
Design of a Function for Tracing the Diffusion of

Classified Information for File Operations with a KVM

Shota Fujii, Toshihiro Yamauchi and Hideo Taniguchi

Graduate School of Natural Science and Technology, Okayama University, Japan

fujii@swlab.cs.okayama-u.ac.jp {yamauchi, tani}@cs.okayama-u.ac.jp

Abstract. Cases of leaked classified information are increasingly common. To

address this problem, we developed a function for tracing the diffusion of

classified information within an operating system. However, this function

suffers from the following two problems. First, in order to introduce the

function, the operating system’s source code must be modified. Second, there is

a risk that the function will be disabled when the operating system is attacked.

Thus, we designed a function for tracing the diffusion of classified information

in a guest operating system using a virtual machine monitor. By using a virtual

machine monitor, it is possible to introduce the proposed function in various

environments, because the operating system’s source code need not be modified.

In addition, attacks aimed at the proposed function are made more difficult,

because the virtual machine monitor is isolated from the operating system. This

paper describes the implementation of the proposed function for file operations

and child process invocation with the kernel-based virtual machine.

Keywords: Data Leak Prevention, Virtualization, Semantic Gap

1 Introduction

As personal information becomes increasingly valuable, so too is the need to prevent

information leaks. According to an analysis [1] of incidents of leaked personal

information, leaks often occur as a result of inadvertent handling and mismanagement,

and this accounts for approximately 57% of all known cases of information leaks. To

prevent information leaks, it is important that the user grasp the situation surrounding

classified information. On the other hand, incidents that aim at stealing classified

information occur with increasing frequency. In such a context, there is always the

risk of increased damage when the victim cannot detect the information leak. To trace

the status of classified information in a computer, and to manage the resources that

contain classified information, we developed a function for tracing the diffusion of

classified information [2] (specifically, an operating-system-based tracing function).

This function manages any process that has the potential to diffuse classified

information. In addition, the function represents the extent of the diffusion using a

directed graph [3], and it traces the diffusion of classified information in multiple

computers [4]. However, the function cannot be introduced in a closed-source

Fig. 1. Overview of the OS-based tracing function

operating system (OS) such as Windows, because implementing it requires modifying

the source code. Further, when the kernel version is updated, the function must adapt

to the newly updated kernel.

To resolve these problems, we designed a function for tracing the diffusion of

classified information in a guest OS using a virtual machine monitor (VMM). This

VMM-based tracing function is implemented by modifying the VMM, rather than the

guest OS. Therefore, the VMM-based tracing function can be implemented without

modifying the OS’s source code. Further, it is expected that attacks specifically

targeting this function will be rare, because the VMM is more robust than the OS.

This paper describes the implementation of the function for file operations and

child process invocation with a kernel-based virtual machine (KVM).

2 OS-based Function for Tracing the Diffusion of Classified

Information

2.1 Classified Information Diffusion Path

The OS-based tracing function [2] manages any file and process that has the potential

to diffuse classified information. Classified information can be diffused by any

process that involves opening the classified file, reading its content, or

communicating with another process or file. Therefore, the diffusion of classified

information is caused by the following operations:

(1) File operation

(2) Inter process communication

(3) Child process invocation

The OS-based tracing function traces the diffusion of classified information by

monitoring these operations.

2.2 Overview of the OS-based Tracing Function

Figure 1 shows an overview of the OS-based tracing function. The OS-based tracing

function traces the diffusion of classified information as follows:

(1) System calls that are related to the diffusion of classified information are hooked.

(2) The OS-based tracing function collects information for tracing the diffusion of

classified information such as the file that is handled by the system call or the

transmission-destination process.

(3) The OS-based tracing function updates the diffusion information using the

information that is collected in (2) and audits its potential for leaking classified

information.

(A) When the audit discovers the possibility of a classified information leak, it

notifies the monitoring application program (AP).

(B) When the audit does not reveal any possibility of leaked classified

information, control is returned to the system call.

(4) After receiving the results of the user’s judgment from the monitoring AP, the

OS-based tracing function controls the system call in accordance with the user’s

judgment.

(A) When the user’s judgment is affirmative, the system-call processing is

continued.

(B) When the user’s judgment is negative, the system-call processing is

terminated as an error.

In addition, the OS-based tracing function excludes files and processes that are

unrelated to the diffusion of classified information. These files and processes are

registered with exception information.

