
Memory Access Monitoring and Disguising of Process Information
to Avoid Attacks to Essential Services

Masaya Sato, Toshihiro Yamauchi, Hideo Taniguchi

Graduate School of Natural Science and Technology,
Okayama University, Okayama, Japan

Email: {sato,yamauchi,tani}@cs.okayama-u.ac.jp

Abstract—To prevent attacks on essential software and to
mitigate damage, an attack avoiding method that complicates
process identification from attackers is proposed. This method
complicates the identification of essential services by replacing
process information with dummy information. However, this
method allows attackers to identify essential processes by
detecting changes in process information. To address this prob-
lems and provide more complexity to process identification, this
paper proposes a memory access monitoring by using a virtual
machine monitor. By manipulating the page access permission,
a virtual machine monitor detects page access, which includes
process information, and replaces it with dummy information.
This paper presents the design, implementation, and evaluation
of the proposed method.

Keywords-attack avoidance; process information; virtualiza-
tion

I. INTRODUCTION

The prevention of attacks to computers is an important

research topic, for which protective software is developed.

In addition to security software, logging and analyzing

techniques are developed. We call these as essential services

or software, which are necessary to computers in the current

malware-spread situation; hence, the essential software be-

comes a target of attack from malware. Some malware have

a function to terminate or deactivate essential software [1],

[2], [3]. Min et al. proposed novel malware to subvert

the self-protection function of antiviruses [4], whereas the

current malware has advanced functionalities to terminate

or disable antivirus software. If an attacker terminates or

disables essential services, the computer is possibly taken

control over by malware, or damage may increase. Thus, it

is necessary to prevent attacks on essential services.

Some methods to prevent attacks to essential services

were proposed in [5], [6], [7], [8] and [9]. Hsu et al.

proposed antivirus software protection based on a kernel

mode driver [5]. However, kernel mode countermeasures are

vulnerable to kernel-level attacks. To address this problem,

virtual machine monitor (VMM) based security mechanisms

were proposed in [6], [7], [8], [9]. As a VMM is isolated

from guest operating systems (OS), attacking a VMM is

more difficult than attacking an OS. These approaches utilize

the property of a VMM and prove that the VMM-based

security mechanism have enough adequate security than an

OS-based security mechanism. Virtualization technology is

not limited to the abovementioned methods but is used for

security monitoring [10], [11] because of its isolation prop-

erty. However, the use of the existing approaches requires

modification to essential services. From these observations,

we determined that the security of essential services with

no modifications to that software is an important challenge.

However, the existing approaches do not satisfy these re-

quirements.

To address this problem, we proposed a process-hiding

method [12], which replaces process information of essential

services with dummy information to avoid identification of

the essential services. To protect the replacement mechanism

from kernel-level attacks, a VMM replaces process infor-

mation of each VM. However, the use of this replacement

method may possibly allow attackers to identify essential

services by continuously monitoring all process information.

As the replacement method replaces process information of

an essential service during context switching, an attacker

can detect the essential process if he/she detects a change

in process information at that time.

To address these problems, this paper proposes the mem-

ory access monitoring and disguising of process informa-

tion to avoid attacks to essential services. To complicate

identification of an essential service through continuous

monitoring at kernel level, our method control accesses to

process information of an essential service. In our method,

only a permitted code can access process information. If

another code accesses the process information of an essential

service, the VMM returns dummy information to the source

of access. We used a hardware-assisted paging mechanism

to control and to monitor page access, which includes the

process information of essential services. By removing read

access to the pages, all access to that page causes transition

from the VM to the VMM. Thus, we can monitor and

control the access to those pages. The proposed method

does not require modification to existing essential services.

In addition, the proposed method is applicable to various

application programs because it depends not on application

programs but on the process information managed by an

operating system.

yamauchi
タイプライターテキスト
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current orfuture media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



II. BACKGROUND

A. Attacks for Anti-Virus Software

Agobot [1] is malware that attacks anti-virus software.

Agobot installs backdoor to Windows hosts. The malware

seeks target processes by searching out the name from the

process list in order to disable it. An investigation on Au-

gust 8th, 2013, revealed that Agobot included 579 targeted

process names. When malware disables anti-virus software,

the risk of damage to the computer system increases.

