which 1s likely to be a realistic situation and
could be the situation in which it is most desir-
able to improve the response time of a WWW
server. Our experimental results show that the
mean response times are improved greatly up
to 33.8% in the best case in which the pro-
cessor of the server machine is bottlenecked
caused by a coexisting processor-bound process
and accesses from browsers are set in such a
way that the scheduling parameter SLP will
be predicted 100% correctly. In a more real-
istic case in which no processor-bound process
coexists and accesses from browsers are ran-
dom, our scheduling mechanism still produces
a good improvement of up to 22.2% when the
scheduling parameter SLP is predicted and up-
dated automatically by our scheduling mecha-
nism based on the predicted execution behavior

of the WWW server, called PFS. PFS is created

and updated by our scheduling mechanism from
the previous execution(s) of the WWW server.
Due to the fact that a lot of simultaneous ac-
cesses cause the processor of the server machine
to become bottlenecked and increase the length
of ready queue, this improvement indicates that
the scheduling parameter SLP is accurately pre-
dicted and updated by our scheduling mecha-
nism based on the execution behavior of the
WWW server. Therefore, any WWW server
which experiences a lot of simultaneous accesses
from browsers would benefit from our schedul-
ing mechanism.

Future work is required to measure the per-
formance of a WWW server when the schedul-
ing parameter RW is automatically predicted
and updated by our scheduling mechanism and
also when both scheduling parameter SLP and
RW are automatically predicted and updated
by our scheduling mechanism.

Acknowledgments We would like to thank
James Michael Perry for his assistance in proof-
reading this paper.

References

1) Xu, J. and Parnas, D.L.: On Satisfying Tim-
ing Constraints in Hard-Real-Time Systems, IEEE
Trans. Softw. Eng., Vol.19, No. 1, pp. 70-84 (1993).

2) Harbour, M.G., Klein, M.H. and Lehoczky, J.P.:
Timing Analysis for Fixed-Priority Scheduling of
Hard Real-Time Systems, IEEE Trans. Softw.
Eng., Vol. 20, No. 1, pp. 13-28 (1994).

3) Burns, A., Tindell, K. and Wellings, A.: Effective
Analysis for Engineering Real-Time Fixed Priority
Schedulers, IEEE Trans. Softw. Eng., Vol.21, No.5,
pp. 475-479 (1995).

4) Feng, W. and Liu, J.W.S.: Algorithms for Schedul-
ing Real-Time Tasks with Input Error and End-to-
End Deadlines, IEEE Trans. Softw. Eng., Vol. 23,
No. 2, pp. 93-106 (1997).

5) Ford, B. and Susarla, S.: CPU Inheritance
Scheduling, Proc. 2nd OSDI 1996, pp. 91-106
(1996).

6) Taniguchi, H.: POS:Program Oriented Schedule,
IPS Japan Proc. of Computer System Sympo-
stum’96, Vol. 96, No. 7, pp. 123-130 (1996). (in
Japanese)

7) http://www.microsoft.com/Windows98/usin-
gwindows/maintaining/articles/811Nov/MNT- foun-
dation2a.asp

8) Suranauwarat, S. and Taniguchi, H.: Process
Scheduling Policy for a WWW Server Based on its
Contents, Trans. IPS Japan, Vol. 40, No. 6, pp.
2510-2522 (1999). (in Japanese)

9) Kaashoek, M.F., Engler, D.R., Ganger, G.R.,,
Bricend, H.M., Hunt, R., Mazierés, D., Pinckney,
T., Grimm, R.., Jannotti, J. and Mackenzie, K.: Ap-
plication Performance and Flexibility on Exokernel
Systems, Proc. 16th SOSP 1997.