2.3 Problems with the OS-based Tracing Function

The tracing function has the following problems:

Problem 1 The source code must be modified before it can be introduced.

In order to introduce the OS-based tracing function, it is necessary to modify the

OS’s source code. Therefore, the OS-based tracing function cannot be introduced

in closed-source OSs such as Windows. Furthermore, when the kernel version of

the OS is updated, the OS-based tracing function must again modify the source

code after the OS is updated.

Problem 2 Risk of an attack invalidating the tracing function

The OS-based tracing function is implemented in the OS. Therefore, an adversary

or a malicious user can invalidate the function by attacking the OS. Should the

function be invalidated, it becomes difficult to prevent information from being

leaked and grasp the location of classified information.

In this paper, we propose a method that resolves both problems.

3 Function for Tracing the Diffusion of Classified Information

in a Guest OS using a Virtual Machine Monitor

3.1 Requirements

To resolve the problems detailed above in Section 2.3, the following are required:

Requirement 1 The OS’s source code must not be modified.

Fig. 2. Overview of the VMM-based tracing function

One solution to Problem 1 is to avoid modifying the OS’s source code altogether.

This ensures that the function can be implemented in closed-source OSs such as

Windows.

Requirement 2 The function should be isolated from the OS.

Isolating the function from the OS is a solution to Problem 2. Such a solution

makes it difficult for an adversary or a malicious user to attack the function

directly.

3.2 Overview of the VMM-based Tracing Function

The VMM-based tracing function is functionally equivalent to the OS-based tracing

function. Figure 2 shows an overview of the VMM-based tracing function. The

VMM-based tracing function traces the diffusion of classified information as follows:

(1) A user program in the guest OS requests a system call.

(2) The VMM-based tracing function hooks the system call in the guest OS from the

VMM. After identifying the hooked system call, the following system-call

processing is performed.

(A) When the hooked system call is unrelated to the diffusion of classified

information, control is returned to the guest OS and the system-call process

is continued.

(B) When the hooked system call is related to the diffusion of classified

information, the VMM-based tracing function collects the information

needed to trace its diffusion.

(3) The VMM-based tracing function updates the diffusion information using the

information that is collected in (2-B).

(4) Control is returned to the guest OS and the system-call process is continued.
Given these steps, the VMM-based tracing function provides the guest OS with

functions that are equivalent to the OS-based tracing function, without the need to

modify the OS source code.

3.3 Tasks

To implement the VMM-based tracing function, the following tasks are required:

Task 1 Collecting the system-call information with the VMM.

Classified information is diffused by the system call. Therefore, it is necessary to

hook the system call. In addition, the VMM-based tracing function collects the

system call’s information owing to judgment whether the system call is related to

classified information diffusion.

Task 2 Collecting the OS information with the VMM.

The VMM-based tracing function manages any file or process that has the

potential to diffuse classified information. Therefore, it is necessary to collect the

information from the OS, such as the processes that are running, their transmission

destination, and the files handled by the processes that are running.

In Sections 3.4 and 3.5, we describe the procedure by which the above tasks are

accomplished. Further, this procedure is tailored for a 64-bit version of Linux in

which the system call is executed by SYSCALL/SYSRET.

3.4 Collecting System Call Information with the Virtual Machine Monitor

Hooking a System Call Entry. The VMM-based tracing function hooks the system-

call entry (viz., SYSCALL). By hooking SYSCALL, it is possible to detect system-

call requests. In order to hook SYSCALL, the VMM-based tracing function sets the

value of guest OS’s MSR_LSTAR to the value of an unused page address. Executing

SYSCALL changes the instruction pointer to the value in MSR_LSTAR, resulting in

a page fault. Therefore, the VMM-based tracing function can hook the SYSCALL

with the VMM by detecting page faults in the guest OS.

Hooking the System Call Exit. Each system call returns information concerning the

success or failure of the system call, and details of the file handled by the system call

as a return value. It is necessary to collect details about the file that is handled by the

running process so that the VMM-based tracing function can trace the diffusion of

classified information. Thus, the VMM-based tracing function hooks the system-call

exit (viz., SYSRET). By hooking SYSRET, it is possible to obtain the system call’s

return value. In order to hook SYSRET, the VMM-based tracing function sets the

breakpoint-address register to SYSRET’s address. A breakpoint-address register

specifies the breakpoint address and a debug exception is generated when a memory

access is made to the breakpoint address. Thus, a debug exception occurs upon

executing SYSRET. Therefore, the VMM-based tracing function can hook SYSRET

with the VMM by detecting debug exceptions in the guest OS.

