
CSDA: Rule-based Complex Sensor Data
Aggregation System for M2M Gateway

Yuichi Nakamura
Hitachi Solutions, Ltd., Tokyo, Japan
Okayama University, Okayama, Japan

Email: yuichi.nakamura.fe@hitachi-solutions.com

Akira Moriguchi
Hitachi Solutions, Ltd., Tokyo, Japan

Email:
amoriguchi@hitachi-solutions.com

Toshihiro Yamauchi
Okayama University

Okayama, Japan
Email: yamauchi@cs.okayama-u.ac.jp

Abstract—To reduce the server load and communication
cost of machine-to-machine (M2M) systems, sensor data are
aggregated in M2M gateways. The C language is typically used
for programming the aggregation logic, and the program is
embedded into the firmware. However, developing aggregation
programs is difficult for M2M service providers because it
requires gateway-specific knowledge, and consideration must be
given to CPU and memory resources. In addition, modifying
aggregation logic requires firmware updates, which are risky. We
propose a rule-based sensor data aggregation system, called the
complex sensor data aggregator (CSDA) for M2M gateways. Data
aggregation is categorized into filtering, statistical calculation, and
concatenation. The proposed CSDA supports this aggregation
process in three steps: the input, data processing, and output
steps. The behaviors of these steps are configured by an XML
based rule. The CSDA also supports update modules, which
download and overwrite aggregation rules from the server when
the modification of data aggregation logic is required. In this
case, firmware updates are not necessary. The proposed system is
evaluated in an M2M gateway experimental environment. Results
show that developing CSDA configurations is much easier than
using C because the configuration amount decreases by 10%. In
addition, the performance evaluation demonstrates the proposed
system’s ability to operate on M2M gateways. CPU usage was
less than 10%, even with a heavy load, and memory consumption
was 128 Kbytes.

I. INTRODUCTION

With the growth of machine-to-machine (M2M) technol-
ogy, many companies have begun to provide M2M services,
which provide new value by utilizing machine sensor data. For
instance, construction and agricultural machine manufacturers
provide remote monitoring services for their products by
sending sensor and location data from products in the field
to servers over the Internet [1][2][3]. These services reduce
down time and prevent machinery theft. In M2M services,
sensors connect to local networks, such as Zigbee [4] or the
controller area network (CAN) [5]. As a result, they cannot
directly upload data to the Internet. In order to create a bridge
between sensors and the Internet, M2M service providers
utilize devices called M2M gateways. An M2M gateway is able
to communicate with both the sensor network protocol and the
IP [6]. For example, when using a remote monitoring service
for construction machinery, an M2M gateway is attached to
the machine and it gathers data from the sensors via the CAN.
Then it uploads data to a server via a wireless Internet con-
nection. However, cost becomes a problem because wireless
Internet contracts are usually measured rates and the server
resource increases with an increase in data. In addition, the

number of M2M gateways can be tens of thousands, sometimes
millions, and the amount of data uploaded to the server also
increases, substantially raising the cost. In order to reduce this
cost, M2M service providers must reduce the amount of data
transferred between the M2M gateway and the server.

There are three main approaches used to reduce the amount
of data transferred between an M2M gateway and the server.
The first approach reduces the protocol header overhead by
using a lightweight protocol. The HTTP is a popular means
of communication between the server and client. However, in
M2M systems, HTTP overhead becomes a problem because
the sensor data size is often about 100 bytes, but the HTTP
header size is greater than 100 bytes. To reduce the overhead,
lightweight protocols, such as MQTT [7] and CoAP [8], are
efficient because their protocol header size is around 10 bytes
[9]. In addition to this protocol-based approach, data can be
reduced before being sent from the M2M gateway.

