
Some fitting of naive Bayesian spam filtering
for Japanese environment

Manabu Iwanaga1, Toshihiro Tabata2, and Kouichi Sakurai2

1 Graduate School of Information Science and Electrical Engineering, Kyushu
University, Japan

iwanaga@itslab.csce.kyushu-u.ac.jp
2 Faculty of Information Science and Electrical Engineering, Kyushu University,

Japan
{tabata, sakurai}@csce.kyushu-u.ac.jp

http://itslab.csce.kyushu-u.ac.jp/

Abstract. Bayesian filtering is one of the most famous anti-spam mea-
sures. However, there is no standard implementation for treatment of
Japanese emails by Bayesian filtering. In this paper, we compare several
conceivable ways to treat Japanese emails about tokenizing and corpus
separation. In addition, we give experimental results and some knowledge
obtained by the experiments.

1 Introduction

Recent years, spam is rapidly increasing, because email is much cheaper method
to send out some information than other advertising methods such as direct mail
or telemarketing. Nowadays spam becomes a terrible obstacle to email commu-
nication, hence it is important for users and postmasters to keep spam out of
their maildrop.

In order to keep spam out of maildrop, not only users but Internet Service
Providers (ISPs) and Mail User Agents (MUAs) have applied anti-spam features
into their products and services. For example, Mozilla [1], Eudora [2] and Outlook
[3] have applied spam-detection as standard features.

One of the most famous anti-spam measures is Bayesian filtering. It has
become famous in the past several years. Many implementations of Bayesian
filtering have been developed, motivated by and based on Graham’s essay [4].
Since these implementations work alone as a proxy or via other program like
procmail[5], they can be applied easily. However, there is no standard imple-
mentation to process Japanese emails in Bayesian filtering.

Spam causes a social issue also in Japan (In the case of Japan, spam sent to
email address assigned to cell phone is a big problem). Some Japanese email users
receive spams written in Japanese, others receive spams written in English, and
some unfortunate users receive both of them. For example, authors exchange
both Japanese and English emails with an identical email address, and also
receive both Japanese and English spams by the address.



In this paper, we consider and make experiments in several conceivable points
to treat Japanese emails. First, we focus on how to extract tokens from Japanese
sentence. It is important to extract tokens, because the probability that received
email is a spam is calculated from probabilities for tokens, that the email with
the token is a spam. Second, we consider how to separate corpuses according to
language written in email. While most of Japanese implementations of Bayesian
filtering separate corpuses between Japanese emails and non-Japanese emails,
choosing corpus for each token, not for each email, will bring more accuracy. A
part of the result may be useful for users who treat both English emails and
non-English emails, not only Japanese.

Corpus is a collection of words appeared in previous spams and nonspams.
In detail, it contains two data:

– number of learned spams and nonspams, respectively,
– frequency of each word in spams and nonspams, respectively.

From above two data, each word is given a probability that an email which
contains the word is a spam.

2 Related Work

In order to avoid spam, various methods have been proposed and used. Most of
proposed methods are classified into following.

– Watching behavior of SMTP connection (e.g. Greylisting [6])
– IP Blacklisting (e.g. ORDB [7])
– Domain authentication (e.g. SPF [8], senderID [9])
– Content filtering: rule-based (e.g. Spamassassin [10]), statistical (e.g. naive

Bayes [4, 11, 18–20], Markovian [12]), collaborative (e.g. Razor [13])
– Challenge/response (e.g. [14–17])

Watching behavior of SMTP connection, IP Blacklisting, and domain au-
thentication are mainly used in mail servers. It is pretty hard for users to apply
these methods on their PCs, because a mail server can omit some informa-
tion of sender and a user cannot intervene in transaction when it delivers to
users’ maildrop (For example, a user cannot apply greylisting without control of
his/her mail server). On the other hand, users can easily apply content filtering
and challenge/response, without modifying servers and SMTP (needless to say,
these methods can work on a server for convenience of users.)

Nowadays, statistical filtering methods have been applied broadly to avoid
spam, especially Bayesian filtering (naive Bayes) which has been popular since
Graham’s essay [4] came out. Bayesian filter calculates the probability for every
word that a randomly chosen email containing the word will be a spam, accord-
ing to past spams and nonspams. Furthermore, Bayesian filter can add tokens
appeared in the email to its corpus, according to judgment of the Bayesian filter
itself. Therefore, a user only has to train his/her filter in case his/her filter makes
a mistake. Even if spammers use obfuscated words, Bayesian filter also learns



these words and obfuscated words are used as obvious evidence. There are many
available implementations, for example bsfilter [18], scbayes [19], bogofilter [20]
and popfile [21].