T0rnkit [2] and dica [3] are malware for disabling a

logging program. T0rnkit is a rootkit that aims to install

a backdoor for concealing their location. Its target system

is Linux. When installing programs used by t0rnkit, the

malware stops the syslog daemon, thus hiding the installa-

tion process from a system administrator. Consequently, the

system administrator cannot detect the installation or even

the existence of other malware.

Some malware stops or disables software that prohibits

their activity on the computer. If essential services are

stopped or disabled, the risk of damage to the system

increases. For this reason, detection, prevention, and attack

avoidance for an essential service are required.

B. Existing Countermeasures

Hsu et al. proposed a protection method called ANSS

for anti-virus software from termination [5]. ANSS hooks

system calls related to process termination and control them

if they would stop anti-virus software. ANSS works as a

Windows driver that operates in kernel mode.

Virtual machine introspection [6] is the representative

approach using virtual machines. Existing approaches mon-

itors information of computers with user application pro-

grams and kernels. However, those methods are vulnerable

to kernel-level attacks. Kernel-level attacks are emerging

threats in current situation and those attacks are not negligi-

ble. However, VMI export the existing monitors to outside

a VM. Because of strong isolation of VM, the monitors are

secure than the monitor inside the kernel. Research into an

offloading host-based intrusion detection system (IDS) with

a VMM is proposed in VMwatcher [7] Implementing an IDS

by modifying a VMM makes it difficult to attack the IDS. In

the same manner, Riley et al. proposed NICKLE [8], which

prevents the execution of a kernel-level rootkit. Because it

monitors the execution of kernel code with a VMM, only

the authorized code can run. These methods help to prevent

attacks that are difficult for existing methods without a

VMM to detect and prevent.

To address these problems, we proposed a process hiding

method by replacing process information [12]. This method

replaces process information of an essential process to

dummy information to hide the essential process from at-

tackers. This method addresses the above problems because

it complicates identification of an essential process and it

is implemented by a VMM. Thus, attacks to the essential

service based on a process information becomes difficult

and the mechanism itself is secure because isolation from

attackers’ codes on a VM. In addition, the process hiding

method requires no modification to essential services.

C. Problems with Existing Methods

Existing methods cannot use essential services without

modifying them. Furthermore, these methods are effective

only when they are secure from attacks. If these methods are

themselves attacked by adversaries, a system administrator

cannot utilize those services to avoid attack. The methods

described in Section II-B are advantageous given that attacks

on a VMM are more difficult than attacks on an OS.

However, porting the functions from existing software to

a VMM is difficult and expensive. The IDS offload method

without modification is an effective approach. However, it is

difficult to apply to general application because the method

involves the emulation of each system call. To offload the

IDS completely, it is necessary to emulate all system calls.

However, complete emulation is difficult to implement.

Even though the existing VMM-based methods are iso-

lated from attackers on a VM, many of them cannot use

existing software without modification. Moreover, exporting

existing functions used by anti-virus software to a VMM

is difficult. Further, the information collected by existing

application programs (APs) and kernel is different from

the information a VMM collects. This semantic gap makes

it difficult to port functions from existing software to a

VMM. The process hiding method stated in the Section

II-B addresses these problems, however, it is vulnerable to

attacks that monitors process information of all processes

continuously. This attack can detect the essential service

when the attacker detects changes to process information.

This method does not prohibit termination of essential

processes so that the attacker can terminate them. To avoid

attacks to essential services, this problem must be addressed.

III. MEMORY ACCESS MONITORING AND DISGUISING

OF PROCESS INFORMATION

A. Basic Idea

In the proposed method, process information is defined

as information that can be used to identify a process. The

proposed method monitors accesses to and disguises the

process information depending on the source of access.

Section III-B details the disguising flow. By using this

method, only the essential service can view the original

process information, whereas other processes and untrusted

kernel modules view dummy process information.

We designed the proposed method without modifying an

essential service’s program. By utilizing a VMM, we can

design the proposed method without modifying the APs.

