
KRGuard: Kernel Rootkits Detection Method by Monitoring Branches
Using Hardware Features

Yohei Akao, Toshihiro Yamauchi
Graduate School of Natural Science and Technology,

Okayama University, Okayama, Japan
Email: yamauchi@cs.okayama-u.ac.jp

Abstract—Attacks on an operating system kernel using
kernel rootkits pose a particularly serious threat. Detecting
an attack is difficult when the operating system kernel is
infected with a kernel rootkit. For this reason, handling an
attack will be delayed causing an increase in the amount of
damage done to a computer system. In this paper, we discuss
KRGuard (Kernel Rootkits Guard), which is a new method
to detect kernel rootkits that monitors branch records in the
kernel space. Since many kernel rootkits make branches that
differ from the usual branches in the kernel space, KRGuard
can detect these differences by using hardware features of
commodity processors. Our evaluation shows that KRGuard
can detect kernel rootkits with small overhead.

Keywords-Security, operating system, kernel rootkit,
last branch record

I. INTRODUCTION

Rootkits are malicious programs that hide malicious be-
haviors from computer users. There are two types of rootkits:
user rootkits that run at the user level and kernel rootkits that
run at the kernel level. Kernel rootkits modify the operating
system (OS) kernel and rewrite the data outputted by the OS.
Therefore, detecting methods based on the output data of the
OS are ineffective. For example, anti-virus software running
at the user level cannot detect kernel rootkits. Thus, detecting
kernel rootkits is difficult and various methods to detect
them have been proposed. Ikegami et al. [1] mentioned
that the existing kernel rootkits detection methods can not
resolve all of the following problems simultaneously: (1)
cannot detect kernel rootkits immediately, (2) cannot keep
the expansibility of the OS kernel, and (3) cannot extend
to different OS and OS versions. To resolve those problems,
Ikegami et al. [1] proposed a method to detect kernel rootkits
by checking the kernel stack. However, this method (4)
cannot detect kernel rootkits that use instructions that do not
push data into the kernel stack (e.g., the jmp instruction).

We proposed KRGuard (Kernel Rootkits Guard), which
is the new method to detect kernel rootkits resolving all
problems (1)-(4) simultaneously [2]. KRGuard detects ker-
nel rootkits by monitoring the branch records in kernel space
recorded by the hardware features of commodity processors.
KRGuard utilizes the fact that many kernel rootkits make
branches that differ from the usual branches.

���������		


���	�

���������		


���	�

��	������

����

���������		

�������������

���������		

�������������

�������������		��������������

���
��
������	��������

�������������		�������������
��
��

����	��������

�� ��

���������

����	������

Figure 1. Changes in the control-flow when system call control-flow is
modified

In [2], we proposed KRGuard, but we did not describe the
implementation and evaluation. In this paper, we describe the
implementation of KRGuard as a kernel module on Linux
and the evaluation results of KRGuard.

The contributions made in this paper are as follows:
• The implementation of KRGuard on Linux, that can

effectively detect kernel rootkits.
• The evaluation of KRGuard. Our evaluation shows that

KRGuard can detect the existing kernel rootkit with
small overhead.

II. DESIGN OF KRGUARD

A. Concept of KRGuard

KRGuard utilizes the fact that many kernel rootkits make
branches that differ from the usual branch path. Previous
research [3] indicates that 96% of all kernel rootkits employ
control-flow modifications, making branches different from
usual. For example, Figure 1 shows the change in the
control-flow when the system call control-flow is modified
by kernel rootkits. Usually, after invoking a system call, the
control moves from the system call handler to each system
call service routine. On the other hand, when a computer
system is infected with kernel rootkits, the control moves
from the system call handler to the malicious code prepared
by the attacker before moving to each system call service
routine. In the malicious code, the processing that hides

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



attacks is executed. KRGuard detects kernel rootkits by
monitoring branch records in kernel space and by detecting
control-flow modification. KRGuard uses the Last Branch
Record, a recent feature of Intel processors for monitoring
branch records in kernel space.