The second approach reduces the data size by processing
the data on sensor nodes. TinyDB [10] processes a language
similar to SQL on sensor nodes. SensorWare [11] also has
a script language for sensor nodes. By using these systems,
only necessary data is sent from the sensors, consequently
reducing the amount of data sent from the M2M gateway.
These technologies are suitable for controlling devices within
sensor networks because their response times are fast. When a
sensor detects an event, an action is immediately issued from
the sensor. However, these technologies are not suitable for
reducing the amount of data transferred between an M2M
gateway and the server for two reasons. First, these systems
are not intended for processing data from multiple sensors. It is
efficient to gather a sensor’s data depending on another sensor
value. However, these technologies do not support such com-
plex processes. Second, the installation and management cost
is substantial. Data processing middleware and configuration
need to be installed on all sensor nodes. If there are 100 sensors
per machine and 10,000 machines, the number of required
sensors is one million. Installing and managing software for
this many machines is difficult. In addition, because sensor
nodes are connected to the sensor network and not to the IP
network, the two networks must be bridged in order to manage
the sensor nodes from the server.

For such reason, M2M service providers take third ap-
proach, i.e. data aggregation on gateway, such as tak-
ing histogram and average from sensors on M2M gateway
[12][13][14]. In this approach, the installation of aggregation
logic is restricted to the M2M gateway, which is easier than

yamauchi
タイプライターテキスト
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



installing the logic on the sensors. Moreover, standardized
technologies, such as TR-069 [15], used for managing software
and configuration contribute to a reduction in installation
and maintenance costs. M2M service providers need to write
programs for the sensor data aggregation, but there are two
issues with this. First, there is a problem with developing
programs on firmware. Since M2M gateways are resource
constrained, the programming language is usually C. Program-
ming in C requires troublesome memory management, which
is hidden in higher-level languages. In addition, M2M service
providers need to learn the development environment, such
as the compiler and tool chains, which strongly depends on
the gateway because M2M gateways are not standardized.
Attention also needs to be given to CPU and memory usage
of the aggregation program. Consequently, it is difficult for
M2M service providers to write aggregation programs on M2M
gateways. The second problem arises when changing the data
aggregation logic on the firmware. To change data aggregation
logic, the firmware has to be updated. However, firmware
updates are risky because the gateway may not work if the
updates fail.

We propose the application of a complex sensor data
aggregator (CSDA) for M2M gateways. The CSDA enables
M2M service providers to develop data aggregation logic
without needing to program in C. The CSDA defines the
framework that supports the sensor data aggregation. It splits
the aggregation process into input, data processing, and output
steps, whose behaviors are controlled by a configuration file.
The aggregation logic can also be changed by simply updating
the configuration. This paper presents the design of the CSDA
and evaluates the proposed solution using an M2M gateway.

II. THE PROBLEM WITH SENSOR DATA AGGREGATION

After categorizing sensor data aggregation for M2M gate-
ways, the problems with writing the aggregation logic are
described in the following sections.

A. Categorizing sensor data aggregation on M2M gateway

Before the sensor data aggregation is categorized, the
process of inputting sensor data into the M2M gateway must
be described. An overview of an M2M system is shown in
Fig.1. Each sensor node in the sensor network is connected
to sensor chips through a circuit. Sensor nodes are composed
of a physical sensor network interface and a CPU, in which
logic fetches a value from the sensor chips and sends that
value to the sensor network with the node’s ID. The node
ID identifies that node in the sensor network. The arbitration
ID for the CAN protocol and the IEEE address for Zigbee
are examples of node IDs. Note that multiple sensors may
be connected to the same sensor node. In this case, multiple
values are packed with that node’s ID. The means by which
fetched values are packed with node IDs, i.e. short, long,
little, or big endian, depend on the sensor node vendor. The
M2M gateway and sensors are connected by various types
of networks, and data are inputted into the gateway. For
example, because the control of vehicles, industrial machinery,
and medical equipment requires real-time communication, the
CAN protocol, which has priority control features, is often
used. When measuring temperature and humidity in a large
area, such as a plant or building, the wireless protocol Zigbee

Fig. 1. Overview of M2M system

is used in order to remove the cost of installing wires. M2M
gateways have physical interfaces and device drivers in order to
communicate with the sensor network protocol. They receive
data frames, which include the previously described node IDs
and sensor values.

The sensor data aggregation process runs on an M2M
gateway, using node IDs and sensor values as input. The
process can be categorized into: (1) statistical calculations to
reduce data size, (2) filtering to reduce data frequency, and (3)
concatenation to reduce communication overhead.