3 Consideration in Bayesian Filtering for Japanese
Environment

As Bayesian filtering is used around the world, it is also used in Japanese envi-
ronment, which treats both Japanese email and English email. In order to apply
Bayesian filtering in Japanese environment, some modification on the filtering
scheme for improving efficiency of Bayesian filtering should be considered.

There are many Bayesian filtering implementations intended to be used in
Japanese environment. These implementations have several features specialized
for Japanese environment. We focus on these features, especially about extract-
ing tokens from a sentence and separating corpus according to language written
in an email.

3.1 Method for Extracting Tokens

Because Japanese does not have a blank to separate a sentence into tokens, it
is not so easy to extract grammatical words from a sentence. In Japanese, the
most popular way to extract tokens until now is variants of bigram which utilize
the cayegory of Japanese characters (hiragana, katakana and kanji). Basically,
bigram is a method that all pairs of consecutive two characters are extracted
as tokens. In fact, bigram is usually adapted with some modification, because
kanji, hiragana and katakana are used with different way in Japanese. It is also
a simple and easy way to implement that regarding each adjacent characters in
same category (kanji, hiragana, and katakana) as a token. Bigram seems fairly
effective for Bayesian filtering because Japanese has many phrases composed of
two, three or four kanjis.

If a user sticks to grammatical word, he/she can also use external tools like
KAKASI [22], ChaSen [23] or MeCab [24]. While these tools are originally in-
tended for morphological analysis or kanji-to-hiragana conversion, tokenizing is
now one of the most well-known usages of these tools.

Now we give several samples. Bsfilter [18], one of Bayesian filtering imple-
mentations written in ruby, has following rules to extract tokens from a Japanese
email.

– For a sequence of kanjies, adjoining two kanjies is respectively extracted as
a token. If kanji stands alone or continues only two characters, the whole is
extracted as one token.

– All contiguous katakanas are extracted as one token as the whole.
– Hiraganas are not extracted as any token.

Scbayes [19], another implementation written in Scheme3, has following rules.
3 Scheme is one of varieties of the Lisp programming language.



Fig. 1. Three tokenizing methods

– Basically, contiguous two characters are extracted as a token.
– However, combination of hiragana and kanji in that order is ignored.

Some implementations like bogofilter [20] do not support extracting tokens
from Japanese sentences, so some tool must convert Japanese email to tokenized
text which an implementation can extract tokens from. These tokenizing meth-
ods are depicted as Figure 1.

3.2 Method of Separating Corpus

Relative proportions of spams and nonspams are not same between in one’s
Japanese emails and in one’s English emails. For example, one of the authors’
email addresses receives many Japanese spams but only a few English spams,
while another receives many English spams but a few Japanese spams. It is
thought that the former address was gathered by and exchanged among Japanese
spammers, and the latter one by/among spammers in English-speaking market.
On the other hand, we can receive important English emails by the latter email
address, for example, acceptance letter from the international conference and
confirmation of hotel reservation. This situation causes high spam probabilities
for whole words of particular language. It is undesirable that this bias causes
more false-positives (FP) in emails of particular language, because Bayesian
filtering is based on the assumption that we do not want a classification to be
affected by the relative proportion of spams and nonspams.



Fig. 2. Our Proposal for separating corpus

To cope with this situation, most of Japanese implementations separate cor-
puses for Japanese emails and non-Japanese emails. In these implementations,
filters first make a decision whether an email is written in Japanese or not. That
is to say, the implementation distinguishes language written in an email, and
then a spam probability is calculated with one corpus corresponding to the lan-
guage. It is reasonable to reduce false-positives arising from language in which
email is written. It is easy to distinguish Japanese emails from non-Japanese
emails, reading “charset” header field [25] or checking character code.

However, we wanted to detect language-independent evidence, which is con-
tained in header, etc. To realize this, we tried to distinguish language of each
token, not each email. This method is expected to reduce both false-positives and
false-negatives (FN). This method can also deal with an email which contains
two or more languages as a message body.