B. Last Branch Record

Last Branch Record (LBR)[4] is a recent feature of Intel
processors that was introduced in the Nehalem architecture.
When the LBR is enabled, the CPU records the address of a
branch instruction and its target instruction (branch record)
on the LBR stack register, which can store up to 16 entries.
When more than 16 entries are recorded, the oldest stack
data is overwritten. Monitoring branch records using the
LBR has the following advantages:

(1) It can record all branch records in the kernel. There-
fore, it can monitor branch records recorded by in-
structions that do not push data into the kernel stack.

(2) It is transparent to the OS structure.
(3) It generates minimal overhead [5].

C. Overview of KRGuard

KRGuard detects kernel rootkits that modify control-flow
of a system call by monitoring the branch records using the
LBR in Linux. It should be noted, that we do not address
attacks on KRGuard itself in this paper.

Figure 2 shows a processing flow of KRGuard. KRGuard
detects kernel rootkits that modify the control-flow of the
system call as follows:

(1) A user program invokes a system call.
(2) KRGuard hooks the transition to the system call

handler.
(3) KRGuard judges whether the invoked system call is a

monitored system call and the following processing is
executed.
(A) If the invoked system call is a monitored system

call, then control is given to Step (4).
(B) Otherwise, KRGuard does nothing and control is

given to the system call handler.
(4) The LBR is enabled (to start monitoring branches) and

control is given to system call handler.
(5) The following processing is executed.

(A) If the invoked system call is a monitored system
call, KRGuard hooks the transition to each sys-
tem call service routine and control is given to
Step (6).

(B) Otherwise, control is given to each system call
service routine.

(6) The LBR is disabled (to stop monitoring branches).
(7) KRGuard checks branch records in the LBR stack. If

branch records in the LBR stack is abnormal (see Case
(2) described in II-D), KRGuard alerts the user.

����������

	��
��������

��

�
��������

��

��

��

�����������

�������������������

���������������������
���

�����������

��� �����!"��
�

�����������

��
#���

$�!���� %�

�&��

�&'�

(�

)�

*�

+������!
��!��#

�����������,

-"������!#.�
�!
��!�&/�!0

-��1�
���
�!
��!�&/�!0)&'�

)&��

+������!
��!��#

�����������,

2��

3-

2��

3-

���

�����

Figure 2. Processing flow of KRGuard

(8) Branch records in the LBR stack is cleared and control
is given to each system call service routine.

KRGuard monitors the following 13 system calls that
are likely to be modified by attackers: exit(), fork(), read(),
write(), open(), close(), execve(), ioctl(), readlink(), stat64(),
lstat64(), getuid32() and getdents64(). Those system calls
monitored by KRGuard are decided by referring [1], [6],
and [7].

Using these steps, KRGuard monitors the branch records
between the invoking system call and the transition to each
system call service routine.

D. Checking branch records in the LBR stack

KRGuard detects kernel rootkits based on the quantity of
branch records in the LBR stack.

In KRGuard, branch records recorded by the LBR is
classified in the following four ways:

(1) When the computer system is not infected with ker-
nel rootkits, the LBR records two pieces of branch
records.



(2) When the computer system is infected with kernel
rootkits, the LBR records more than two pieces of
branch records by processing the kernel rootkits.

(3) When the process is traced (by the feature of ptrace),
the LBR records more than two pieces of branch
records by processing the trace.

(4) When an interrupt occurs, the LBR records more
than two pieces of branch records by processing the
interrupt.

When the quantity of branch records contained in the
LBR stack is equal to two, KRGuard determines that the
computer system is not infected with kernel rootkits. When
the quantity is greater than two, KRGuard verifies whether
or not the process is traced intentionally by the user by
outputting process information to the user. If the user
intentionally trace the process, the user can confirm that
the process is intentionally traced by checking the process
information outputted by KRGuard. When the process is not
intentionally traced, KRGuard determines that the computer
system is infected with kernel rootkits. Handling the case in
which an interruption occurs is an issue that we will consider
in the future.

III. IMPLEMENTATION

A. Requirements of implementation

We implemented KRGuard to Linux 2.6.32 as the Linux
Kernel Module (LKM) with Intel Core i5-3470 3.2GHz
CPU. To implement KRGuard, we needed to satisfy the
following technical requirements:

• Hooking the transition to the system call handler and
collecting a system call number
- We need to hook the transition to the system call
handler to move a control-flow to the function of
enabling the LBR. In addition, we need to collect a
system call number to judge whether an invoked system
call is a monitored system call.