1) Statistical calculations: Data size is reduced by cal-
culating statistical values, such as average and histogram,
from multiple data within a given time frame. For example,
temperature sensor data for the cooling of water and oil
within construction machinery are summarized to sum, aver-
age, minimum, maximum, and histogram. Then the processed
data is sent to the server [12]. Similarly, engine speed and
temperature sensor data within farm machinery are condensed
to the average, minimum and maximum, and then sent to server
[14]. Furthermore, statistical calculations can be performed
multiple times, and multiple sensor data can be combined.
When evaluating deviation from the stable state of construction
machinery, variances are calculated for multiple temperatures
and pressure sensor values. Then the variances are summed
[13].

2) Filtering: Data from an M2M gateway can be reduced
by filtering the low priority data. Filtering is subcategorized
into two types: input filtering, using node IDs, and threshold
filtering.

• Node ID filtering: To obtain important sensor values,
the M2M gateway only takes the data frame, which
includes the specific node ID. For example, since
engine and transmission sensor values in construction
machines are the ones used to detect failure, only these
sensor values are gathered and sent to the server [12].

• Threshold filtering: The purpose of this filtering is to
gather only the values that imply trouble. For example,
when a statistical value calculated from a construction
machine’s sensor data exceeds some threshold, the
calculated value is sent to the server. Otherwise, no
data is sent [13].

3) Concatenation: When data is sent to the server, protocol
header information is attached. To reduce the overhead, multi-
ple sensor data are joined and sent at once. The timing of this
depends on the type of data being collected and the reason for
its collection. Referring again to construction machinery, for
example, a summary of operation logs are sent daily, and the
engine sensor data indicating failure is sent immediately [16].



B. Problems with sensor data aggregation using firmware
programming

The sensor data aggregation process previously described is
programmed into the firmware of the M2M gateway. However,
there are problems in developing and updating programs in
firmware.

1) Developing firmware: There are two problems with
developing aggregation programs on firmware. The first prob-
lem concerns the CPU and memory resource of the M2M
gateway. Cost and quality requirements for M2M gateways
are strict because they often operate in extreme environments
and the number of deployed devices is large. As a result,
memory and CPU resources are much more constrained than
enterprise servers. A CPU clock for an M2M gateway is
usually around 200-600 MHz, and the RAM size is about
1-64 MB. Specifications of M2M gateways are typically not
disclosed to the public, but an example of these types of
CPU and memory resources can be found in an industrial
communication board, whose CPU clock is 250 MHz and
RAM size is 64 MB [17]. Because it is difficult to use higher-
level language on this sort of hardware, the programming
language is usually C. However, C is difficult to program,
and its memory management is troublesome. Programmers also
need to take into account memory and CPU usage. The second
problem involves the development environment of the M2M
gateway. SDKs for M2M gateways are different depending
on the gateway device. The development process is typically
composed of the following: writing aggregation logic in C on
a PC, cross-compiling for the gateway, producing a firmware
image, and transferring it to the M2M gateway’s flash memory.
All these processes are different depending on the M2M
gateway because hardware, OS, and userland programs are not
standardized.

2) Updating firmware: In order to modify aggregation
logic after the M2M gateways are deployed, the firmware
needs to be updated. However, there are difficulties in mod-
ifying programs, installing firmware, and recovering from a
failure.

• Modifying programs: The C program needs to be mod-
ified in order to change the aggregation logic. There
are problems similar to those previously described in
the development of the C program. In addition, the
C program requires repeat testing in order to avoid
regression.

• Installing new firmware: After new firmware is de-
veloped, it must be installed on the devices. There
are two ways of doing this. In the first method, field
engineers perform the installation. Although this is the
most reliable method, it is very expensive when the
number of devices is 10,000 or 100,000. To reduce this
human cost, the second method performs the updating
through the network. However, there is still the prob-
lem of network cost in this scenario. Since firmware is
usually implemented on read-only filesystems, entire
filesystem images, which often exceed 10 MB, must
be delivered via the mobile network, and the network
cost for all the devices becomes impossible to ignore.