Collecting Information. It is necessary to judge whether the hooked system call is

related to the diffusion of classified information. To identify the system call, the

VMM-based tracing function uses a system-call number. In addition, it is necessary

for the VMM-based tracing function to identify the transmission-destination file or

process. A system call takes the file or process information to an argument. By

obtaining the system call’s argument, it is consequently possible to identify the

transmission-destination file or process. Furthermore, as we have already described,

the VMM-based tracing function obtains the system call’s return value and utilizes

the return value for identifying the transmission-destination file or process.

3.5 Collecting OS Information with the Virtual Machine Monitor

The VMM-based tracing function traces the diffusion of classified information using

information from the OS, such as process information and file information. Then, the

semantic gap must be bridged so that the VMM-based tracing function can obtain the

OS information with the VMM. The semantic gap is the gap between the guest OS as

it is viewed from the outside and the view of it from the inside. To bridge the

semantic gap, the VMM-based tracing function constructs a semantic view by

retrieving information about the guest OS beforehand.

4 Implementation

4.1 Environment

In this chapter, we describe the implementation of the VMM-based tracing function,

using a KVM as the VMM and a 64-bit Linux OS with the 3.6.10 kernel as the guest

OS. The VMM-based tracing function detects requests for system calls by hooking

SYSCALL, and it obtains return values by hooking SYSRET. Therefore, the system

call in the guest OS is executed by SYSCALL/SYSRET. In addition, the guest OS is

fully virtualized with Intel VT.

4.2 Tracing Classified Information at Each Path

Current Status. The VMM-based tracing function traces the diffusion of classified

information by hooking a system call related to file operations, inter process

communication, and child process invocation. We have currently implemented the

VMM-based tracing function exclusively for file operations and child process

invocation. In the future, we will implement the VMM-based tracing function for

inter process communications. The following describes the implementation of the

VMM-based tracing function.

File Operation. The VMM-based tracing function hooks the open(), read(), write(),

and close() system calls that are related to file operations. In addition, to trace the

diffusion of classified information by file operations, the VMM-based tracing

function collects the following information:

(1) Current-process identifier

(2) Identifier of the file that is handled by the system call

It is necessary for the VMM-based tracing function to collect the current-process

identifier in order to judge whether the process requesting the system call is a

management target when the VMM-based tracing function hooks each system call. To

identify the current process, the VMM-based tracing function uses the process ID

(PID). The VMM-based tracing function obtains the PID when the function hooks the

SYSCALL. Moreover, it is necessary for the VMM-based tracing function to identify

the file that is handled by the system call when the VMM-based tracing function

judges whether file that is read is a management target, and to register the written file

with diffusion information. To identify the file that is handled by the system call, the

VMM-based tracing function uses the inode number. The VMM-based tracing function

obtains the inode number by following the data structure from process-control block

to the file structure. Then, the VMM-based tracing function identifies the inode

number using the file descriptor. The file descriptor is obtained with system call’s

return value in cases where open() is hooked. Likewise, the file descriptor is obtained

by the system call’s argument in cases where read(), write(), and close() are hooked.

Child Process Invocation. The VMM-based tracing function hooks the clone()

system call, which is related to child process invocation. Moreover, in order to trace

the diffusion of classified information by child process invocation, the VMM-based

tracing function collects the following information:

(1) System call’s product identifier

(2) Parent-process identifier

(3) Child-process identifier

The clone() system call creates not only a new process but also a new thread. The

threads in the same process share resources such as information related to the files

that are open. Therefore, classified information is not diffused from the process in the

case of thread creation. On the other hand, resources are diffused from the parent

process to the child process in the case of child process invocation. Thus, it is

necessary to judge whether the product of clone() is a process or a thread. To

determine this, the VMM-based tracing function uses the CLONE_THREAD flag. If

the CLONE_THREAD is set, clone() creates the thread. Consequently, by using the

CLONE_THREAD flag, it is possible to judge whether the product of clone() is a

process or thread. The CLONE_THREAD flag is obtained from the clone() argument

when the VMM-based tracing function hooks the clone() system-call entry.