• Hooking a transition to the system call service routine
- We need to hook the transition to the system call
service routine to move a control-flow to the function
of checking branch records.

• Collecting branch records using the LBR
- KRGuard detects kernel rootkits by checking branch
records that are recorded by the LBR. Therefore, we
need to collect branch records using the LBR.

• Collecting process information
- If a process is traced, KRGuard outputs the executed
program-name and process ID to the user. Therefore,
we need to collect the flag indicating whether being
traced, executed program-name, and process ID.

B. Hooking the transition to the system call handler and
collecting a system call number

Hooking the transition to the system call handler is imple-
mented by overwriting the SYSENTER EIP MSR register.

In the SYSENTER EIP MSR register, the address of the
system call handler is stored. We can move a control-flow to
our hook function by overwriting the address of system call
handler stored in the SYSENTER EIP MSR register with
the address of our hook function. Additionally, KRGuard
reads the system call number in the EAX register.

C. Hooking a transition to the system call service routine

Hooking a transition to the system call service routine is
implemented by overwriting the address of a system call
service routines stored in the system call table with the
address of hook function. The system call service routines
that correspond to a specific system call are hooked and
monitored. (described in II-C).

D. Collecting branch records using the LBR

The LBR recording is enabled by setting the 0th bit of
the MSR DEBUGCTLA MSR register (LBR flag) and is
disabled by resetting the flag. Branch records are recorded
up to 16 entries, and each entry is indicated by the location
number of 0 to 15. The location number indicating the
latest branch record is stored in the lower 4 bits of the
MSR LASTBRANCH TOS register and KRGuard reads
these bits to obtain the location number of the latest branch
record. In addition, we can get branch records by reading
the LBR stack register and clearing branch records is im-
plemented by overwriting the LBR stack register with all
zeroes.

E. Collecting process information

If a process is traced, KRGuard output the execution
program-name and process ID to the user. To achieve this,
we collected the following information:

• The flag indicating whether a process is being traced
• Execution program-name
• Process ID
We are able to collect the above information from the

process control block, which is a data structure that con-
tains the information needed to manage a particular pro-
cess. On Linux 2.6.32, the process control block consists
of the thread info structure and the task struct structure.
KRGuard evaluates the “flag” variable in the thread info
structure, indicating whether a program is being traced. In
addition, KRGuard collects the “comm” and “pid” variables,
which store the program-name and process ID, respectively.

IV. EVALUATION

A. Purpose and environment

The evaluation items and the purposes of the evaluation
are indicated below:

• Detection experiment of kernel rootkit
- We evaluated the ability of KRGuard to detect kernel
rootkits by infecting the target OS with an existing
kernel rootkit.



Table I
EVALUATION ENVIRONMENT

OS kernel Linux kernel 2.6.32-5 (32bit)
CPU Intel Core i5-3470 3.2GHz
Memory 4.0 GB

��������	��
��������
���������� �������	�
��������
����������

Figure 3. Branch records before/after infected with the KBeast

• Performance overhead
- We measured the overhead per system call incurred
by KRGuard. In addition, we measured the processing
time of compiling the Linux kernel to evaluate its effect
to the performance of real applications.

The evaluation environment is described in Table I.

B. Detection experiment of kernel rootkit

In this evaluation, we used the KBeast[8] program as
a real kernel rootkit to infect the target Linux OS. By
reviewing our logs, we confirmed that KRGuard was able
to detect the presence of the KBeast program. In addition,
Figure 3 depicts the branch records recorded before/after
infection with KBeast and shows that the LBR recorded two
branch records before infection and more than 16 branch
records after infection. Since the LBR recorded more than
two pieces of branch records, it showed that KRGuard can
detect the kernel rootkit.

C. Performance overhead

We evaluated the performance overhead per system call
incurred by KRGuard by measuring the processing time
per system call. The system calls measured were open(),
getdents64() and read(). We measured the processing time
per open() and getdents64() by taking the average time over
1000 invocations of each call. We measured the processing
time per read() by taking the average time over 1000 read
attempts of 1KB and the average time over 1000 read
attempts of 100KB into the buffer.