• Failure recovery: When writing firmware from the
network fails due to a power outage during the up-

Fig. 2. Architecture of the CSDA

date, the firmware is broken. To avoid this, a backup
area, whose size is the same as the firmware’s, is a
necessary component of the flash ROM. In addition,
the recovery procedure needs to be performed by an
engineer.

III. PROPOSAL OF COMPLEX SENSOR DATA
AGGREGATOR

A. Basic design of the CSDA

As described in the previous section, there are problems
with programming and updating sensor data aggregation logic
in M2M gateway firmware. In this section, we propose a
CSDA as a solution to these problems. An overview of the
CSDA is shown in Fig. 2. The aggregation processor, whose
behavior can be changed by a configuration file that removes
programming, and the update module change the aggregation
logic via the network. The design of the aggregator and
configuration are described in the next sections.

1) Aggregation Processor: To cover the aggregation pro-
cess categorized in section II-A, the aggregation processor han-
dles sensor data in three flow steps: the input, data processing,
and output steps. In each step, necessary logics are embedded
into the aggregation processor in advance. These logics are
defined by the configuration file. An overview of these steps
is described as follows.

• Step1 Input: Node IDs and binary data, including
sensor values, are passed from the device driver, and
the node IDs are filtered. Then sensor values are
extracted from the binary code.

• Step2 Data processing: Statistical calculations, such
as average, sum, minimum, maximum, and histogram,
are performed on the extracted sensor values. Thresh-
old filtering is also performed on the sensor and
calculated values. The two tasks, statistical calculation
and threshold filtering, can be combined.

• Step3 Output: Multiple output data are produced in
the data processing step. These data are concatenated
and periodically sent to the server or immediately sent
if it is urgent.

2) Configuration Language: The aggregation processor
generates a single output from multiple data, as shown in Fig.
3. This figure displays the case in which engine temperature
data is gathered when the engine load is heavy. Three sensor
data are extracted during the input step. If the engine frequency
exceeds a threshold, environmental temperature is subtracted



Fig. 3. An example of flow in aggregation processor

from the engine temperature to remove the environment’s
effect. Finally, a histogram for this difference is taken. The
flow structure is a tree in which a single output is generated
from multiple sensor data. Therefore, XML, which is also a
tree structure, is adopted as the configuration language.

3) Update Module: This module downloads the configura-
tion from the network and rewrites it. Failure recovery must
be considered similar to firmware update. To achieve this,
aggregation processors and update modules run as separate
processes. The update is performed as follows:

• Step 1: The update module downloads the config-
uration file onto the RAM, and a copy of the old
configuration file is created in the flash ROM as a
backup.

• Step 2: The update module writes a new configuration
to the flash ROM.

• Step 3: The update module restarts the aggregation
processor

• Step 4: The aggregation processor loads new config-
uration from the flash ROM

Even if writing the configuration fails in Step 2 because of
an unexpected power outage, the update can be resumed from
Step 1, and the old configuration can be used, regardless of
whether the resuming download fails. The flash ROM size
required for the backup is at most the size of the config-
uration. Details of the aggregation processor’s configuration
language and its implementation on resource-constrained M2M
gateways are described in the following subsections.

B. Configuration language

The configuration language is composed of the steps, input,
data processing and output, corresponding to those of the
aggregation processor. Following is an explanation of this
configuration and some examples.

1) Input step: In this step, the node ID filtering and target
sensor values are described. Fig. 4 shows an example of this
configuration in the extract tag in line 3. Here, the rawId
attribute refers to the node ID filtering. Only the input data,
whose node ID is described in rawID, is processed. In this
example, only the data frames with node IDs of 10 are
processed. The offset and len attributes correspond with the
data extracted from the data frame payload. Between zero and
seven bits of payload are extracted and passed to the next step.
In order to identify the extracted data, an id attribute is used
in the rule tag. Here, the extracted data are identified by 50.