Our method is represented as Figure 2. Upper one shows traditional separa-
tion for each email and lower one shows our proposed separation for each token.
In our method, non-Japanese tokens in Japanese emails are learned by a corpus
for non-Japanese tokens. On the other hand, corpus should also count number of
learned spams and nonspams. Because tokens in Japanese emails are learned by
either Japanese and non-Japanese corpuses, Japanese email should be counted
by both of the corpuses. In this experiment, we leave this matter open and use
simple way. We count an email as both Japanese and English email, in propor-
tion to ratio between Japanese tokens and English tokens. For example, an email



Table 1. Number of emails which is used to experiment about extracting tokens

initial nonspam spam
training Japanese Japanese

Condition 1 293 293

Condition 2 1659 293

Table 2. Comparison between token-extracting methods

initial method Condition 1 Condition 2
training FP FN FP FN

3/4
bsfilter 0.41% 1.42% 0.00% 6.69%
ChaSen 0.27% 1.94% 0.00% 8.72%
scbayes 0.27% 1.42% 0.00% 15.88%

1/2
bsfilter 0.27% 1.39% 0.02% 11.22%
ChaSen 0.27% 1.94% 0.02% 14.18%
scbayes 0.34% 2.11% 0.00% 23.64%

which contains 300 Japanese tokens and 100 English tokens is counted as 0.75
Japanese emails and 0.25 English emails.

4 Experiment

We performed experiments on techniques concerning about treating Japanese
emails mentioned above. In every experiment, emails were divided randomly
into ones for training and ones for testing. We call the proportion of emails
for training on all emails in the experiment initial training ratio. For example,
we have 1000 nonspams and 600 spams, and initial training ratio is 1/5, we
train 200 nonspams and 120 spams. We changed initial training ratio to several
values to know characteristic of our method associated with amount of training.
At first, emails for training are learned as spams and nonspams by a Bayesian
filter, respectively. Then emails for testing are classified to spam or nonspam by
the filter, and we count numbers of false-negatives and false-positives. Because
corpuses are cleared at the end of each testing, each experiment is independent.

Performance is evaluated by rate of false-positives and it of false-negatives.
The former is an error that a nonspam is wrongly classified as a spam, and the
latter is an error that a spam is wrongly classified as a nonspam.

In the following experiments, we used bsfilter (Revision 1.35.4.3, [18]) as
an implementation of Bayesian filtering, with Graham’s method of calculation
and 0.9 as threshold, and then simulated the other methods when needed. It is
because we want to look at core differences between methods and omit the other
differences.



Table 3. Number of emails for comparison about corpus separation

Init. nonspam spam
training JA non-JA Total JA non-JA Total

Condition 3 1167 55 1222 293 929 1222

Condition 4 1680 257 1937 75 164 239
JA: Japanese emails, non-JA: non-Japanese emails.

4.1 Method for Extracting Tokens

We performed experiment with three tokenizing methods, bsfilter-styled bigram,
scbayes-styled bigram (simulated on bsfilter) and grammatical tokenizing. We
used ChaSen [23] as a grammatical tokenizer.

The number of emails used for this experiment is shown in Table 1. Condition
1 assumes that there are spams as many as nonspams, and Condition 2 assumes
that there are more nonspams than spams. The emails are collected from spams
/ nonspams we received and spams we caught by a honeypot email account. Note
that emails used in this experiment are all Japanese emails, because tokenizing
methods are intended only for Japanese.

Table 2 shows the result of experiment between tokenizing methods. In case
there are spams as many as nonspams (Condition 1), there were about 0.34% of
false-positives and 1.70% of false-negatives on an average, and difference between
tokenizing methods was little (Roughly speaking, difference between tokenizing
methods is only ±0.07% of false-positives and ±0.41% of false-negatives from
average). In this case, difference between tokenizing methods was little.

In case there are more nonspams than spams, false-positive decreased and
false-negative increased (Condition 2) from above case, and difference of false-
negatives between tokenizing methods was not negligible (difference of false-
negative reached about at ±5% from average.) Bsfilter-styled bigram had the
best performance with 6.69% and 11.22% of false-negatives; ChaSen had second-
best with 8.71% and 14.18%. However, scbayes-styled bigram made the most
errors, about twice as many as bsfilter. From this result, we can say that gram-
matical tokenizing does not always yield good performance in Japanese.

4.2 Method of Separating Corpus

Next, we performed experiments to compare between two methods of separating
corpus. One is a way that selects a corpus for each email, and the other is a way
that selects corpus for each token. The number of emails used for this experiment
is shown in Table 3. Condition 3 represents a case that there are spams as many
as nonspams, and Condition 4 represents a case that there are more nonspams
than spams. Similar to the experiment in Section 4.1, the emails are collected
from spams / nonspams we received and spams we caught by a honeypot email
account. However, this time we included non-Japanese spams / nonspams.