Moreover, when the parent process is a management target, there is a risk that

classified information will be diffused to the child process. Therefore, to judge

whether the parent process is a management target, it is necessary to collect the

parent-process identifier. To do so, the VMM-based tracing function uses the parent

process’ PID. The parent process’ PID is obtained from the process-control block

when the VMM-based tracing function hooks the clone() system-call entry.

Furthermore, the VMM-based tracing function registers the child process with the

diffusion information when the VMM-based tracing function judges that there is a

possibility that the classified information will be diffused to the child process. Thus,

the child-process identifier must be obtained. To identify the child process, the VMM-

based tracing function uses the child process’ PID. The clone() system call returns the

thread ID (TID) of the child process. When clone() creates a new process, the TID is

identical to the PID. Thus, the child process’ PID is obtained from the return value of

clone() when the VMM-based tracing function hooks the clone() system-call exit.

5 Related Work

TightLip [5] is a privacy-management system that swaps an original process for a

dummy process, called a “Doppelgangers,” when a process that includes sensitive

data attempts to write a different buffer to the network. This protects this data because

the Doppelgangers does not itself contain sensitive data. Therefore, it is possible to

prevent sensitive data from being leaked. The VOFS [6] runs a Primary Guest VM

that contains the user’s main OS and a SVFS VM for preventing information leaks.

When a user attempts to open a sensitive file, the Primary Guest OS contacts the

SVFS VM and requests that it show the sensitive file that is stored in the content

server. Then, the SVFS VM prevents sensitive files from being leaked by disabling

device outputs. TaintEraser [7] is a method for tracing the diffusion of classified

information using Dynamic Taint Analysis. Dynamic Taint Analysis tracks

information that may have been tainted by other data. Subsequently, if the tainted data

is written to another location in the memory, that destination is marked as tainted.

Thus, it is possible to follow the classified information that is tainted.

6 Conclusion

This paper described the design and implementation of a VMM-based tracing

function for file operations and child process invocation with a KVM. The VMM-

based tracing function can be implemented without modifying the OS’s source code.

Thereby, we expect that the VMM-based tracing function can be introduced in

various environments. Moreover, it is difficult to attack the function directly, owing to

the isolation of the VMM from the OS. Furthermore, even if the kernel version is

updated, the VMM-based tracing function will continue to be available, provided that

the system-call specifications and the data structure remain unchanged.

In future work, we will implement the VMM-based tracing function for inter

process communication, and we will reduce the overhead generated by the VMM-

based tracing function, and evaluate its performance.

References

1. Japan Network Security Association, 2008 Information Security Incident Survey Report,

http://www.jnsa.org/result/incident/data/2008incident_survey_e_v1.0.pdf

2. Tabata, T., Hakomori, S., Ohashi, K., Uemura, S., Yokoyama, K., Taniguchi, H.: Tracing

Classified Information Diffusion for Protecting Information Leakage. IPSJ Journal. Vol.50,

No.9, pp. 2088–2012 (2009) (in Japanese)

3. Nomura, Y., Hakomori, S., Yokoyama, K., Taniguchi, H.: Tracing the Diffusion of

Classified Information Triggered by File Open System Call. In: Proc. 4th Int. Conf. on

Computing, Communications and Control Technologies, pp. 312–317 (2006)

4. Otsubo, N., Uemura, S., Yamauchi, T., Taniguchi, H.: Design and Evaluation of a Diffusion

Tracing Function for Classified Information Among Multiple Computers. In: 7th FTRA

International Conference on Multimedia and Ubiquitous Engineering, pp. 235–242 (2013)

5. Yumerefendi, A. R., Mickle, B., Cox, L. P.: TightLip: Keeping Applications from Spilling

the Beans. In: Proc. of the 4th USENIX conference on Networked systems design &

implementation (2007)

6. Borders, K., Zhao, X., Prakash, A.: Securing Sensitive Content in a View-only File System.

In: Proc. of the ACM Workshop on Digital Rights Management, pp. 27–36 (2006)

7. Zhu, D. Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: TaintEraser: Protecting Sensitive

Data Leaks Using Application-level Taint Tracking. In: ACM SIGOPS Operating Systems

Review, pp. 142–154 (2011)