Fig. 4. Part of configuration for input step

Fig. 5. Part of the configuration for data processing step

Fig. 6. Part of the configuration for output step

2) Data processing step: Statistical calculations, threshold
filtering, and a combination of the two are described in this
step. An example configuration is shown in Fig. 5. In order
to refer data from the input step, a seldata tag is used. Line
13 assigns the data from the input step an identification of 51.
The statistical calculation is described by the method attribute
in the calc tag. Lines 12-14 show the process for subtracting
the data with IDs of 52 from the data with IDs of 51. Lines
8-16 demonstrate the process for generating a histogram from
lines 12-14 with a maximum of 100, a minimum of 10, and
a total of 20 in the series. Logics corresponding to method
are embedded in the CSDA in advance. Threshold filtering is
described by the if tag. Lines 3-6 can be written as: if data
identified as 50 are greater than 100, then proceed to the next
step. The resulting output data is identified in the rule tag and
identified as 100.

3) Output step: An example configuration for the output
step is shown in Fig. 6. The process of concatenating and
sending data to the server is described. In lines 4-7, data
concatenated from the previous steps are identified as 100 and
101, and the header data is labelled device001. In the send
tag, the timing for sending concatenated data is written. In
this example, data is sent every 30 minutes.



C. Implementation for M2M gateway

To save CPU resource and memory, the CSDA supports
sensor data buffering and binary configuration.

1) Sensor data buffering: The maximum speed of a CAN
network, which is widely used in industrial machines, is 1
Mbps, and the frame size for one datum is between 64 and
128 bits. Therefore, the frequency of input data is about 100
µs at peak time. If the CSDA processes data every 100 µs
during its peak, there are function call overheads and referring
configurations every 100 µs. Such overheads cause problems
when a CPU’s resource is constrained. To reduce the number of
overheads, the CSDA buffers input data and processes multiple
data. In addition, in order to limit memory usage the buffer
is statically allocated. Real-time processing is lost through the
buffering, but this is not an issue because the data processed
by the CSDA is utilized in the server and the network delay
between the server and the M2M gateway is more than 1 msec.
The real-time feature is already lost here.

2) Binary configuration: It is difficult to parse an XML-
based text configuration file on an M2M gateway because
the XML parser usually consumes memory resource. To save
memory, an XML-based configuration is encoded into a binary
format in advance. The binary format can be interpreted from
the top in order to prevent the performance loss that occurs
because of the random memory access. For example, the
configuration execution sequence in Fig. 5 can be found in
lines 3, 12, and 8. In binary format, it is sorted according to
the execution sequence.

IV. EVALUATION

In the evaluation, the developmental process of aggrega-
tion logic on an M2M gateway is evaluated first. Then its
performance is measured against an experimental environment
similar to an M2M gateway.

A. Development of the aggregation process

1) Experiment environment: The productivity of C and
CSDA when developing an aggregation process is compared.
The following aggregation process is used for evaluation.

• Input process step: Take two kinds of sensor value for
Sensor A and Sensor B

• Data processing step: When the 30 second average
value for Sensor A is greater than a threshold, create
histogram for Sensor B.

• Output step: The histogram is sent once each day.

In order to compare the amount of memory required by the two
methods, the number of steps is calculated for the C code and
the number of tag pairs is counted for the CSDA configuration.

2) Results and considerations: The number of steps re-
quired in the C program is 575, and the number of tag pairs in
the CSDA configuration is 36. The semantics of C and XML
are different, but the amount of configuration is much less than
in the C code. In addition, there are following three difficulties
in writing C language code.

First is bit operation. In the input step, sensor data is
extracted from the binary frame. In order to handle binary

* Part of C code
for(idx2 = 0; idx2 < byteLength ;idx2++){

if(offsetRem > rightShift){
output[idx2] = (data[idx3]>>rightShift)
& forAnd[leftShift];

* CSDA configuration
<extract rawId="10" offset="0" len="8"/>

Fig. 7. Comparison of C and CSDA at input step

TABLE I. EMBEDDED SYSTEM USED IN THE EVALUATION

Specification

CPU Freescale i.MX25(ARM926EJ-S) 400 MHz

RAM LPDDR SDRAM 64 MB

Sensor network interface ISO11898 compliant CAN interface

OS Linux 2.6.26

communication, bit operations, which are difficult to read, are
used, as shown Fig. 7. Eight valuables and three arrays are used
in a mere three lines. On the other hand, data extraction can be
described in one simple line using the CSDA. Second difficulty
is memory management. As is well known, failure to handle C
arrays causes many problems. If there is a bug in the boundary
handling, the memory may be destroyed, and this weakness
can be exploited in a buffer overflow attack. The CSDA hides
such memory management. Third one is thread management:
The thread needs to be separated for the input process and
data processing in order to enable data receiving during the
data processing. Thread programming depends on the OS, and
programmers need to learn this programming. Moreover, the
shared resource has to be handled carefully because failure
can lead to resource destruction or a deadlock. The CSDA
also hides this.