Table 4 shows the result of comparison between corpus separation styles.
Through Condition 3 and 4, the result shows that our method, the way that



Table 4. Experiment about separating corpus

Number of Initial for each email for each token
emails training FP FN FP FN

Condition 3

4/5 0.99% 3.84% 0.48% 3.86%
3/5 0.97% 4.35% 0.55% 4.28%
2/5 1.45% 5.26% 0.81% 5.49%
1/5 2.29% 7.10% 1.46% 6.84%

Condition 4

4/5 0.32% 4.59% 0.24% 4.75%
3/5 0.37% 6.09% 0.23% 5.42%
2/5 0.47% 7.39% 0.25% 7.87%
1/5 1.03% 11.68% 0.24% 12.63%

selects a corpus for each token, got less false-positives with almost same amount
of false-negatives. We think it is because spam has more characteristics which
are language-independent than nonspam.

Because false-positive is serious problem on using Bayesian filtering, it is
significant that our method can decrease false-positives without increase of false-
negatives.

5 Conclusion

In this paper, the authors have explained issues on Bayesian filtering for Japanese.
To adapt Bayesian filtering into Japanese email environment, some modification
is usually made to Bayesian filtering. The authors have looked at two factors and
experimented on several methods which have applied by existing implementation
or which the authors have proposed.

First, we have focused on methods of extracting tokens from sentence. Gram-
matical tokenizer does not always yield the best performance for Japanese emails.

Second, we have focused on methods of separating language-specified cor-
puses. False-positives can be decreased by choosing language-specified corpus
for each token, not for each email, without increase of false-negatives. Because
false-positive is serious problem on using Bayesian filtering, it is significant that
choosing corpus for each token can decrease false-positives without increasing
false-negatives.

While the authors have obtained good result by choosing corpus for each
token, modification for counting email learned by Bayesian filter is very intuitive.
More sophisticated way for counting emails may yield better performance than
our way.

Acknowledgement

This research was partly supported from the grant of Secom Science and Tech-
nology Fundation.



References

1. Mozilla 1.3 Release Notes, modified February 2004, http://www.mozilla.org/
releases/mozilla1.3/.

2. QUALCOMM Releases Eudora(R) 6.0 - Significant Version Upgrade with New
Advanced Time-Saving Tools, September 2003, http://www.eudora.com/press/
2003/09 04 03.html.

3. Help Prevent Junk E-Mail Messages with Outlook 2003, April 2003,
http://www.microsoft.com/office/editions/prodinfo/junkmail.mspx.

4. P. Graham, “A Plan for Spam,” http://paulgraham.com/spam.html.
5. Procmail, http://www.procmail.org/.
6. E. Harris, The Next Step in the Spam Control War: Greylisting, 2003,

http://projects.puremagic.com/greylisting/.
7. Open relay database, http://www.ordb.org/.
8. Sender Policy Framework, http://spf.pobox.com/.
9. MTA Authentication Records in DNS, Internet-Draft, May 2004,

http://xml.coverpages.org/draft-ietf-marid-core-01.txt.
10. Spamassassin, http://spamassassin.org/.
11. P. Graham, Better Bayesian Filtering, Spam conference, Boston, USA, January

2003, http://paulgraham.com/better.html.
12. W. Yerazunis, The Spam-Filtering Accuracy Plateau at 99.9% Accuracy and

How to Get Past It., 2004 Spam Conference, Boston, USA, January 2004,
http://crm114.sourceforge.net/Plateau Paper.pdf

13. Vipul Razor, http://razor.sourceforge.net/.
14. E. Gabber, M. Jakobsson, Y. Matias, A. Mayer, Curbing Junk Email via secure

Classification, Financial Cryptography ’98, Anguilla, British West Indies, 1998,
198–213.

15. R. J. Hall, Channels: Avoiding unwanted electronic mail, the 1996 DIMACS
Symposium on Network Threats, Piscataway, USA, 1996, 85–103.

16. Mailblocks, http://about.mailblocks.com/.
17. M. Jakobsson, J. Linn, J. Algesheimer, “How to Protect Against a Militant

Spammer,” Cryptology ePrint archive, report 2003/071, 2003.
18. bsfilter, http://www.h2.dion.ne.jp/˜nabeken/bsfilter/.
19. scbayes, http://www.shiro.dreamhost.com/scheme/wiliki/wiliki.cgi?Gauche%3A

SpamFilter&l=jp.
20. bogofilter, http://bogofilter.sourceforge.net/.
21. POPFile, http://popfile.sourceforge.net/.
22. KAKASI, http://kakasi.namazu.org/.
23. ChaSen, http://chasen.aist-nara.ac.jp/.
24. MeCab, http://cl.aist-nara.ac.jp/˜taku-ku/software/mecab/.
25. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria

and Examples, RFC2049, Nov. 1996, http://www.ietf.org/rfc/rfc2049.txt