Because the VMM manages resources of each VM, the

VMM can monitor their memory accesses. Moreover, a



design with a VMM makes it difficult to attack the security

mechanism even if an attacker obtains kernel privilege in a

VM. Because a VMM and VM are isolated, high privilege

in a VM does not allow attacks to the proposed method in

the VMM or another VM.

The proposed method addresses the limitations of our

previous study [12] by monitoring accesses to process in-

formation. In our previous work, process information was

replaced by dummy information. However, the original

information was restored while the essential service was

running, thus allowing attackers to detect it. In contrast, the

proposed method can prevent detection by monitoring access

to the process information. Even if the process information

is restored, we can detect an access to it and handle it as

attackers cannot view the original information.

B. Monitoring Accesses to Process Information of Essential
Services

The proposed method prohibits reading access to process

information. When some programs read the process informa-

tion of an essential service on the VM, EPT violation occurs

and the VMM manages it. The VMM checks whether the

source of access is included in the permitted area; if yes, the

VMM permits read access to the accessed area and returns

to processing the VM. In other cases, the VMM saves the

original process information to another VM, replaces the

process information, and returns processing to the VM. By

replacing the process information, the source in the not-

permitted area views the dummy process information.

Table I shows who can view the process information. In

the proposed method, a kernel and permitted kernel modules

can view the original process information. However, other

kernel modules cannot view the original information. We

assume a kernel manages the process information but we do

not consider the codes in user space. To check the source of

access, we use an instruction pointer and a kernel stack. As

a kernel stack consists of return addresses, we collect them

and check whether they are in the permitted area.

We use an extended page table (EPT) to monitor accesses

to process information. Each EPT entry has a permission

vector including read, write, and execute. The proposed

method disables the read bit of an EPT entry, which com-

prises process information of an essential service. In this

situation, a read access to a page corresponding to the

EPT entry causes an EPT violation. By detecting the EPT

violation, the VMM can detect the read access to the process

information of an essential services.

C. Process Information to Monitor

The followings are the process information in Linux:

1) Process control block

2) Kernel stack

3) Hardware context

4) Page tables

Table I
ACCESS PERMISSIONS FOR PROCESS INFORMATION OF ESSENTIAL

SERVICES

Source of Access
Permitted • Operating System Kernel

• Permitted Kernel Module
Prohibited • Prohibited Kernel Module

5) Memory used by a user process

The process control block has many resources and point-

ers related to the process including process ID, thread ID,

process name, and pointers to data structures related to files

and sockets used by the process. It is easy to identify a

process as essential by referring to its process control block.

A kernel stack has a call stack, which include information

of function call and local variables. In multi-core environ-

ment, a process running on a core can estimate an essential

process running on another core by analyzing the kernel

stack. In addition, a data structure that controls a thread is

accessible from the kernel stack because the data structure

of the kernel stack is a union of the kernel stack and thread

control data. An attacker can identify an essential process

by referring to its thread control data.

A hardware context has register values, which may uti-

lized to estimate the behavior of a process. Further, it is

possible to estimate the behavior by analyzing the memory

usage. Thus, page tables are also considered as process

information.

The memory content used by a process is unique and

contains much process-related information. Attackers are

able to identify the behavior of a process by analyzing the

memory content if they have sufficient knowledge of the

application program.

Therefore, controlling accesses to the process control

block, kernel stack, and memory content used by the process

is necessary to prevent identification of an essential process.

In this paper, we focus on the process control block. Even

if access to a kernel stack must be controlled, it can be

acquired by applying the same method used for the process

control block. However, we did not handle the memory

content used by a process because monitoring all accesses to

the memory content requires a large performance overhead.

We considered using some memory protection techniques;

however, it is outside the scope of this study.

D. Allocation of Process Information

Figure 1 shows the allocation methods of process infor-

mation. In the proposed method EPT restricts reads to the

information of essential processes. Therefore, granularity of

access control is the page size. As process control blocks

are not allocated per-page, we modified the guest OS to

allocate process control blocks per-page and the remaining

area is filled by padding.



Page size
Process

Information
Padding

Process information of essential process
Process information of normal process

(1) Allocating the data structure of 
Process Information by page.