B. Performance evaluation

1) Experimental setup: CPU clocks for M2M gateways
are often around 200-600 MHz in size, and RAM sizes are
around 1-64 MB, as was stated in section II-B1. We used the
Armadillo 420 [18] as an evaluation device because its CPU
power and RAM size are similar to these above specifications
and its SDK is available to the public. Its specifications are
shown in Table I. The CAN was selected as a sensor network
because it is widely used in industrial devices.

To ensure the CSDA works during heavy sensor network
traffic, data are sent to the evaluation device via the CAN at
a rate of 1 Mbps, which is the maximum rate of the CAN,
then the CPU and memory usage are measured. The detailed
conditions of the sensor data and configuration of the CSDA
are described as follows.

In order to simulate heavy traffic, data from 200 sensors
are created. This number is large enough because the number
of electronic control units (ECUs) in a vehicle is about 100 at
most [19]. To increase the amount of sensor data as much as
possible, multiple sensor data are packed in one CAN packet.
A CAN frame is composed of a 64-bit header and 0-64 bits
of data. Four 16-bit random sensor data are packed in the data
field. Since there are 200 sensors, 50 kinds of CAN data frames
are prepared.

As in a typical data aggregation process, threshold filtering
and histogram are combined in the configuration of CSDA.



Fig. 8. CPU usage of CSDA

During the input process, four kinds of sensor values are
extracted from each of the 50 kinds of CAN data frames and
saved in the buffer. During the data processing step, when one
sensor data exceeds a threshold, 199 histograms are created
from the remaining 199 sensor data. The output step is omitted
in this evaluation because the frequency is assumed to be low,
minutes or hours, and its effect on the resource consumption
is also low.

2) Result: CPU usage results are shown in Fig. 8. CPU
usage decreases as the number of buffers increases. A 16-
bit sensor value is stored in each buffer. When the number
of buffers exceeds 16, CPU usage is less than 10%. In this
evaluation environment, the CPU clock is 400 MHz. If the
clock is 200 MHz, which is the lowest possible value for an
M2M gateway, then it would appear that the usage is less than
20% at peak time. The CSDA’s RAM usage is 128 Kbytes.
The number of buffers is 16, where the improved CPU usage
can be seen in Fig. 8. RAM usage is less than 1%. Even if the
RAM size is 1 MB, which is the least amount possible for an
M2M gateway, the RAM consumption is less than 13%.

V. RELATED WORKS

A data stream management system (DSMS) [20] partially
removes data aggregation coding. It processes the input data
stream based on the rule called query. However, because it
is not originally intended for sensor data aggregation, the
rule language does not cover the input and output steps. It
is primarily intended for real-time processes, so it requires
enough CPU and memory resource. There is a DSMS for
resource-constrained devices [21], but its rules are static and
a firmware update is necessary to change them. AirSenseWare
[22] processes data using sensor nodes and a rule-based server.
Its focus is the framework for distributed data processing and
not aggregation on a gateway.

VI. CONCLUSION

To reduce the server load and communication cost of M2M
systems, sensor data are aggregated in an M2M gateway. The
aggregation logic is usually programmed in C rather than
higher-level programming languages because the CPU and
memory resource is constrained. However, there are difficulties
with programming in C and with updating the programs.
Data aggregation methods have been categorized, and the
proposed complex sensor data aggregator (CSDA) enables
sensor data aggregation in M2M gateways without the need
for programming. This CSDA supports the categorized data

aggregation methods in three steps: the input, data processing,
and output steps. In each step, behavior is configured using
XML-based rules. Experimental results show that developing
CSDA configurations is much easier than programming in C
because the configuration amount is less than 10% of the
comparable C code. In addition, the performance evaluation
shows it works with M2M gateways because the CPU usage
with the CSDA is less than 10%, even given a heavy load, and
its memory consumption is 128 Kbytes.