Table II shows the measurement results of open() and
getdents64(), and Table III shows the measurement results
of read(). According to the results in Table II and Table
III, the overheads per system calls incurred by KRGuard

Table II
PROCESSING TIME OF OPEN() AND GETDENTS64() BEFORE/AFTER

INTRODUCING KRGUARD (µS)

System call Before After Overhead
open() 0.39 1.18 0.79
getdents64() 0.07 0.85 0.78

Table III
PROCESSING TIME OF READ() BEFORE/AFTER INTRODUCING

KRGUARD (µS)

System call File size Before After Overhead

read() 1KB 0.24 1.01 0.77
100KB 4.26 5.06 0.80

Table IV
PROCESSING TIME OF COMPILING THE LINUX KERNEL (S)

Before After Overhead
2146.43 2162.49 16.06 (0.74%)

are 0.77µs-0.80µs, which are larger than the overheads
incurred by the Ikegami’s method [1] (0.01µs- 0.37µs in
the following environment: Pentium4 3.60GHz CPU and
4GB memory). However, compared with other kernel rootkit
detection methods, the performance overhead per system
call incurred by KRGuard is sufficiently smaller. Why the
overhead per system call is larger than Ikegami’s method is
that KRGuard has additional overhead that is generated by
reading and writing to the LBR stack register.

Table IV shows the compiling time of Linux kernel
before/after introducing KRGuard. It shows that the per-
formance overhead of compiling the Linux kernel is 16.6s
(0.74%). According to this result, we think that the overhead
incurred by KRGuard to real application’s performance is
small.

V. CONCLUSIONS

KRGuard detects kernel rootkits by checking branch
records in LBR. By using the LBR, KRGuard can monitor
all indirect branches between the invoking system call and
the transition to each system call service routine, including
the indirect branches that do not push data into the kernel
stack. In addition, since the LBR is a feature of the CPU
and not the OS, KRGuard has high portability to different
systems and versions. KRGuard checks branch records every
time the system call, monitored by KRGuard, is invoked.
Therefore, after an injection with kernel rootkits, KRGuard
can detect kernel rootkits immediately. In addition, KRGuard
does not prohibit additional kernel modules.

Our evaluation demonstrates that KRGuard can detect
the KBeast program, which is a real kernel rootkit. In the
evaluation of performance, it is shown that overheads per
system call incurred by KRGuard are about 0.77µs-0.80µs.



In addition, the overhead of compiling the Linux kernel is
16.6s (0.74%), and we think that the overhead incurred by
KRGuard is small.

Challenges for future efforts include: handling the case in
which an interruption occurs and increasing the variety of
kernel rootkits that KRGuard can detect.

REFERENCES

[1] Y. Ikegami, and T. Yamauchi, “Proposal of Kernel Rootkits
Detection Method by Comparing Kernel Stack,” IPSJ Journal,
Vol.55, No.9, pp.2047-2060, 2014 (in Japanese).

[2] Y. Akao, and T. Yamauchi, “Proposal of Kernel Rootkits
Detection Method by Monitoring Branches Using Hardware
Features,” Proc. 2015 IIAI 4th International Congress on
Advanced Applied Informatics, pp.721-722, 2015.

[3] N.L. Petroni Jr, and M. Hicks, “Automated Detection of Per-
sistent Kernel Control-Flow Attacks,” Proc. 14th ACM Con-
ference on Computer and Communications Security (CCS’07),
pp.103-115, 2007.

[4] Intel, “Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 3B,” available
from¡http://www.intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-software-developer-vol-
3b-part-2-manual.html¿ (accessed 2016-07-06).

[5] V. Pappas, M. Polychronakis, and A.D. Keromytis, “Transpar-
ent ROP Exploit Mitigation using Indirect Branch Tracing,”
Proc. 22nd USENIX Security Symposium, pp.447-462, 2013.

[6] R. Riley, X. Jiang, and D. Xu, “Multi-Aspect Profiling of Ker-
nel Rootkit Behavior,” Proc. 4th ACM European Conference
on Computer Systems (EuroSys’09), pp.47-60, 2009.

[7] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering ker-
nel rootkits with lightweight hook protection,” Proc. 16th
ACM Conference on Computer and Communications Security
(CCS’09), pp.545-554, 2009.

[8] KBeast，available from¡http://packetstormsecurity.com/files/
108286/KBeast-Kernel-Beast-Linux-Rootkit-
2012.html¿(accessed 2016-07-05).