(2) Dividing the area of Process
Information into two areas.

Essential
Process

Normal
Process

Figure 1. Allocation of process information.

E. Overview

Figure 2 shows the overview of the proposed method. The

administrator of the Manager VM designates the essential

process. The proposed method disables read access to an

EPT entry corresponding to a page that includes information

of the essential process. Figure 2 shows the case when the

process control block of the essential process is designated

as process information. Here, only write accesses to the page

are permitted before a read access. After detecting the read

access to the page, the Control AP requests the VMM to

permit read access. When a prohibited code accesses the

process information, the Control AP replaces the process

information with a dummy information. To prevent attackers

from distinguishing the dummy information, it must be

chosen carefully. In most cases, the dummy information

should be chosen randomly with values common to many

programs. Adequate dummy information is written in our

previous study [12].

F. Consideration

1) Identification of Essential Process from File or Com-
munication Information: To identify an essential process, at-

tackers can use information related to file or communication.

For example, if an essential service accesses a specific file,

attackers can identify the essential process by monitoring

the access to the specific file.

Although that information is beneficial to attackers, the

proposed method in this paper provides measurable compli-

cation for identification. Usually, information about file or

communication is acquired through a process control block.

Because the proposed method monitors accesses to a process

control block, the VMM and the control AP can monitor

accesses to file or communication information. When the

VMM or the control AP detects accesses to them, we can

replace or disguise them as if the process is not using a

specific file or not communicating with a specific computer.

2) Management of Essential Processes on Protection Tar-
get VM: Information of an essential process is invisible to

all the other processes except itself. This indicates that the

manager of the protection target VM cannot manage the

Protection Target VMManager VM

Essential
Process

Process Information 
of Essential Process

Control AP

Designation of Essential 
Process / Determination 

of Access Rights

VMM

User Space
Kernel Space

Mode Transition with 
an Access to the 
Process Information

libvmi

Save/
Replace/
Restore

EPT Entry for Process Information
Before Access (-w-) / After Access(rw-)

Update of EPT Entry

Notifi-
cation

Figure 2. Overview of the proposed method.

essential process. We do not consider this inconvenience

a problem because we assume an essential process is a

resident service, which is not controlled by the manager

of a computer frequently. The manager of the protection

target VM can manage the essential process by requesting

the manager of the manager VM.

3) Application to Other Purposes: The proposed method

can be used for other purposes. For example, the proposed

method can be used as a countermeasure for the anti-analysis

function of malware. Some malware stops their activities

to avoid being analyzed if they find a malware analysis

environment. By applying the proposed method to a malware

analysis software may improve its success rate.

IV. IMPLEMENTATION

A. Save and restoration of process information

Figure 3 shows the flow when a code access to the prohib-

ited area. When a read access to a page that is not permitted

to read access, a VMM is called with EPT violation. In

the prototype of the proposed method, the VMM calls the

Control AP in the Manager VM. The Control AP checks

the permitted area includes the instruction pointer or not.

If the permitted area includes the instruction pointer, the

Control AP scans a kernel stack of the Protection Target VM

and collects return addresses. If the permitted area includes

the instruction pointer and all return addresses in a kernel

stack are comprised in the permitted area, the Control AP

requests the VMM to enable read access to the page. If not,

the Control AP saves the original process information and

replaces it to a dummy information. After the replacement,

the Control AP requests the VMM to enable read access to

the page and enables single step mode.

Figure 4 shows the flow when an instruction is executed

while the guest OS is in single step mode. After the VMM

is called, the VMM transfer control to the Control AP. The

control AP first disables single step mode. If the control AP

replaced the process information with a dummy information,

it restores the original process information. Finally, the

Control AP requests the VMM to disable read access to



Is the instruction pointer 
resides in the permitted 

text area?

All collected addresses 
are reside in the 

permitted text area?

Collecting return addresses from the current 
kernel stack.

Save Process Information

Activate single step mode

Detect a read of the Process Information 
on the guest OS by a VMM.

Return to the guest OS

No

Yes

Yes

No

Permit read access to the Process Information

Replace the Process Information to 
dummy

Figure 3. Flow when a code access to the prohibited area.

the page to detect the next read access to the process

information.