REFERENCES

[1] Komatsu: Komtrax: http://www.komatsuamerica.com/komtrax
[2] Hitachi Construction Machinery: Global-eService: http://www.

hitachi-c-m.com/global/businesses/products/global e-service.html
[3] Yanmmar: Yanmar’s Advanced Technology Gives Customers a SmartAs-

sist, 2013: http://yanmar.com/news/contents/105278.php
[4] Zigbee Alliance, “Interconnecting Zigbee & M2M Networks”

http://docbox.etsi.org/workshop/2011/201110 m2mworkshop/03
m2mcooperation/zigbee taylor.pdf

[5] CiA：Controller Area Network http://www.can-cia.org/index.php?id=can
[6] ETSI TS 102 690 V1.1.1, “Machine-to-Machine communications(M2M)

functional architecture,” 2011
[7] MQtt: http://mqtt.org
[8] Z. Shelby, Sensinode and K. Hartke, “Request for comments 7252:Con-

strained Application Protocol(CoAP),” IETF, 2014
[9] S. Bandyopadhyay and A. Bhattacharyya, ”Lightweight Internet proto-

cols for web enablement of sensors using constrained gateway devices”,
In proceedings of 2013 International Conference on Computing, Net-
working and Communications(ICNC2013), pp.334-340, 2013

[10] S. Madden, M. Franklin, J. Hellerstein, W. Hong: “TinyDB:An Acquisi-
tional Query Processing System for Sensor Networks, ACM Transactions
on Database Systems,” Vol.30, No.1, 2005

[11] A. Boulis, C. Han, R. Shea, M. Srivastava, “SensorWare:Programming
sensor network beyond code update and querying,” Pervasive and Mobile
Computing, Vol.3, No.4, pp.386-412, 2007

[12] T. Murakami, T. Saigo, Y. Ohkura, Y. Okawa and T. Taninaga, “De-
velopment of Vehicle Health Monitoring System(VHMS/WebCARE) for
Large-Sized Construction Machine,” Komatsu Tech Rep, Vol.48 No.150,
pp.15-21, 2003

[13] Hitachi Construction Machinery Co., Ltd, “Device for collection con-
struction machine operation data,” WIPO Patent, WO2013077309 A1,
2013

[14] Yanmar Co., Ltd, “Remote monitoring terminal device for traveling
work machine or ship,” WIPO patent, WO2013080712 A1, 2013

[15] BroadBand Forum, “TR-069 Issue 1 Amendment 2”: http://www.
broadband-forum.org/technical/download/TR-069 Amendment-2.pdf

[16] Y. Takishita, K. Murakami, K. Seki and K. Morishita, “Application of
ICT to Lifecycle Support for Construction Machinery,” Hitachi Review,
Vol.62, No.2, pp.107-112, 2013

[17] Communication module for industrial devices, http://www.hitachi-ul.co.
jp/system/cmodule/index.html(In Japanese)

[18] Atmark Techno, Inc., Armadillo-420, http://armadillo.atmark-techno.
com/armadillo-420

[19] C. Ebert and C. Jones, “Embedded Software: Facts, Figures, and
Future,” Computer, IEEE Computer Society Press, Vol.42 Issue 4, pp.42-
52, 2009

[20] The STREAM Group, STREAM: The Stanford Stream Data Manager
IEEE Data Engineering Bulletin, 2003

[21] S. Katsunuma, S. Honda, K. Sato and H. Tanaka, “The Static Scheduling
Method in Data Stream Management for Automotive Embedded Sys-
tems,” IPSJ Journal Database, Vol.5. No.3, pp.36-50, 2012

[22] K. Muro, T. Urano, T. Odaka and K. Suzuki, “AirsenseWare: Sensor-
Network Middleware for Information Sharing,” In proceedings of 3rd
International Conference on Intelligent Sensors, Sensor Networks and
Information 2007(ISSNIP2007), pp.497-502, 2007