B. Collecting Process Control Block

If the VMM detects a read access to the process infor-

mation of the essential process from the area which is not

permitted to access, it is required to collect process control

block of the kernel running on the VM from the outside.

In our method, the VMM collects the process control block

from register values of the VM. Because a process control

block and a kernel stack are linked each other, the VMM

first gets the initial address of the kernel stack. Then the

VMM gets the initial address of a process control block

from a member in the kernel stack that points the process

control block. The VMM gets the initial address of the

kernel stack by masking lower 13 bits of the stack pointer

because two pages are allocated to a kernel stack in Linux.

Because the initial address of the kernel stack is also the

initial address of thread_info, the thread_info has

a member which point task_struct (process control

block). With the above procedure, the VMM can collect and

replace process control block. Thus, the VMM must know

the definition of those data structures beforehand.

V. EVALUATION

A. Purpose and Environment

To confirm that the proposed method can replace the pro-

cess information and untrusted kernel modules cannot access

the original process information, we listed processes from

the user and kernel spaces inside the protection target VM.

Further, to estimate the performance overhead in application

programs, we measured the performance by using a micro-

benchmark program.

Deactivate Single Step Mode

Restore the Original Process Information

Detect operation on single step mode on 
the guest OS by the VMM

Return to the guest OS

Forbid read of the Process Information

Is the Process Information 
is Replaced to dummy?

Yes

No

Figure 4. Flow when an instruction is executed while the guest OS is in
single step mode.

Table II shows the environment used for evaluation. We

implemented the proposed method with the Xen hypervi-

sor [15] and Linux. We used LibVMI [13], which is a

library based on XenAccess [14], to implement the pro-

posed method. It is made for virtual machine introspection

compatible with Xen. We did not modify Xen, and wrote a

control AP on the manager VM. In the prototype, we used a

hardware-based VM (HVM) domain as the protection target

VM and dom0 as the manager VM. The computer used for

evaluation comprises Intel Core i7-2600 (3.4 GHz) and 16

GB RAM. The protection target VM has one virtual CPU

and 1 GB RAM. The manager VM comprises three virtual

CPUs and 15 GB RAM. Hyper threading and turbo boost

are disabled to suppress performance instability, and VT-x

and EPT are enabled. Linux 3.2.65 and 3.2.0 run on the

protection target and manager VMs.

B. Avoidance of Process Identification

To confirm that the proposed method can avoid attacks to

an essential process according to its name of the process,

we used malware dica, which is a rootkit for Linux and

stops a logging daemon syslogd to hide the installation

of another malware. dica uses the killall command

to terminate syslogd. killall scans the program name

of all the running processes. If a program name matches

the target name, the killall command terminates the

Table II
ENVIRONMENT FOR EVALUATION.

Software
VMM Xen 4.2.3
OS Manager VM: Debian 7.3 (Linux 3.2.0 64-bit)

Protection Target VM: Debian 7.3 (Linux 3.2.65 64-bit)
Control AP LibVMI 0.10.1

Hardware
CPU Intel Core i7-2600, 3.40 GHz, 4 cores

Manager VM: 1 virtual CPU
Protection Target VM: 1 virtual CPU

Memory Manager VM: 15 GB
Protection Target VM: 1 GB



process. Because the program name is a member (comm)

of task_struct, we designated the comm member in

task_struct as process information. The experimental

results showed that if the proposed method is used, syslogd
keeps running after dica is installed to the target VM. This

is because the comm member of syslogd is replaced with a

dummy name through the proposed method and killall is

unnable to find syslogd from the process list of the VM. This

experiment confirmed that the proposed method is effective

for attacks based on process information.

C. Performance
We measured the processing time during illegal access to

process information. We compared the processing time when

the read access to the information of an essential process is

granted or prohibited. We used a kernel module on the VM

to collect a list of processes.
Figure 5 shows the measurement results when the process

information is allowed to be read, prohibited to be read,

and prohibited to be read and replaced with a dummy

information. Table III shows the mean processing time in

each case.
We measured the processing time for collecting a pro-

cess list hundred times in three cases: no restriction for

reading process information, restriction without replacement

of process information, and restriction with replacement of

process information. In the replacement case, we replaced

the name of a program of the process. The kernel module

reads a process list in a kernel from the beginning to the

end. This causes EPT violation when a program reads the

process information of an essential process. The control

AP detects the EPT violation and determines whether the

process information must be replaced. An idle process is a

user process that repeats sleep for a second.
The measurement results showed that the performance

overhead with read access restriction to process information

is 0.024 (8%) s in the init and 0.034 s (11%) in the idle.

The processing time during the replacement of process

information increases by 0.154 s (45%) in the init and

decreases by 0.003 s (1%) in the idle.
Compared to the method using replacement of process

information [12], the proposed method further will degrades

the performance. This is because the proposed method

monitors read access to the process information in addition

to replacing it. However, we believe the earlier measurement

results show that its overheads are acceptable. The workload

largely degrades the performance because it accesses process

information frequently. In contrast, common workloads do

not access process information much. Therefore, the perfor-

mance overheads in the actual workload can be expected to

be less than the aforementioned results.

D. Memory Consumption
As the proposed method requires changes to the size of

process information, we calculated the memory overhead by

0

0.1

0.2

0.3

0.4

0.5

0.6

No monitoring Monitoring(init)
w/o replacement

Monitoring (init)
w/ replacement

(comm)

Monitoring (idle)
w/o replacement

Monitoring (idle)
w/ replacement

(comm)

Pr
oc

es
sin

g 
tim

e 
fo

r g
et

tin
g 

a 
lis

t o
f 

al
l p

ro
ce

ss
es

 fo
r 1

00
 ti

m
es

 (s
ec

).

Figure 5. Performance of collecting a process list.

Table III
MEAN TIME FOR OBTAINING A PROCESS LIST 100 TIMES.

Read restriction of
process information

Essential
Process

Replacement of
Process Information

Processing
Time (sec)

Disabled 0.316
Enabled init Nothing 0.341

comm 0.495
idle Nothing 0.350

comm 0.347

using the proposed method. The increased memory size de-

pends on the number of processes, size of the data structure

treated as process information, variant of process informa-

tion, and amount of process information. For instance, we

assume the case in which the size of the process information

(Sprocinfo) is less than a page size Spage. We designate one

process as an essential process. Then, the increased memory

size is ((Spage − Sprocinfo)× Vprocinfo)×Nproc (Nproc is

the number of processes, and Vprocinfo is the variants of

data structure).

In the evaluation environment, we used Linux 3.2.65 as

a guest OS. If we consider the process control block as

process information, the increased memory of each essential

process is 2,320 bytes because the size of task_struct
is 1,776 bytes and the page size is 4 KB. In the evaluation

environment, the increased memory is up to 209 KB because

the number of processes in the environment is 70–90.

Although the memory usage increased by 209 KB, its effect

is small because the VM has 1 GB memory.

VI. RELATED WORK

To prevent attacks to antivirus software, their vendors

implemented various software protection mechanisms [4].

Some antivirus software prevents self-termination by in-

serting kernel mode or filter drivers to prevent users or

malware from terminating antivirus services through APIs

or commands. Other protection mechanisms prevent their

executable files, libraries, and configuration files from be-

ing tampered by inserting an I/O filter driver. These self-

protection mechanisms are effective for attacks; however

advanced attacks can bypass them [4]. In addition, these

mechanisms are dependent on the structure of the an-

tivirus software. To protect antivirus software by using these



mechanisms, they must be modified and all files must be

protected from being tampered. Our proposed method can

prevent attackers from identifying antivirus software, thus

decreasing further attacks because it is difficult to determine

attack targets. By combining the proposed method and the

existing antivirus self-protection mechanism, the security of

the entire system will be enhanced.

Security monitoring studies often use virtualization tech-

nology. HyperTap [10] is a monitoring framework for relia-

bility and security of VM. HyperTap monitors events inside

a VM including context switches, system calls, and I/O

accesses. It uses events natively occurring on virtualized

environments; however, the proposed method uses additional

memory access violation to monitor accesses to specific

memory regions. As the proposed method can detect more

events than HyperTap, additional overheads are large as well.

Similar to the proposed method, Xie et al. [11] focused

on essential information managed by a kernel on a VM.

The method in [11] compares information extracted from

a VM and VMM. If the VMM detects a difference during

the comparison, it analyzes hidden information and sends an

alarm message to the end user. Compared with conventional

VMI approaches [6], [7], Xie et al. reconstructed high-level

information; including running processes, network connec-

tions, and opened files; from low-level information acquired

by the VMM. The proposed method also acquired high-

level information from low-level information. However, the

purpose of information reconstruction is different from that

in [11] because the proposed method reconstructs high-level

information and replaces it to disguise process information

from attackers.

VII. CONCLUSION

This paper proposed the design, implementation, and

evaluation of memory access monitoring and disguising

method of process information to avoid attacks to essential

services. The proposed method monitors read accesses to

the process information and disguises it when the prohibited

area includes the source of the access. Because the proposed

method disguises process information based on the source

of read access, identifying an essential service from changes

of process information becomes difficult.

Evaluations showed that the proposed method complicates

the identification of an essential process from attackers. The

modified source code of a guest OS is just one line and we

did not modify the source code of essential processes. By

using the proposed method, the measurement results showed

performance degradation of less than 45% and a memory

overhead of 209 KB when the number of processes is 90.

These evaluations show that the proposed method can avoid

attacks and its overheads are acceptable.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI

Grant Numbers 16K16067 and 16H02829.

REFERENCES

[1] F-secure. Agobot. [Online]. Available: http://www.f-
secure.com/v-descs/agobot.shtml

[2] F-secure, T0rnkit. [Online]. Available: http://www.f-
secure.com/v-descs/torn.shtml

[3] Packetstorm. dica.tgz. [Online]. Available:
http://packetstormsecurity.com/files/26243/dica.tgz.html

[4] B. Min and V. Varadharajan, “A novel malware for subver-
sion of self-protection in anti-virus,” Software: Practice and
Experience, vol. 46, no. 3, pp. 361–379, 2016.

[5] F.-H. Hsu, M.-H. Wu, C.-K. Tso, C.-H. Hsu, and C.-W.
Chen, “Antivirus software shield against antivirus termina-
tors,” IEEE Trans. Inf. Forensic Secur., vol. 7, no. 5, pp.
1439–1447, 2012.

[6] T. Garfinkel and M. Rosenblum, “A virtual machine intro-
spection based architecture for intrusion detection,” in Proc.
Network and Distributed Systems Security Symposium, 2003,
pp. 191–206.

[7] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
and monitoring through vmm-based “out-of-the-box” seman-
tic view reconstruction,” ACM Trans. Inf. Syst. Secur., vol. 13,
no. 2, pp. 12:1–12:28, 2010.

[8] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention
of kernel rootkits with vmm-based memory shadowing,” in
Proc. 11th International Symposium on Recent Advances in
Intrusion Detection, 2008, pp. 1–20.

[9] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm
monitoring using hardware virtualization,” in Proc. 16th ACM
conference on Computer and communications security, 2009,
pp. 477–487.

[10] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk, and R. K.
Iyer, “Reliability and security monitoring of virtual machines
using hardware architectural invariants,” in 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks, 2014, pp. 13–24.

[11] X. Xie and W. Wang, “Rootkit detection on virtual machines
through deep information extraction at hypervisor-level,” in
2013 IEEE Conference on Communications and Network
Security (CNS), 2013, pp. 498–503.

[12] M. Sato, T. Yamauchi, and H. Taniguchi, “Process hiding
by virtual machine monitor for attack avoidance,” Journal of
Information Processing, vol. 23, no. 5, pp. 673–682, 2015.

[13] LibVMI Project. Libvmi. [Online]. Available:
http://libvmi.com/

[14] B. D. Payne, D. D. A. Martim, and W. Lee, “Secure and
flexible monitoring of virtual machines,” in Twenty-Third
Annual Computer Security Applications Conference (ACSAC),
2007, pp. 385–397.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp.
164–177, 2003.




